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Abstract

Multi-class imbalance classification problems occur in many real-world ap-
plications, which suffer from the quite different distribution of classes. De-
composition strategies are well-known techniques to address the classifica-
tion problems involving multiple classes. Among them binary approaches
using one-vs-one and one-vs-all has gained a significant attention from the
research community. They allow to divide multi-class problems into several
easier-to-solve two-class sub-problems. In this study we develop an exhaus-
tive empirical analysis to explore the possibility of empowering the one-vs-
one scheme for multi-class imbalance classification problems with applying
binary ensemble learning approaches. We examine several state-of-the-art
ensemble learning methods proposed for addressing the imbalance problems
to solve the pairwise tasks derived from the multi-class data set. Then the
aggregation strategy is employed to combine the binary ensemble outputs to
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reconstruct the original multi-class task. We present a detailed experimental
study of the proposed approach, supported by the statistical analysis. The
results indicate the high effectiveness of ensemble learning with one-vs-one
scheme in dealing with the multi-class imbalance classification problems.

Keywords: Multi-class classification, Imbalanced data, Ensemble learning,
Binary decomposition, Classifier combination

1. Introduction1

In machine learning and data mining, while one or more classes are un-2

derrepresented in the data set, it is called as class imbalance classification.3

Many real-world classification tasks suffer from the class imbalance problem,4

which is considered as one of the important challenges for the data mining5

community [18]. The main difficulty of these problems is that the skewed6

distribution makes conventional classification algorithms less effective, since7

standard learning algorithms consider a balanced training data set, which8

result in making it harder to predict minority class examples [50].9

In recent years, many efforts have been focused on the binary class imbal-10

ance problems [31, 41], which only contain two classes. However, multi-class11

imbalance classification, is widely applied in many areas, such as text cat-12

egorization [47], human activity recognition [1] and medical diagnosis [35].13

Unfortunately, it may be invalid to directly apply the solutions proposed14

for the two-class problems to the multi-class imbalance problems, and some15

algorithms cannot be used to solve the multi-class imbalance problems di-16

rectly [18].17

Fortunately, in the research community, decomposition strategies turn18

up to deal with multi-class classification problem. In this solution frame-19

work, the multi-class classification problems are transformed into binary class20

sub-problems, which are much easier to discriminate [61, 53]. Such well-21

known approaches are the one versus one (OVO) [33, 25] and one versus all22

(OVA) [7]. As OVA introduces an artificial class imbalance (e.g., for 10 class23

problem with roughly equally represented classes, the binary sub-problem24

will have an imbalance ratio 1:9), it is not advisable to use it for handling25

problems with initially skewed distributions [46].26

In this paper, we focus on multi-class imbalance classification problems27

and develop a complete empirical study to explore the effectiveness of en-28

semble learning methods [62] in the multi-class imbalanced datasets with29
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OVO scheme, where binary-class classifiers are trained from the subset con-30

taining each pair of classes by ensemble learning approaches based on data31

preprocessing [23]. Our initial works in this domain showed that empower-32

ing binary decomposition with pairwise ensemble learning can significantly33

improve mining imbalanced multi-class problems [34].34

Regarding ensemble learning methods, six state-of-the-art approaches35

are selected to carry out the experiment: UnderBagging [3], SMOTEBag-36

ging [56] [15], RUSBoost [49], SMOTEBoost [10], SMOTE+AdaBoost [40],37

EasyEnsemble [40]. Additionally, to show the efficiency of ensemble learn-38

ing with OVO scheme for addressing the multi-class imbalance problems,39

the original data preprocessing strategies, including random under-sampling40

(RUS) [4], random over-sampling (ROS) [4] and synthetic minority oversam-41

pling technique (SMOTE) [8], are also implemented in the OVO scheme for42

our comparative analysis.43

Finally, we carry out a thorough experimental study that supports the44

effectiveness of our methodology. Concretely, 20 multi-class imbalanced data45

sets are selected from the UCI repository in our experiment. The average46

accuracy rate [20] is used as the performance measures in this study. In47

order to analyze the results obtained from the different solutions, statistical48

analysis suggested in [28] is given to support the significance of the results.49

The main contributions of this paper with respect to previous studies are50

as following:51

• We propose to enhance the OVO scheme for multi-class imbalanced52

data by using ensemble techniques for each sub-problem.53

• We show, how to extend the area of applicability of binary imbalanced54

ensemble classifiers to handling far more challenging multi-class imbal-55

anced scenarios.56

• We develop a complete experimental study of comparison of the state-57

of-the-art ensemble learning techniques with conventional resampling58

methods with OVO strategy and state-of-the-art solutions for multi-59

class imbalance problems.60

• In order to obtain the impacts of the base classifier used in our sce-61

nario, we choose three different algorithms, including Classification62

and Regression tree (CART) [6], Back Propagation Neural Network63

(BPNN) [17] and Support Vector Machine (SVM) [54].64
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The rest of this paper is organized as follows. The background of this65

study is introduced in Section 2, including multi-class imbalance classifica-66

tion problems and decomposition strategies. Next, in Section 3 we present67

the framework of our methodology of ensemble learning with OVO scheme68

for dealing with multi-class imbalance classification problems. In section 4,69

the experimental framework is given, including the data sets, the base clas-70

sifiers and the relative parameters setting, the performance measures and71

the statistical tests. The complete empirical study is presented in Section 5.72

Lessons learned from the paper are given in Section 6, while conclusions and73

potential directions for future works are to be found in the final Section.74

2. Background75

In this section, we first introduce the problem of multi-class imbalance76

classification. Then, we present the solutions for addressing the imbalance77

problems. Finally, we describe the decomposition strategy for dealing with78

multi-class classification problems.79

2.1. Multi-class Imbalanced Data Analysis80

Multi-class imbalanced data sets, where there are much more instances81

of some classes (referred to as the majority classes) than others (referred to82

as the minority classes), is one of the most challenging problems with data83

quality that always reduces classification performance in machine learning84

and data mining [57]. The minority classes are usually the most important85

concepts to recognize, since they represent the rare cases [59]. Additionally,86

it is expensive or hard to select these examples [58].87

However, standard classification algorithms are designed with the premise88

of a balanced training set [42]. With such a precondition, it is much more89

difficult for the classical classification algorithms to deal with class imbalance90

problems, especially for identifying the minority class instance [9]. Addition-91

ally, most of the methods however are specific to address the binary class92

imbalance problems. Obviously, multi-class imbalance problems are far more93

complex, since these issues are involved with large number of classes and the94

relationships among the classes are complicated. Furthermore, it is hard to95

distinguish between minority classes and noise examples and the minority96

classes can be ignored by the classifier as the noise examples.97
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2.2. Solutions for Imbalanced Classification Problems98

To overcome the dilemma of skewed class distribution, a large amount of99

techniques have been developed to deal with such problem. These proposals100

can be roughly categorized into four groups:101

• Data level: the origin of the problem is the class distribution in the data102

sets, therefore, it is natural to consider of rebalancing by sampling the103

data space to reduce the impact of class imbalance, known as an exter-104

nal approach. One of the advantages of such solution is independent105

from the classifier used, so they are also considered as pre-sampling106

method [27, 51].107

• Algorithm level: these solutions try to adopt appropriate decision thresh-108

old to reinforce the learning towards the minority class instances. The109

proposed algorithms that take the class imbalance into consideration110

belong to such techniques. They are defined as internal approaches111

in some papers [52, 11], since the effect depends on the problems and112

the classifier [13]. One of the most well-known solutions is the direct113

modification of the learning procedure for a selected algorithm [45].114

• Cost-sensitive level: these approaches consider higher costs for misclas-115

sifying the minority classes with respect to the majority classes, that116

is, misclassification of minority class is much more expensive [44]. The117

learning process turns to minimize the cost errors instead of maximiza-118

tion of accuracy rate [63].119

• Ensemble level: these solutions combine the efficient ensemble learning120

solutions [62] with one of the three previously mentioned strategies in121

order to create a balanced training sets for base classifier and at the122

same time introduce diversity into the pool of base learners. Special123

attention should be paid to recent combination of intelligent and di-124

rected data-level approaches with Bagging solution [5] or randomized125

oversampling [15], hybrid combination of algorithm-level methods [55]126

and cost-sensitive pruning for decision tree ensembles [36].127

Due to the advantage of the data level solutions (as pointed out by a128

recent tutorial on data preprocessing [29]) we focus on such methods in this129

study.130
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RUS [51] is the basic under-sampling, which randomly removes the major-131

ity class instances to balance the class distribution. This approach is efficient132

for dealing with class imbalance problems, since most of the majority class133

instances are redundant. Additionally, RUS makes the training process be-134

come much faster, since the training set contains less instances than original135

data set. However, some potential useful information contained in the ma-136

jority class instance may be neglected, since RUS randomly generates the137

subset without considering the relationship among the instances.138

ROS [27] is another basic resampling approach, which randomly dupli-139

cates the minority class instances to make the training set balanced. With140

such consideration, the size of minority class examples tends to match the141

size of the other classes. However, it might lead to two important defects.142

One of the problems is overfitting, since ROS typically replicates examples of143

the minority class so that the interface between minority class and majority144

class is too prone to the former. Another problem is that ROS increases the145

training time. Suppose there is an imbalance data set with 20000 majority146

class examples and 100 minority class examples, to generate an equal size147

of minority class and majority class, the ROS will create a training data set148

with 40000 examples. Obviously, it must take much more time if ROS is149

used as resampling technique.150

SMOTE is an intelligent oversampling approach proposed by Chawla et151

al. [8]. Unlike ROS duplicates the minority examples, SMOTE produces152

synthetic minority class examples by k nearest neighbors, augmented with153

randomized interpolation. However, the noise might incorporate in the syn-154

thetic minority class examples.155

In the above reviewed methods, sampling process is independently carried156

out before the training process. In these approaches, the training process is157

unchanged and the classifiers are trained by the balanced data sets produced158

in the resampling process. To overcome the drawbacks of classical resam-159

pling approaches mentioned above, some ensemble learning methods [37] are160

proposed to devote to combine the resampling process and training process.161

These techniques developed for dealing with class imbalance problems follow162

the architecture of bagging or boosting.163

In the framework of bagging, the base classifier is trained by using the164

resampling examples. That is, the diversity is obtained through resampling165

minority class instances, since bootstrapped instances of the original data set166

are randomly duplicated. Many proposals are introduced in the research com-167

munity, such as OverBagging, UnderBagging, and UnderOverBagging [3].168
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Regarding to the scenario of boosting, the resampling techniques are em-169

bed into bootstrap. In such a manner, the resampling methods are introduced170

in each iteration to train a classifier toward the minority class. In this family,171

SMOTEBoost [10] and RUSBooost [49] are the representative proposals. Be-172

sides these techniques, some algorithms combine both bagging and boosting173

to obtain an ensemble of ensembles [40].174

However, when we refer to multi-class imbalance classification problems,175

the conventional solutions may not be feasible or perform a lower achieve-176

ment. There are still only few approaches for handling this task. Static-177

SMOTE [19] applied resampling procedure in M steps, where M is the178

number of classes. In each iteration, the resampling procedure selects the179

minimum size class, and duplicates the number of instances of the class in180

the original data-set. An ensemble learning algorithm for multi-majority181

and multi-minority cases was proposed in [57]. Authors combine AdaBoost182

with negative correlation learning, where starting weights of examples are183

calculated in inverse proportion to the number of objects in this class. A184

combination of binary decomposition and pre-processing methods was pro-185

posed as an efficient solution when the number of classes is high [18].186

More recent studies on this problem propose to combine pairwise modified187

SVMs with boundary shift asymmetric regularization costs using one-vs-all188

technique [14]. Additionally, two hybrid ensemble techniques with embedded189

feature selection were proposed to deal with the problem of skewed distri-190

butions among multiple classes [30, 38]. The most recent work study in this191

domain reports the high importance of considering the individual types of192

minority classes examples and their learning difficulty when performing over-193

sampling for multi-class imbalanced data and proposes a data-driven univer-194

sal strategy that can be embedded in any data-level multi-class solution [48].195

As one can see, there are many efficient ensemble techniques dedicated196

to binary problems. However, it is not straightforward to extend them for197

scenarios with higher number of classes. Therefore, the ensemble learning198

methods are considered in this study to learn the pattern from the data set199

derived from paired classes, and then the binary ensembles are combined by200

aggregation strategy to be a final multi-class classifier.201

2.3. One-vs-One Scheme for Multi-Class Classification Problems202

In the OVO decomposition scheme, a m-class problem is divided into203

m(m − 1)/2 binary subproblems. Each problem is faced by independent204

base classifiers, which are responsible for distinguishing the instances from205
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the different pairs of classes. With such appropriate consideration, the much206

more complex multi-class problem is translated into the simpler binary class207

subproblems, which is expected to receive better results or address multi-class208

problems with binary classification techniques. An example of binarization209

technique for decomposing the multi-class problem is shown in Figure 1.210

Figure 1: An example of one-versus-one (OVO) decomposition of a three-class problem
into three two-class problems.

In order to predict a new pattern, there are two phases required to com-211

plete the task. The first phase is to learn the classifiers that are trained by212

the original instances with pairwise classes, that is, the task of each classifier213

is to distinguish a pair of classes {Ci, Cj}. In the integration phase, a confi-214

dence degree rij ∈ [0, 1] in favor of Ci is given by a classifier to discriminate215

the class i from class j. The confidence in favor of j-th class is computed216

as rji = 1 − rij , if the classifier considers the output class as the class with217

the largest confidence value. To be clearer, all the confidence degree can be218

represented by a score matrix R:219
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Rm,n =











− r1,2 · · · r1,m
r2,1 − · · · am,n

...
...

. . .
...

rm,1 rm,2 · · · −











. (1)

There are a number of aggregations proposed in the literature [26, 39] to220

infer the final class. The voting strategy (VOTE) is the simplest but powerful221

aggregation, therefore, it is considered as the aggregation approach in this222

study. VOTE, which is also called binary voting and Max-Wins rule [21],223

considers a vote for the predicted class by the binary classifier. Votes received224

by each class are counted and the final class obtaining the largest number of225

votes is predicted as follows:226

Class = arg max
i=1,··· ,m

∑

1≤j 6=i≤m

sij , (2)

where227

sij =

{

1 rij > rji

0 otherwise
. (3)

3. Combining OVO with Ensemble Learning for Multi-class Imbal-228

anced Data229

As mentioned above, on the one hand, ensemble learning proposed for230

imbalanced datasets may be not effective or even impossible for dealing with231

multi-class problems. On the other hand, decomposition strategy is effec-232

tive direction to handle the multi-class classification problems. Therefore, it233

is interesting for us to consider their respective advantages in the scenario234

of multi-class imbalanced datasets. In this section, we firstly describe our235

methodology of employing the ensemble learning approaches in the OVO236

scheme. Then, we present the well-known ensemble learning methods em-237

ployed in this study.238

3.1. Solving Multi-Class Imbalanced Problems with Binary Decomposition239

Multi-class imbalance classification problems are extremely complex tasks,240

which suffer from more than two classes and class imbalance distribution. Ac-241

cording to the suggestion of decomposition strategy, which aims at solving242
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the complex problem by decomposing it into series of much easier subprob-243

lems, we propose to explore the effectiveness of combination of ensemble244

learning and OVO scheme to address the multi-class imbalance classification245

problems.246

Firstly, the multi-class imbalance classification problems are decomposed247

into a series of pairwise datasets. One should note that there are some248

pairwise classes after decomposition will have roughly equal size. For these249

cases, the subproblems are handled as normal binary classification problems250

by the normal ensemble learning algorithms. Then, the ensemble learning251

methods based on the resampling techniques devote to address the binary252

class imbalance datasets.253

In this work we focus only on OVO approach as recent studies on decom-254

position techniques clearly proved its superiority over OVA methods [22, 24].255

Additionally, studies on combination of resampling strategies with single clas-256

sifiers for multi-class imbalanced data showed clearly that OVA displays in-257

ferior performance [18]. Finally, OVA introduces an artificial class imbalance258

which may further damage the learning process in scenarios with multiple259

skewed distributions.260

An example of the proposed approach is shown in Figure 2.261

There are two strategies employed in the ensemble learning process.262

As shown in Figure 2 (left), one of the ensemble learning algorithms com-263

bines the single classifiers which are derived from the balanced datasets by264

reducing the size of the majority class. Concretely, the multi-class classi-265

fication problem is split into several binary class subproblems. Then, the266

ensemble learning method combining under-sampling strategy is employed267

to learn a binary classifier for each subproblem. Finally, the aggregation268

strategy is considered to obtain the final output class.269

As described in Figure 2 (right), oversampling approach is adopted to270

increase the number of the minority class to balance the class distribution.271

Firstly, the binary class subproblems are derived from the original multi-272

class classification problem. Secondly, ensemble learning method considering273

SMOTE to create the synthetic minority class to balance the distribution for274

the training process is used to achieve a binary classifier for each pairwise275

class data set. Finally, once each binary classifier derived from the ensemble276

learning, aggregation strategy will be employed to provide the final output277

from the score matrix.278

Let us now discuss ensemble learning algorithms used in this study.279
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Figure 2: An example of pre-processing methods applied over a decomposed multi-class
imbalanced dataset. (Left) Undersampling applied to each subproblem. (Right) Over-
sampling applied to each subproblem.

3.2. Ensemble Learning Algorithms for Binary Imbalanced Data280

As described above, ensemble learning is applied in our study to classify281

the binary classes which are derived from the multiclass data sets. There-282

fore, several well-known ensemble learning algorithms proposed for imbalance283

problems were selected to train the binary classifiers. Specifically, the ensem-284

ble learning algorithms employed in this study are as follows:285

• UnderBagging (UBA). RUS is applied to under-sampling the majority286

class in each bag of the ensemble. In this way, we can obtain the287

balanced data set for each classifier of the bag and the diversity for288

each bag is produced with different majority class instances and the289

same minority class instances. Additionally, the strategy of resampling290

with replacement is adopted in order to increase the diversity among291

the bags.292

• SMOTEBagging (SBA). SMOTE algorithm is employed to insert ar-293
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tificial minority class in each bag. This way aims at balancing the294

distribution of the data set by increasing the number of minority class295

instances. The diversity of each bag of the ensemble is obtained with296

mutative synthetic samples.297

• RUSBoost (RBO). This strategy applies RUS of minority class to bal-298

ance the distribution of the data set before ensemble learning. The299

AdaBoost is employed to construct a classifier from the balanced data300

set. One should note that this method handle the imbalance problem301

before the ensemble learning process.302

• SMOTEBoost (SBO). SMOTE algorithm is employed to balance the303

distribution of the data set in each iteration of AdaBoost. Specifically,304

a training set is obtained by resampled from weighted samples. Then,305

synthetic samples are generated to increasing the number of minority306

class. Therefore, the distribution of the training set for each single307

classifier in AdaBoost is balanced.308

• SMOTE+AdaBoost (SMB). Considering to this method, we apply SMOTE309

algorithm to generate synthetic majority class to balance the data310

set before AdaBoost. That is, the SMOTE is independent from Ad-311

aBoost, which is different from SBO employing SMOTE algorithm dur-312

ing Boosting progress.313

• EasyEnsemble (Easy). Under-sampling is simple but effective for han-314

dling imbalance problem, since the training data set is much more bal-315

anced and the training process is much faster. However, many majority316

class examples are ignored, which leads to loss potentially useful infor-317

mation. In order to overcome the drawback, this method constructs318

classifier ensembles from all of the minority class and a subset of the319

majority class. Then, the final ensemble combines the outputs of clas-320

sifiers which are built by using AdaBoost algorithm. Therefore, it can321

be considered as an ensemble of ensembles.322

4. Experimental Framework323

In this section, we present the set-up of the experimental framework used324

in the experiment of Section 5. The data sets chosen to test the algorithms325

are described in Section 4.1, while single and ensemble classifiers with their326
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Table 1: Summary description of the data sets used in the experimental study.

id Dataset #Ex. #Atts. #Num. #Nom. #Cl. #Dc. IR

Aut Automobile 159 25 15 10 6 46/29/13/48/20/3 16.00
Bal Balance 625 4 4 0 3 288/49/288 5.88
Car Car 1728 6 0 6 4 384/69/1210/65 18.62
Cle Cleveland 297 13 5 8 5 160/54/35/35/13 12.31
Con Contraceptive 1473 9 6 3 3 629/333/511 1.89
Der Dermatology 358 34 1 33 6 111/60/71/48/48/20 5.55
Fla Flare 1066 11 0 11 6 147/211/239/95/43/331 7.70
Gla Glass 214 9 9 0 6 70/76/17/29/13/9 8.44
Hay Hayes-roth 160 4 4 0 3 65/64/31 2.10
Led Led7digit 500 7 0 7 10 45/37/51/57/52/52/47/57/53/49 1.54
Lym Lymphography 148 18 3 15 4 4/61/81/2 40.50
New New-thyroid 215 5 5 0 3 150/35/30 5.00
Pag Page-blocks 5472 10 10 0 5 4913/329/28/87/115 175.46
Sat Satimage 6435 36 36 0 6 1533/703/1358/626/707/1508 2.45
Shu Shuttle 2175 9 9 0 5 1706/2/6/338/123 853.00
Spl Splice 3190 60 0 60 3 767/768/1655 2.16
Thy Thyroid 720 21 6 15 3 17/37/666 39.18
Win Wine 178 13 13 0 3 59/71/48 1.48
Wqr Wine-Quality-Red 1599 11 11 0 6 10/53/681/638/199/18 68.10
Zoo Zoo 101 16 0 16 7 41/20/5/13/4/8/10 10.25

parameters are described in Section 4.2. The measure to evaluate the per-327

formance of the approaches in this study are presented in Section 4.3. Final328

Section describes the statistical test applied to compare the results obtained329

from experiments.330

4.1. Data Sets331

In this study, twenty data sets from the UCI repository were selected to332

test the methodology. The properties of the data sets were showed in Table 1.333

For each data set, it includes the number of examples (#Ex.), the number of334

attributes (#Atts.), the number of numerical (#Num) and nominal (#Nom)335

attributes, the number of classes (#Cl.), the distribution of class (#Dc) and336

the imbalance rate (IR). For the missing values instances in the data sets337

(Cleveland and Dermatology), we removed them before doing the partitions.338

The results of the average accuracy was obtained by means of 5 times339

5-fold stratified cross-validation (SCV) [43]. That is, each data set is split340

into 5 folds and each fold contained 20% of the instances of the data set.341

For each fold, the algorithm is trained with the instances contained in the342

remaining folds (80% of the instances of the data set) and then tested by the343

current fold. The reason why 5-fold SCV is more appropriate than a 10-fold344

SCV in such framework was explained in [42]. If we use smaller partitions,345
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there would be some test sets without containing any instance from some of346

the classes.347

4.2. Classification Algorithms348

In this section, the base classification algorithms compared in the exper-349

iment are presented. Specially, CART, BPNN and SVM are selected for the350

study, and they are described as follows.351

CART is a tree induction technique. CART is a binary recursive parti-352

tioning methodology to generate a tree, that is, a node in the tree always353

split the attribute into only two parts (nodes). In CART, the Gini index is354

used to measure the impurity of node. The attribute and the corresponding355

binary split on that maximizes the reduction in impurity are chosen as the356

splitting point. The process will continue until reach the stopping criterion,357

including there is no possible split point or the maximal tree is obtained.358

Due to the noise or outlier in the training data set, some branches reflect359

abnormal information, which may lead to overfit the data. Pruning is an360

effective way to avoid overfitting. In CART, the cost complexity pruning361

algorithm which is a post-pruning method is used to prune the tree. In the362

approach, the cost complexity of a tree is measured by a function of error363

rate, which is the percentage of instances misclassified by the tree.364

BPNN is a typical feed forward neural network, which has input layer,365

hidden layer and output layer. Back propagation learns by iteratively pro-366

cessing a set of training samples, comparing the networks prediction for each367

sample with the actual known target value. For each training sample, the368

weights are modified so as to minimize the mean-square error between the369

networks prediction and the actual target value. These modifications are370

made in the backwards direction through each hidden layer down to the first371

hidden layer.372

SVM is an effective machine learning method, which is based on Vapnik-373

Chervonenkis structural risk minimization instead of the empirical risk. SVM374

maps the original input feature space into a high dimensional feature space in375

order to construct an optimal separating hyperplane with maximal margin.376

The choice of a proper kernel has a strong effect on the final quality of the377

obtained model [12].378

These classifiers are used as base learners for six ensemble methods de-379

scribed in Section 3.2.380

Additionally, to offer a fair comparison with other ensemble techniques381

dedicated to multi-class imbalanced learning we have selected two state-of-382
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the-art methods: Near-Bayesian Support Vector Machines (NBSVM) [14]383

and multi-class imbalanced Boosting [57].384

The first approach modifies the SVM classifier by using samples from two385

classes in order to achieve boundary shift and combines it with the asymmet-386

ric regularization costs. Additionally, authors propose a modification of the387

popular SMO algorithm to train NBSVM. To handle multi-class scenarios a388

binary aggregation scenario with OVA technique is being used.389

AdaBoost.NC combines the multi-class AdaBoost algorithm with nega-390

tive correlation learning, where starting weights of examples are calculated391

in inverse proportion to the number of objects in this class. This way it is392

possible to capture varying relations between classes.393

Detailed parameters of used methods are given in Table 2.394

4.3. Performance Measures395

There is a large amount of measures for the performance of algorithms396

in the imbalance classification problems, for example, precision, sensitivity,397

G-mean [3], F-measure [2], or AUC [16]. However, all of them are designed398

especially for the binary class problems. Standard metrics such as classi-399

fication rate (accuracy rate) is an unreasonable measure in the multi-class400

imbalance classification problem, as it does not differentiate the classifica-401

tion rates from different classes. For example, in the data set of thyroid, a402

classifier can achieve a high accuracy rate of 92.5%, if it recognizes all the403

instances as class 3. There are some proposals for measures displaying a404

balanced performance on multiple classes, like multi-class AUC [32]. For this405

study we have decided to use the average accuracy metric.406

The average accuracy gives the same weight to each class. It achieves407

the accuracy rate of each class independently, and then the final result is408

obtained by the average value. The average accuracy is computed as follows:409

AveAcc =
1

m

m
∑

i=1

TRPi, (4)

where m is the number of classes and TRPi stands for the True Positive410

Rate of the i-th class.411

4.4. Statistical Analysis412

Statistical tests are important for analyzing the experimental results to413

extract the findings. In this paper the hypothesis testing techniques, which414
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Table 2: Parameters setting for single and ensemble classifiers used in the study.

Methods Parameters

Single classifiers

CART
Prune = true
Method = classification
Impure nodes must have 10 or more examples to be split

BPNN

The number of nodes in hidden layer = 10
Transfer function of hidden layer = logsig
Transfer function of output layer = logsig
Train epochs = 100

SVM

C = 1.0
Tolerance parameter = 0.001
γ = 0.0046
Kernel type = Gaussian radial basis function
Optimization method = SMO

Ensemble classifiers

UBA
The number of bags = 40
The number of resampling majority class = the number of minority class

SBA
The number of bags = 40
The number of nearest neighbors in SMOTE = 5

RBO
The number of iterations in AdaBoost = 40
The number of resampling majority class = the number of minority class

SBO
The number of iterations in AdaBoost = 40
The number of nearest neighbors in SMOTE = 5

SMB
The number of iterations in AdaBoost = 40
The number of nearest neighbors in SMOTE = 5

Easy
The number of subsets is 4
The number of iteration in each AdaBoost ensemble is 10

Algorithms for multi-class imbalance

OVA-NBSVM

C = 2.0
σ ∈ [1, 2, 3, 4, 5, 10, 20, 30, 40, 50] - best selected for each dataset
Optimization method = modified SMO
classifier combination = OVA

AdaBoost.NC
The number of iterations = 51
α = 2
base classifier = C4.5
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are recommended in [28], are used to provide statistical support for the analy-415

sis of the results obtained by the experiment. Specially, for the pairwise com-416

parisons, Wilcoxon signed-rank test [60] is adopted as a non-parametric sta-417

tistical procedure to perform pairwise comparisons between ensemble learn-418

ing and resampling approaches in OVO scheme and comparisons of the repre-419

sentation ensemble learning with OVO scheme and the state-of-the-art meth-420

ods. Then, for the multiple comparisons, average aligned-rankings [28] of421

each method are adopted to compare the behavior of each method with re-422

spect to the others. Moreover, Friedman aligned-ranks test is used to check423

whether the best method (the control one) is significant better than others.424

5. Experimental Study425

In this section we develop a thorough empirical analysis in addressing426

the multi-class imbalance classification problems. We want to verify the427

effectiveness of the combination of ensemble learning and OVO scheme for428

the multi-class imbalance classification compared with classical approaches.429

Therefore, we develop the pairwise comparative study on analysis of ensemble430

learning approaches versus resampling techniques in the OVO scheme with431

different base classifiers, including CART, BPNN and SVM. Additionally, to432

show that using ensembles as base classifiers in OVO can efficiently empower433

learning from multi-class imbalanced data we present comparison with two434

state-of-the-art algorithms dedicated to this problem.435

5.1. Evaluating Ensemble Approaches with CART as Base Classifier436

The study for the CART decision tree is shown in Table 3, where we437

present all the results of average accuracy.438

According to the best result stressed through bold-face, we can clearly find439

that the methods considering ensemble learning in the OVO scheme always440

receive better results in each data set. Observing the average performance,441

SBO obtains the best performance, followed by SMB and SBA.442

The statistical study based on Wilcoxon test for CART is developed in443

Table 4.444

Results of Wilcoxon test show that for CART classifier ensemble systems445

can significantly outperform resampling-based strategies with single classi-446

fier. However, there is no single ensemble strategy that is statistically sig-447

nificantly better than all of three resampling approaches tested at the same448

time. For example SBO method achieves excellent p-values in comparison449
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Table 3: Average accuracy [%] results for resampling and ensemble learning methods with
CART as the base classifier. The best result is highlighted in bold.

Data sets
Resampling techniques Ensemble learning

RUS ROS SMOTE UBA SBA RBO SBO SMB Easy

Aut 10.00 83.93 78.43 10.00 79.97 67.38 81.60 69.85 51.63
Bal 54.49 58.24 56.43 64.90 56.51 71.40 58.35 66.27 73.13

Car 93.87 94.64 91.93 95.72 93.87 96.53 97.34 97.56 97.57

Cle 31.92 30.19 28.82 31.92 29.22 32.98 31.65 33.18 31.89
Con 48.54 48.11 47.96 51.97 47.96 48.31 47.85 48.96 50.79
Der 94.36 95.15 95.37 95.45 95.37 94.49 94.94 94.65 94.41
Fla 63.28 62.52 61.20 63.46 61.11 62.65 60.58 62.60 63.03
Gla 64.08 66.66 67.90 71.38 69.39 69.68 72.17 72.59 71.78
Hay 86.07 85.86 85.76 85.86 85.76 85.54 85.15 85.24 86.15

Led 69.77 69.95 70.13 69.69 70.13 70.20 70.48 70.78 70.83

Lym 11.00 79.05 69.98 11.00 69.98 36.10 76.10 62.51 19.83
New 92.80 89.70 90.37 93.48 91.75 93.24 91.72 93.69 94.43

Pag 91.98 81.19 84.77 94.24 84.31 94.09 85.33 93.63 94.68

Sat 83.82 84.25 84.23 87.97 86.36 90.02 89.41 90.20 89.83
Shu 78.23 85.85 85.11 79.69 85.10 37.39 85.94 41.89 25.98
Spl 92.74 92.68 92.89 94.50 93.33 95.51 95.65 95.64 95.64
Thy 96.24 93.77 93.77 98.14 93.77 96.42 92.95 98.61 98.16
Win 91.77 92.60 92.29 94.18 92.29 97.32 91.34 96.60 95.63
Wqr 33.18 32.60 34.61 37.80 36.21 39.27 39.15 38.86 39.12
Zoo 48.01 85.67 72.15 49.23 72.15 48.08 87.48 62.64 23.67

Avg. 66.81 75.63 74.21 69.03 74.73 71.33 76.76 73.80 68.41
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Table 4: Wilcoxon tests for comparison of ensemble learning and resampling techniques
in the OVO scheme with CART as the base classifier. R+ corresponds to the sum of the
ranks for ensemble learning and R

− for the resampling techniques.

Comparison R+ R− p-value Comparison R+ R− p-value

UBA vs. RUS 197.00 13.00 0.000629 SBO vs. RUS 157.00 53.00 0.052222
UBA vs. ROS 135.50 74.50 0.295424 SBO vs. ROS 143.00 67.00 0.156004
UBA vs. SMOTE 135.00 75.00 0.262722 SBO vs. SMOTE 179.00 31.00 0.005734
SBA vs. RUS 144.00 66.00 0.145400 SMB vs. RUS 185.00 25.00 0.002821
SBA vs. ROS 91.50 118.50 0.629162 SMB vs. ROS 131.00 79.00 0.331723
SBA vs. SMOTE 158.00 52.00 0.022909 SMB vs. SMOTE 137.00 73.00 0.232226
RBO vs. RUS 172.00 38.00 0.012374 Easy vs. RUS 167.00 43.00 0.020633
RBO vs. ROS 127.00 83.00 0.411465 Easy vs. ROS 133.00 77.00 0.295878
RBO vs. SMOTE 131.00 79.00 0.331723 Easy vs. SMOTE 133.00 77.00 0.295878

with RUS and SMOTE, but achieves p-value slightly above the significance450

level for comparison with ROS. Similar situation can be observed for all451

of highlighted best-performing ensemble techniques. At the same time one452

must notice that the OVO-based ensemble learning does not damage the453

accuracies when compared to OVO single model learning with resampling.454

Therefore, we can summarize that ensemble learning with OVO decompo-455

sition is a preferred choice over OVO resampling techniques, never leading456

to reduced classification rates and often offering significant improvement for457

the multi-class imbalance classification problems with CART classifier.458

5.2. Evaluating Ensemble Approaches with BPNN as Base Classifier459

The complete results for the BPNN version are shown in Table 5.460

In this case the trend is quite similar with the segment of CART, since461

most of the best results obtained in each data set are acquired by the ensemble462

learning approaches. Additionally, for the average results, SMB receives the463

best performance, followed closely by SBO. This is consistent with those464

obtained by CART. Therefore, we must highlight that the methodology of465

ensemble learning methods used to train the binary classifier in the OVO466

scheme achieve quite high quality of the average performance.467

The Wilcoxon tests are carried out in Table 6, when BPNN is used as the468

base classifier.469

In this case, all the null hypotheses of equivalence are rejected for the470

ensemble learning methods, since the largest p-value is equal to 0.043804,471
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Table 5: Average accuracy [%] results for resampling and ensemble learning methods with
BPNN as the base classifier. The best result is highlighted in bold.

Data sets
Resampling techniques Ensemble learning

RUS ROS SMOTE UBA SBA RBO SBO SMB Easy

Aut 47.12 64.99 56.34 61.40 70.44 70.83 77.67 71.91 66.88
Bal 70.81 89.11 85.93 88.18 91.07 85.80 94.12 86.08 88.28
Car 61.78 72.10 66.98 77.17 80.41 90.27 97.98 95.93 91.79
Cle 33.03 35.18 32.18 32.62 30.07 32.68 30.70 30.31 31.16
Con 45.97 47.12 38.27 50.72 36.71 51.90 51.15 50.70 51.96

Der 91.60 93.81 92.49 96.87 96.81 96.41 96.94 96.90 96.79
Fla 56.96 60.07 54.11 65.24 59.61 63.38 62.28 63.75 65.05
Gla 48.91 52.67 51.39 63.21 60.02 71.09 63.92 70.91 70.02
Hay 60.17 61.84 53.36 71.06 66.53 77.78 82.49 78.38 78.71
Led 68.48 67.28 67.25 73.64 73.04 71.54 72.15 70.81 72.02
Lym 70.41 85.53 78.14 86.79 88.83 83.22 87.86 84.08 86.17
New 90.04 94.89 92.80 97.70 96.52 97.07 96.22 97.19 97.93

Pag 78.57 82.26 83.52 88.52 89.49 91.50 84.29 91.08 92.08

Sat 86.24 86.58 85.47 87.38 86.99 89.30 88.30 89.71 89.55
Shu 68.10 84.87 89.46 80.71 93.07 85.79 93.56 91.40 87.88
Spl 85.76 86.70 83.67 90.34 90.32 89.73 91.32 90.55 89.78
Thy 74.98 80.84 75.70 86.45 70.54 95.80 78.36 96.19 96.81

Win 94.08 92.09 95.50 98.70 98.27 97.94 98.00 97.87 98.57
Wqr 33.05 34.80 35.36 39.25 36.93 39.36 31.40 40.42 41.96

Zoo 73.04 81.19 79.61 90.24 90.10 86.60 89.52 88.86 89.39

Avg. 66.96 72.70 69.88 76.31 75.29 78.40 78.41 79.15 79.14
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Table 6: Wilcoxon tests for comparison of ensemble learning and resampling techniques
in the OVO scheme with BPNN as the base classifier. R+ corresponds to the sum of the
ranks for ensemble learning and R

− for the resampling techniques.

Comparison R+ R− p-value Comparison R+ R− p-value

UBA vs. RUS 209 1 0.000103 SBO vs. RUS 206 4 0.000163
UBA vs. ROS 186 24 0.002495 SBO vs. ROS 186 24 0.002495
UBA vs. SMOTE 197 13 0.000593 SBO vs. SMOTE 201 9 0.000338
SBA vs. RUS 189 21 0.001713 SMB vs. RUS 208 2 0.00012
SBA vs. ROS 159 51 0.043804 SMB vs. ROS 196 14 0.000681
SBA vs. SMOTE 194 16 0.000892 SMB vs. SMOTE 208 2 0.00012
RBO vs. RUS 209 1 0.000103 Easy vs. RUS 209 1 0.000103
RBO vs. ROS 194 16 0.000892 Easy vs. ROS 199 11 0.000449
RBO vs. SMOTE 205 5 0.000189 Easy vs. SMOTE 207 3 0.00014

which is lower than our α-value (0.05). This is much better than in the case472

of CART classifiers, as here we observe a globally statistically significant473

improvement regardless of the ensemble method used. This is a highly inter-474

esting observation, as commonly it was assumed that decision trees as weak475

learners should benefit the most from multiple classifier systems. However,476

one can see that combination of BPNNs works much better than combination477

of CARTs. Therefore, we can conclude that the ensemble learning approaches478

with OVO scheme for the multi-class imbalance classification problems out-479

perform the OVO resampling techniques for BPNN classifier.480

5.3. Evaluating Ensemble Approaches with SVM as Base Classifier481

Finally, we show the complete results for the version of SVM in Table 7.482

The average results obtained in this version are somewhat lower than in483

the case of BPNN, but it is consistent that the ensemble learning approaches484

improve the performance for the multi-class imbalance classification problems485

with the OVO scheme, comparing with the original resampling techniques.486

Additionally, once again SMB is considered as the best average performance,487

followed by Easy and RBO respectively.488

Observing the statistical analysis shown in Table 8, the behavior of the489

ensemble learning techniques in the OVO scheme is generally better than490

those obtained by the resampling approaches.491

According to the statistical results of Wilcoxon test, we can observe that492

RBO, SMB and Easy clearly outperform all of the conventional resampling493

21



Table 7: Average accuracy [%] results for resampling and ensemble learning methods with
SVM as the base classifier. The best result is highlighted in bold.

Data sets
Resampling techniques Ensemble learning

RUS ROS SMOTE UBA SBA RBO SBO SMB Easy

Aut 47.86 56.74 58.01 52.30 57.63 60.71 67.34 67.51 60.41
Bal 61.78 57.43 73.70 64.12 73.66 78.77 64.60 80.59 79.64
Car 79.92 73.71 86.23 80.41 86.23 91.6 89.18 91.65 91.20
Cle 30.78 24.20 33.23 33.46 33.99 32.07 31.61 32.13 34.53

Con 50.37 46.32 48.40 50.76 48.40 50.12 41.61 50.35 50.85

Der 97.46 95.49 96.21 97.66 96.21 97.49 96.53 97.72 97.34
Fla 62.16 56.43 62.45 64.53 62.72 64.11 58.33 63.95 65.72

Gla 47.83 53.14 50.81 49.53 51.86 68.67 60.81 68.37 66.18
Hay 53.24 53.25 53.66 53.56 52.89 64.24 62.38 64.65 57.64
Led 70.95 67.93 70.11 73.52 70.11 71.78 72.88 72.10 72.31
Lym 83.12 89.26 85.16 85.94 88.50 83.35 87.80 82.96 87.35
New 85.25 90.00 92.20 87.30 91.91 96.13 95.66 95.43 97.70

Pag 71.30 76.84 79.63 73.15 80.46 89.87 83.84 90.95 90.74
Sat 86.24 71.59 86.81 86.32 86.86 84.94 84.32 85.30 86.21
Shu 68.27 94.15 94.73 74.64 94.70 77.97 99.33 88.72 85.46
Spl 95.96 95.43 96.30 96.16 96.43 95.94 95.86 96.07 96.20
Thy 68.27 79.49 82.61 70.48 82.74 91.11 78.74 92.46 93.67

Win 96.37 96.18 96.57 97.07 96.57 97.25 98.05 97.88 97.62
Wqr 37.20 35.53 38.64 38.57 38.83 40.63 24.67 39.41 38.92
Zoo 87.16 88.47 90.29 88.77 90.87 90.14 91.68 88.38 90.07

Avg. 69.07 70.08 73.79 70.91 74.08 76.34 74.26 77.33 76.99
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Table 8: Wilcoxon tests for comparison of ensemble learning and resampling techniques
in the OVO scheme with SVM as the base classifier. R

+ corresponds to the sum of the
ranks for ensemble learning and R

− for the resampling techniques.

Comparison R+ R− p-value Comparison R+ R− p-value

UBA vs. RUS 210 0 0.000089 SBO vs. RUS 166 44 0.022769
UBA vs. ROS 129 81 0.370261 SBO vs. ROS 178 32 0.006425
UBA vs. SMOTE 62 148 0.108427 SBO vs. SMOTE 122 88 0.525653
SBA vs. RUS 186 24 0.002495 SMB vs. RUS 201 9 0.000338
SBA vs. ROS 196 14 0.000681 SMB vs. ROS 191 19 0.001325
SBA vs. SMOTE 145.5 64.5 0.111769 SMB vs. SMOTE 166 44 0.022769
RBO vs. RUS 197 13 0.000593 Easy vs. RUS 207 3 0.00014
RBO vs. ROS 183 27 0.003592 Easy vs. ROS 193 17 0.001019
RBO vs. SMOTE 165 45 0.025094 Easy vs. SMOTE 186 24 0.002495

Table 9: Friedman aligned-rank tests comparing the different ensemble learning methods
with OVO scheme.

Ensemble learning CART BPNN SVM

UBA 66.10(0.151106) 71.10(0.168688) 82.25(0.002173)
SBA 75.15(0.018658) 76.45(0.058981) 73.60(0.025194)
RBO 61.60(0.285839) 58.35(1.000000) 51.50(0.939695)
SBO 61.25(0.285839) 58.50(1.000000) 67.35(0.091477)
SMB 43.25 49.85(1.000000) 43.55
Easy 55.65(0.285839) 48.75 44.75(0.939695)

techniques. In addition, RUS is defeated by any ensemble learning approach.494

For ROS only UBA method does not deliver significant improvement. With495

regard to SMOTE the p-values observed for comparing with RBO, SMB and496

Easy are lower than our α-value (0.05). Therefore, in the scenario of SVM we497

also can conclude that ensemble learning approaches outperform resampling498

techniques in the OVO scheme for the multi-class imbalance classification499

problems.500

5.4. Comparison of Different Used Ensemble Learning Techniques501

The goal of this study is to explore the validity of the ensemble learn-502

ing approaches with OVO decomposition in the application of multi-class503

imbalance classification problems, since these techniques combine the single504
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classifiers to be an ensemble, which is useful for addressing the binary-class505

imbalance problems. The facts found in this study support the goodness of506

the methodology of ensemble learning methods based on resampling tech-507

niques for improving the performance in dealing with the multi-class imbal-508

ance classification problems.509

However, we also need to compare the different examined ensemble learn-510

ing techniques among themselves in order to find the statistically best method511

for each base classifier. Using only averaged accuracy for such a selection can512

be misleading as we do not take into account the ranks among these meth-513

ods for each dataset. Therefore, we need to conduct a statistical test over514

multiple datasets to choose the best combined classifier.515

For this purpose we use the Friedman aligned-rank test in order to de-516

tect the highest-ranked methods. The results from this test are depicted in517

Table 9.518

When analyzing the aligned ranks for CART classifier we can clearly see519

that SMB method achieves the best results. Its rank is clearly lower than520

other methods. This is especially interesting when considering the fact of521

SBO scoring the best average accuracy results. But according to statistical522

analysis SMB method displays the most efficient and stable performance over523

all of datasets used.524

For BPNN classifier we can see that the lowest ranks were obtained by525

Easy approach. However, differences between it and SMB are practically526

insignificant (48.75 vs. 49.85) thus allowing us to conclude that both of527

these methods display excellent performance for neural networks in mining528

multi-class imbalanced data.529

Similar situation can be observed for SVM classifier. Here SMB method530

obtains the lowest ranks but differences between it and Easy method are531

negligible (43.55 vs. 44.75), showing that both of these methods are highly532

suitable for working with SVMs.533

5.5. Comparison with Ad-hoc Approaches for Multi-Class Imbalanced Data534

In order to put the obtained results into context we cannot refer only to535

OVO-based resampling techniques. There is a number of solutions already536

proposed in the literature for addressing skewed distributions in multiple537

classes. We decided to select two ensemble-based techniques from them as538

reference methods for our proposal. We have selected popular AdaBoost.NC539

[57], which is considered as one of the best approaches for handling multi-540

class imbalanced data. Additionally, we present results for recently intro-541
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duced OVA-NBSVM [14] that combines binary modified SVMs using one-vs-542

all technique.543

For each base classifier examined we have selected a single best-performing544

ensemble technique according to the Friedman aligned-rank tests discussed545

in Section 5.4.This means that for comparison SMB for CART / SVM and546

Easy for BPNN are being used.547

Accuracy results for examined benchmarks and methods are depicted in548

Table 10.549

We will focus our discussion on comparison with reference methods, as550

accuracies of ensemble techniques for different base classifiers were discussed551

in previous sections.552

OVA-NBSVM returned surprisingly the worst results from all of the ex-553

amined methods. Only for a single dataset (Zoo) it was able to outperform554

all other approaches. This proves the lack of usefulness of OVA decompo-555

sition for multi-class problems with skewed distributions. OVA for some556

of class combinations additionally boosts the disproportion between classes557

thus making learning from small-sample classes very difficult. This can be558

observed for cases with high imbalance ratios and small classes like Pag and559

Wqr datasets. Here some of classes are very small when compared to others,560

which leads to a extremely high binary imbalance ratio when these classes561

are used as a positive and aggregation of remaining ones as a negative. For562

these cases OVA-NBSVM drops highly in comparison to all other discussed563

solutions.564

AdaBoost.NC is a more demanding reference method, achieving best re-565

sults on 4 datasets. However, on 16 remaining benchmarks one of the pro-566

posed ensemble techniques outperforms this boosting scheme. It allows us to567

conclude that empowering OVO decomposition with ensemble learning can568

be a highly efficient solution for the discussed problem, being able to de-569

liver generally improved performance over most popular solutions from the570

literature.571

To gain an additional insight into the performance of examined methods572

we have conducted a Wilcoxon test, outcomes of which are presented in573

Table 11.574

Obtained p-values show that proposed ensemble techniques with BPNN575

and SVM are significantly better than OVA-NBSVM. For comparison with576

AdaBoost.NC only BPNN-based ensemble offer significantly superior results.577

When analyzing obtained p-values and accuracies for remaining methods we578

can see that they offer small but visible improvement over reference algo-579
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Table 10: Complete average accuracy test results for the representative combinations
(SMB-CART, Easy-BPNN and SMB-SVM) and the state-of-the-art approaches for min-
ing multi-class imbalanced data (AdaBoost.NC and OVA-NBSVM). The best result is
highlighted in bold.

Dataset AdaBoost.NC OVA-NBSVM SMB-CART Easy-BPNN SMB-SVM

Aut 76.53 70.73 69.85 66.88 67.51
Bal 66.92 85.81 66.27 88.28 80.59
Car 85.08 54.83 97.56 91.79 91.65
Cle 30.33 31.11 33.18 31.16 32.13
Con 47.36 47.21 48.96 51.96 50.35
Der 95.00 96.45 94.65 96.79 97.72

Fla 60.57 54.45 62.60 65.05 63.95
Gla 69.89 61.96 72.59 70.02 68.37
Hay 85.39 76.42 85.24 78.71 64.65
Led 72.10 59.45 70.78 72.02 72.10

Lym 78.33 69.86 62.51 86.17 82.96
New 88.42 89.05 93.69 97.93 95.43
Pag 80.75 48.97 93.63 92.08 90.95
Sat 87.49 88.16 90.20 89.55 85.30
Shu 89.82 82.07 41.89 87.88 88.72
Spl 94.14 74.10 95.64 89.78 96.07

Thy 95.46 64.97 98.61 96.81 92.46
Win 93.13 97.58 96.60 98.57 97.88
Wqr 35.73 31.84 38.86 41.96 39.41
Zoo 86.67 90.62 62.64 89.39 88.38

Avg. 75.96 68.78 73.80 79.14 77.33
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Table 11: Wilcoxon tests for comparison of the representative ensemble learning with OVO
scheme and the state-of-the-art methods for multi-class imbalanced data. R+ corresponds
to the sum of the ranks for the representative ensemble learning and R

− for the state-of-
the-art methods.

Comparison R+ R− p-value

SMB-CART vs. AdaBoost.NC 128 82 0.390533
Easy-BPNN vs. AdaBoost.NC 162 48 0.033340
SMB-SVM vs. AdaBoost.NC 150 60 0.092963
SMB-CART vs. OVA-NBSVM 146 64 0.125859
Easy-BPNN vs. OVA-NBSVM 198 12 0.000517
SMB-SVM vs. OVA-NBSVM 172 38 0.012374

rithms. In conclusion it must be noted that the proposed combination of580

OVO and pairwise ensemble learning can outperform state-of-the-art meth-581

ods for multi-class imbalance on a variety of datasets, thus being a worthwhile582

choice for such problems.583

6. Lessons Learned584

In order to summarize this manuscript let us present three main points585

capturing the most important research findings.586

1. The role of ensemble learning method. Obtained results allow us587

to observe the existence of a trend among six examined ensemble learn-588

ing techniques. Regardless of the used base classifier SMB and Easy589

methods delivered the best performance both in terms of averaged accu-590

racy and ranking statistical tests. This makes them the most universal591

ensemble techniques that should always be examined in combination592

with OVO decomposition when imbalanced multi-class problems are593

being faced. Additionally, RBO and SBO techniques tend to deliver594

good results for some of the datasets, thus making them a reasonable595

second choice if time allows for a more compound experimental study.596

2. The role of base classifier. The choice of a base classifier had a sig-597

nificant impact on the observed classification accuracies. Surprisingly,598

used decision tree model (CART) returned least satisfactory improve-599

ment when used in ensemble setting. This is contrary to numerous600

statements in the literature, reporting excellent properties of tree mod-601

els as weak classifiers for combination. This may be explained by high602
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sensitivity of CART model to skewed distributions. SVM worked very603

well with most of the ensemble techniques, achieving improved classi-604

fication rates in most of scenarios. BPNN was found to be the best605

working model in ensemble setting, achieving statistically superior re-606

sults for any kind of used committee approach.607

3. Comparison with resampling and ad-hoc solutions. The pro-608

posed empowering of OVO decomposition with pairwise ensemble learn-609

ing achieved highly competitive results when compared with standard610

OVO with resampling techniques applied. Using compound learners611

for each pair of classes can lead to a better capturing of their local612

specifics, higher robustness to imbalance and improved final multi-class613

recognition rates. Additionally, proposed ensemble-based OVO is able614

to outperform state-of-the-art methods for multi-class imbalanced data,615

especially those using OVA solutions.616

7. Conclusions and Future Works617

In this paper we have proposed to improve the performance of binary618

decomposition used for multi-class imbalanced problems by applying ensem-619

ble learning paradigm to each sub-problem. This way we are able to exploit620

highly efficient combined classification approaches that were so far restricted621

to binary scenarios. Their proven efficacy in two-class imbalanced tasks mo-622

tivated us to extend their area of applicability to much more challenging623

scenarios, where multiple majority and minority classes are present and the624

relationships between them are no longer obvious. As we wanted to capture625

pairwise relations between objects we focused one OVO decomposition, as it626

does not affect the distributions of positive and negative classes.627

To check the flexibility of the proposed approach we have tested it with628

three different base classifiers: CART, BPNN and SVM. Experimental study,629

backed-up by a thorough statistical analysis indicate that it is possible to630

significantly boost the OVO approach performance for multi-class imbalanced631

data when enhancing it with ensemble classifiers. Regardless of the used632

committee approach in most cases we were able to outperform traditional633

OVO approach utilizing single classifiers with pre-processing algorithms, as634

well as state-of-the-art multi-class solutions for skewed data.635

Obtained results allow us to formulate recommendations for selecting636

ensemble schemes. SMB technique is the best choice when considering CART637

and SVM as base classifiers. At the same time BPNN should be used with638
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Easy approach. As result differences between several methods are not high,639

we point out the high effectiveness of Easy, SMB and RBO ensemble methods640

for empowering OVO techniques in multi-class imbalance scenarios.641

We highlighted the effectiveness of synergy between decomposition strat-642

egy and ensemble learning in the multi-class imbalanced datasets. Above all,643

we must emphasize that our work provides the basis for addressing the multi-644

class imbalance classification problems with a combination of decomposition645

and multiple classifier approaches.646

In our study we only presented the VOTE aggregation strategy. There-647

fore, it is interesting to develop the analysis of the other aggregations in the648

OVO scheme and trained combiners like Error-Correcting Output Codes or649

Decision Templates. Additionally, we would like to extend our proposal to650

include recent findings in OVO decomposition that take into consideration651

the dynamic classifier selection [24] and competence-based weighting [26] to652

remove the non-competent classifiers from the pool.653
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