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Abstract—The inductive learning of fuzzy rule-based classifi-
cation systems suffers from exponential growth of the fuzzy rule
search space when the number of patterns and/or variables be-
comes high. This growth makes the learning process more difficult
and, in most cases, it leads to problems of scalability (in terms of the
time and memory consumed) and/or complexity (with respect to
the number of rules obtained and the number of variables included
in each rule). In this paper, we propose a fuzzy association rule-
based classification method for high-dimensional problems, which
is based on three stages to obtain an accurate and compact fuzzy
rule-based classifier with a low computational cost. This method
limits the order of the associations in the association rule extrac-
tion and considers the use of subgroup discovery, which is based
on an improved weighted relative accuracy measure to preselect
the most interesting rules before a genetic postprocessing process
for rule selection and parameter tuning. The results that are ob-
tained more than 26 real-world datasets of different sizes and with
different numbers of variables demonstrate the effectiveness of the
proposed approach.

Index Terms—Associative classification, classification, data min-
ing, fuzzy association rules, genetic algorithms (GAs), genetic fuzzy
rule selection, high-dimensional problems.

I. INTRODUCTION

FUZZY rule-based classification systems (FRBCSs) [1], [2]
are useful and well-known tools in the machine learning

framework, since they can provide an interpretable model for
the end user [3]–[6]. There are many real applications in which
FRBCSs have been employed, including anomaly intrusion de-
tection [7], image processing [8], among others. In most of these
areas, the available or useful data consist of a high number of
patterns (instances or examples) and/or variables. In this situa-
tion, the inductive learning of FRBCSs suffers from exponential
growth of the fuzzy rule search space. This growth makes the
learning process more difficult, and in most cases, it leads to
problems of scalability (in terms of the time and memory con-
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sumed) and/or complexity (with respect to the number of rules
obtained and the number of variables included in each rule)
[9], [10].

Association discovery is one of the most common data min-
ing techniques that are used to extract interesting knowledge
from large datasets [11]. Much effort has been made to use its
advantages for classification under the name of associative clas-
sification [12]–[19]. Association discovery aims to find interest-
ing relationships between the different items in a database [20],
while classification aims to discover a model from training data
that can be used to predict the class of test patterns [21]. Both
association discovery and classification rules mining are essen-
tial in practical data mining applications [11], [22], and their
integration could result in greater savings and convenience for
the user.

A typical associative classification system is constructed in
two stages:

1) discovering the association rules inherent in a database;
2) selecting a small set of relevant association rules to con-

struct a classifier.
In order to enhance the interpretability of the obtained clas-

sification rules and to avoid unnatural boundaries in the parti-
tioning of the attributes, different studies have been presented
to obtain classification systems, which is based on fuzzy asso-
ciation rules [23]–[28]. For instance, in [24], the authors have
made use of a genetic algorithm (GA) [29], [30] to automat-
ically determine minimum support and confidence thresholds,
mining for each chromosome a fuzzy rule set for classification
by means of an algorithm, which is based on the Apriori al-
gorithm [31], and adjusting the fuzzy confidence of these rules
with the approach that was proposed by Nozaki et al. in [32].
Consequently, this approach can only be used for small prob-
lems since its computational cost is very high when we consider
problems that consist of a high number of patterns and/or vari-
ables. On the other hand, in [25], the authors used an algorithm
that is based on the Apriori algorithm to mine association rules
only up to a certain level and to select the K most confident
ones for each class among them, in order to finally employ a ge-
netic rule-selection method that obtains a classifier from them.
However, many patterns may be uncovered if we only consider
the confidence measure to select the candidate rules.

In this paper, we present a fuzzy association rule-based classi-
fication method for high-dimensional problems (FARC-HD) to
obtain an accurate and compact fuzzy rule-based classifier with
a low computational cost. This method is based on the following
three stages:

1063-6706/$26.00 © 2011 IEEE
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1) Fuzzy association rule extraction for classification: A
search tree is employed to list all possible frequent fuzzy
item sets and to generate fuzzy association rules for
classification, limiting the depth of the branches in or-
der to find a small number of short (i.e., simple) fuzzy
rules.

2) Candidate rule prescreening: Even though the order of the
associations is limited in the association rule extraction,
the number of rules generated can be very large. In order
to decrease the computational cost of the genetic postpro-
cessing stage, we consider the use of subgroup discovery
based on an improved weighted relative accuracy mea-
sure (wWRAcc′) to preselect the most interesting rules by
means of a pattern weighting scheme [33].

3) Genetic rule selection and lateral tuning: Finally, we
make use of GAs to select and tune a compact set of
fuzzy association rules with high classification accuracy
in order to consider the known positive synergy that both
techniques present (selection and tuning). Several works
have successfully combined the selection of rules with
the tuning of membership functions (MFs) within the
same process [34], [35], taking advantage of the possi-
bility of different coding schemes that GAs provide. The
successful application of GAs to identify fuzzy systems
has led to the so-called genetic fuzzy systems (GFSs)
[36]–[38].

In order to assess the performance of the proposed approach,
we have used 26 real-world datasets with a number of vari-
ables ranging from 4 to 90 and a number of patterns ranging
from 150 to 19 020. We have developed the following studies.
First, we have shown the results that are obtained from com-
parison with three other GFSs [38]. Second, we have compared
the performance of our approach with two approaches to obtain
fuzzy associative classifiers. Third, we have shown the results
that are obtained from the comparison with four other classical
approaches for associative classification and with the C4.5 deci-
sion tree [39]. Furthermore, in these studies, we have made use
of some nonparametric statistical tests for pairwise and multi-
ple comparison [40]–[43] of the performance of these classifiers.
Then, we have shown a study on the influence of the depth of
the trees and the number of evaluations in the genetic selection
and tuning process. Finally, we have analyzed the scalability of
the proposed approach.

This paper is arranged as follows. Section II introduces the
type of rules, rule weights, and inference model, which are used,
and the basic definitions for fuzzy association rules and asso-
ciative classification. Section III describes in detail each stage
of the proposed approach. Section IV presents the experimental
setup. Section V shows and discusses the results that are ob-
tained on 26 real-world datasets. Finally, in Section VI, some
concluding remarks are made.

II. PRELIMINARIES

In this section, we first describe FRBCSs. Then, we introduce
the basic definitions for fuzzy association rules. Finally, we
present fuzzy association rules for classification.

A. Fuzzy Rule-Based Classification Systems

Any classification problem consists of N training patterns,
i.e., xp = (xp1 , . . . , xpm ), p = 1, 2, . . . , N , from S classes,
where xpi is the ith attribute value (i = 1, 2, . . . ,m) of the
pth training pattern. In this paper, we use fuzzy rules of the
following form for our classifier:

Rule Rj : IF x1 is Aj1 and · · · and xm is Ajm

THEN Class = Cj with RWj

where Rj is the label of the jth rule, x = (x1 , . . . , xm ) is an
m-dimensional pattern vector, Aji is an antecedent fuzzy set,
Cj is a class label, and RWj is the rule weight.

The rule weight of each fuzzy rule Rj has a great effect on the
performance of fuzzy rule-based classifiers [44]. Different spec-
ifications of the rule weight have been proposed and examined
in the literature. In [45], we can find some heuristic methods
for rule weight specification. In this paper, we employ the most
common one, i.e., the fuzzy confidence value or certainty factor
(CF) [46]:

RWj = CFj =

∑
xp ∈ClassCj

μAj
(xp)

∑N
p=1 μAj

(xp)
(1)

where μAj
(xp) is the matching degree of the pattern xp with the

antecedent part of the fuzzy rule Rj . We use the fuzzy reasoning
method of the weighted vote or additive combination [46] to
classify new patterns by the rule base (RB). With this method,
each fuzzy rule casts a vote for its consequent class. The total
strength of the vote for each class is computed as follows:

VClassh
(xp) =

∑

Rj ∈RB; Cj =h

μAj
(xp) · CFj

h = 1, 2, . . . , S, Rj ∈ RB. (2)

The new pattern xp is classified as the class with the maximum
total strength of the vote. If multiple class labels have the same
maximum value for xp or no fuzzy rule is compatible with xp ,
this pattern is classified as the class with most patterns in the
training data.

B. Fuzzy Association Rules

Association rules are used to represent and identify depen-
dences between items in a database [11], [20]. They are expres-
sions of the type A → B, where A and B are sets of items,
and A ∩ B = �. This means that if all the items in A exist in a
transaction, then all the items in B with a high probability are
also in the transaction, and A and B should have no common
items [31]. There are many previous studies to mine association
rules that are focused on databases with binary or discrete val-
ues; however, data in real-world applications usually consist of
quantitative values. Designing data mining algorithms, which
are able to deal with various types of data, presents a challenge
to workers in this research field.

Fuzzy set theory has been used more and more frequently in
data mining because of its simplicity and similarity to human
reasoning [1]. The use of fuzzy sets to describe associations
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Fig. 1. Attributes and linguistic terms for the attributes X1 and X2 .

between data extends the types of relationships that may be
represented, facilitates the interpretation of rules in linguistic
terms, and avoids unnatural boundaries in the partitioning of
the attribute domains. For this reason, in recent years, different
studies have proposed methods to mine fuzzy association rules
from quantitative data [47]–[54].

Let us consider a simple database T with two attributes (X1
and X2) and three linguistic terms with their associated MFs
(see Fig. 1). Based on this definition, a simple example of fuzzy
association rule is that X1 is Middle → X2 is High.

Support and confidence are the most common measures of
interest of an association rule. These measures can be defined
for fuzzy association rules as follows:

Support(A → B) =

∑
xp ∈T μAB (xp)

|N | (3)

Confidence(A → B) =

∑
xp ∈T μAB (xp)

∑
xp ∈T μA (xp)

(4)

where |N | is the number of transactions in T , μA (xp) is the
matching degree of the transaction xp with the antecedent part of
the rule, and μAB (xp) is the matching degree of the transaction
xp with the antecedent and consequent of the rule.

C. Fuzzy Association Rules for Classification

Over the past few years, different studies have proposed meth-
ods to obtain fuzzy association rule-based classifiers [23]–[28].
The task of classification is to find a set of rules in order to iden-
tify the classes of undetermined patterns. A fuzzy association
rule can be considered to be a classification rule if the antecedent
contains fuzzy item sets, and the consequent part contains only
one class label (C = {C1 , . . . , Cj , . . . , CS }). A fuzzy associa-
tive classification rule, i.e., A → Cj , could be measured directly
in terms of support and confidence as follows:

Support(A → Cj ) =

∑
xp ∈ClassCj

μA (xp)

|N | (5)

Confidence(A → Cj ) =

∑
xp ∈ClassCj

μA (xp)
∑

xp ∈T μA (xp)
. (6)

III. FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR

HIGH-DIMENSIONAL PROBLEMS

In this section, we will describe our proposal to obtain a fuzzy
association rule-based classifier for high-dimensional problems.
This method is based on the following three stages:

1) Fuzzy association rule extraction for classification: A
search tree is employed to list all the possible frequent
fuzzy item sets and to generate fuzzy association rules for
classification.

2) Candidate rule prescreening: A rule evaluation criterion
is used to preselect candidate fuzzy association rules.

3) Genetic rule selection and lateral tuning: The best coop-
erative rules are selected and tuned by means of a GA,
considering the positive synergy between both techniques
within the same process.

Finally, we add a default rule considering the class with the
most patterns in the training data. In the following, we will intro-
duce the three mentioned stages, which explain in detail all their
characteristics (see Sections III-A–C and present a flowchart of
the algorithm (see Section III-D).

A. Stage 1. Fuzzy Association Rule Extraction for Classification

To generate the RB, we employ a search tree to list all the
possible fuzzy item sets of a class. The root or level 0 of a search
tree is an empty set. All attributes are assumed to have an order
(in our case, the order of appearance in the training data), and
the one-item sets that correspond to the attributes are listed in
the first level of the search tree according to their order. If an
attribute has j possible outcomes (qj linguistic terms for each
quantitative attribute), it will have j one-item sets that are listed
in the first level. The children of a one-item node for an attribute
A are the two-item sets that include the one-item set of attribute
A and a one-item set for another attribute behind attribute A in
the order, and so on. If an attribute has j > 2 possible outcomes,
it can be replaced by j binary variables to ensure that no more
than one of these j binary attributes can appear in the same node
in a search tree. An example with two attributes V1 and V2 with
two linguistic terms L and H is detailed in Fig. 2.

An item set with a support higher than the minimum support
is a frequent item set. If the support of an n-item set in a node J
is less than the minimum support, it does not need to be extended
more because the support of any item set in a node in the subtree,
which is led by node J, will also be less than the minimum sup-
port. Likewise, if a candidate item set generates a classification
rule with confidence higher than the maximum confidence, this
rule has reached the quality level that is demanded by the user,
and it is again unnecessary to extend it further. These properties
greatly reduce the number of nodes needed for searching.

The fuzzy support of an item set can be calculated as follows:

Support(A) =

∑
xp ∈T μA (xp)

|N | (7)

where μA (xp) is the matching degree of the pattern xp with the
item set. The matching degree μA (xp) of xp to the different
fuzzy regions is computed by the use of a conjunction operator,
in our case, the product T-norm.

Once all frequent fuzzy item sets have been obtained, the
candidate fuzzy association rules for classification can be gen-
erated, setting the frequent fuzzy item sets in the antecedent of
the rules and the corresponding class in the consequent. This
process is repeated for each class.
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Fig. 2. Search tree for two quantitative attributes V1 and V2 with two linguistic terms L and H .

The number of frequent fuzzy item sets that are extracted de-
pends directly on the minimum support. The minimum support
is usually calculated considering the total number of patterns in
the dataset; however, the number of patterns for each class in
a dataset can be different. For this reason, our algorithm deter-
mines the minimum support of each class by the distributions
of the classes over the dataset. Thus, the minimum support for
class Cj is defined as

MinimumSupportCj
= minSup ∗ fCj

(8)

where minSup is the minimum support determined by the expert,
and fCj

is the pattern ratio of the class Cj .
In this stage, we can generate a large number of candidate

fuzzy association rules for classification. It is, however, very
difficult for human users to handle such a large number of gen-
erated fuzzy rules and to intuitively understand long fuzzy rules
with many antecedent conditions. For this reason, we only gener-
ate short fuzzy rules and with only a small number of antecedent
conditions. Thus, the depth of the trees is limited to a fixed value
Depthmax that is determined by an expert.

B. Stage 2. Candidate Rule Prescreening

In the previous stage, we can generate a large number of
candidate rules. In order to decrease the computational costs of
stage 3, we consider the use of subgroup discovery to preselect
the most interesting rules from the RB, which are obtained in
the previous stage by means of a pattern weighting scheme
[33]. This scheme treats the patterns in such a way that covered
positive patterns are not deleted when the current best rule is
selected. Instead, each time a rule is selected, the algorithm
stores a count i for each pattern of how many times (with how
many of the selected rules) the pattern has been covered.

Weights of positive patterns covered by the selected rule de-
crease according to the formula w(ej , i) = 1

i+1 . In the first it-
eration, all target class patterns are assigned the same weight,
i.e., w(ej , 0) = 1, while in the following iterations the contribu-
tions of patterns are inversely proportional to their coverage by
previously selected rules. This way, the patterns that are already
covered by one or more selected rules decrease their weights
while uncovered target class patterns whose weights have not
been decreased will have a greater chance of being covered in
the following iterations. Covered patterns are completely elim-
inated when they have been covered more than kt times.

TABLE I
FIVE PATTERNS IN THIS EXAMPLE

Thus, in each iteration of the process, the rules are ordered
according to a rule evaluation criterion from best to worst. The
best rule is selected, covered patterns are reweighted, and the
procedure repeats these steps until one of the stopping criteria
is satisfied: either all patterns have been covered more than kt

times, or there are no more rules in the RB. This process is to
be repeated for each class.

wWRAcc′ was used to evaluate the quality of intervalar rules
in APRIORI-SD [33]. This measure was defined as follows:

wWRAcc′(A → Cj ) =
n′(A)
N ′ ·

(
n′(A · Cj )

n′(A)
− n(Cj )

N

)

(9)

where N ′ is the sum of the weights of all patterns, n′(A)
is the sum of the weights of all covered patterns, n′(A · Cj )
is the sum of the weights of all correctly covered patterns,
n(Cj ) is the number of patterns of class Cj , and N is the
number of all patterns. For instance, let us consider a simple
database with two attributes X1 and X2 , two classes C1 and
C2 , and five training patterns. Table I shows the five train-
ing patterns and their weights in the pth iteration of the pro-
cess. In this iteration, the wWRAcc′ value of a simple rule,
i.e, R = IF X1 is [0.0, 5.0[ and X2 is [5.0, 10.0] → C1 , is
calculated as follows:

wWRAcc′(R)=
1.0 + 0.5

1.0+1.0+0.0+1.0+0.5
·
(

1.0+0.5
1.0+0.5

− 2
5

)

= 0.257.

We have modified this measure to enable the handling of
fuzzy rules. The new measure is defined as follows:

wWRAcc′′(A → Cj ) =
n′′(A · Cj )

n′(Cj )
·
(

n′′(A · Cj )
n′′(A)

− n(Cj )
N

)

(10)
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where n′′(A) is the sum of the products of the weights of all
covered patterns by their matching degrees with the antecedent
part of the rule, n′′(A · Cj ) is the sum of the products of the
weights of all correctly covered patterns by their matching de-
grees with the antecedent part of the rules, and n′(Cj ) is the sum
of the weights of patterns of class Cj . Moreover, the first term

in the definition of wWRAcc′ has been replaced by n ′′(A ·Cj )
n(Cj ) to

reward rules that cover uneliminated patterns of class Cj .
Let us consider three linguistic terms for the attributes

X1 and X2 (see Fig. 1). Based on this definition, a sim-
ple example of fuzzy association rule for classification is:
R = If X1 is Low and X2 is High → C1 . This rule covers
the training patterns in Table I with degrees (ID1, 1.0), (ID2,
0.0), (ID3, 0.0), (ID4, 0.0), and (ID5, 0.5). In this situation, the
wWRAcc′′ value of this rule is calculated as follows:

wWRAcc′′(R) =
1.0 ∗ 1.0 + 0.5 ∗ 0.5

1.0 + 0.5

·
(

1.0 ∗ 1.0 + 0.5 ∗ 0.5
1.0 ∗ 1.0 + 0.5 ∗ 0.5

− 2
5

)

= 0.5.

This measure can obtain positive or negative values in the inter-
val [−1.0, 1.0]. A rule with a wWRAcc′′ value near to 1 may be
more useful for the classification.

C. Stage 3. Rule Selection and Lateral Tuning

We consider the use of GAs to select and tune a compact set
of fuzzy association rules with high classification accuracy from
the RB, which are obtained in the previous stage. We consider
the approach that is proposed in [35], where rules are based
on the linguistic two-tuple representation [55]. This represen-
tation allows the lateral displacement of the labels considering
only one parameter (symbolic translation parameter), which in-
volves a simplification of the tuning search space that eases the
derivation of optimal models, particularly, when it is combined
with a rule selection within the same process enabling it to take
advantage of the positive synergy that both techniques present.
This way, this process to contextualize the MFs enables them
to achieve a better covering degree while maintaining the orig-
inal shapes, which results in accuracy improvements without a
significant loss in the interpretability of the fuzzy labels. The
symbolic translation parameter of a linguistic term is a number
within the interval [−0.5, 0.5) that expresses the domain of a
label when it is moving between its two lateral labels. Let us
consider a set of labels S representing a fuzzy partition. For-
mally, we have the pair (Si , αi), Si ∈ S, αi ∈ [−0.5, 0.5). An
example is illustrated in Fig. 3, where we show the symbolic
translation of a label that is represented by the pair (S2 , −0.3).

Let us consider the simple problem presented in the previous
section. Based on this definition, examples of classic rule and
linguistic two-tuple represented rule are as follows.

Classic Rule:

IF X1 is Low and X2 is Middle

THEN Class is C1

Fig. 3. Symbolic translation of a linguistic label and lateral displacement
of the involved MF. (a) Simbolic translation of a linguistic term. (b) Lateral
displacement of an MF.

Two-Tuple Representation:

IF X1 is (Low, 0.1) and X2 is (Middle,−0.3)

THEN Class isC1 .

In [35], two different rule representation approaches were
proposed: a global approach and a local approach. In our partic-
ular case, the tuning is applied to the level of linguistic partitions
(global approach). This way, the pair (Xi , label) takes the same
α value in all the rules where it is considered, i.e., a global
collection of two tuples is considered by all the fuzzy rules. For
example, X1 is (High, 0.3) that will present the same value for
those rules in which the pair “X1 is High” was initially consid-
ered. This proposal decreases the tuning problem complexity,
greatly easing the derivation of optimal models. Another im-
portant issue is that from the parameters α that are applied to
each label, we could obtain the equivalent triangular MFs, by
which an FRBCS that is based on linguistic two tuples could
be represented as a classical Mamdani FRBCS. Notice that the
class label and RW of the rule are not modified.

In the following, the main characteristics of the genetic ap-
proach that combines rule selection and lateral tuning are pre-
sented: genetic model, codification and initial gene pool, chro-
mosome evaluation, crossover operator, and restarting approach.

1) CHC Genetic Model: The approach that is proposed in
[35] considers the use of a specific GA, the CHC algorithm [56].
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Fig. 4. Scheme of the CHC algorithm.

The CHC algorithm is a GA that presents a good trade-off
between exploration and exploitation, making it a good choice
for problems with complex search spaces [57]. This genetic
model makes use of a mechanism of selection of populations in
order to perform an adequate global search. P parents and their
corresponding offspring compete to select the best P individuals
to take part in the next population. The CHC approach makes use
of an incest prevention mechanism and a restarting process to
encourage diversity in the population, instead of the well-known
mutation operator.

This incest prevention mechanism will be considered in or-
der to apply the crossover operator, i.e., two parents are crossed
if their hamming distance divided by 2 is more than a prede-
termined threshold L. This threshold value is initialized as the
maximum possible distance between two individuals (the num-
ber of genes in the chromosome) divided by 4. Following the
original CHC scheme, L is decremented by 1 when there are
no new individuals in the population in one generation. In order
to make this procedure independent of the number of genes in
the chromosome, in our case, L will be decremented by ϕ% of
its initial value (with ϕ determined by the user, usually 10%).
When L is below zero, the algorithm restarts the population (for
more information, see [58]).

A scheme of this algorithm is shown in Fig. 4.
2) Codification and Initial Gene Pool: To combine the rule

selection with the global lateral tuning, a double coding scheme
for both rule selection CS and lateral tuning CT is used

1) For the CS part, each chromosome is a binary vector
that determines when a rule is selected or not (alleles
“1” and “0,” respectively). Considering the M rules that
are contained in the candidate rule set, the corresponding
part, i.e., CS = {c1 , . . . , cM }, represents a subset of rules
composing the final RB so that IF ci = 1 THEN (Ri ∈
RB) else (Ri �∈ RB), with Ri being the corresponding
ith rule in the candidate rule set and RB being the final
RB.

2) For the CT part, a real coding is considered. This part
is the joint of the α parameters of each fuzzy parti-
tion. Let us consider the following number of labels
per variable: (m1 ,m2 , . . . ,mn ) with n being the num-
ber of system variables. Then, this part has the follow-
ing form, where each gene is associated with the tuning
value of the corresponding label: CT = (c11 , . . . , c1m 1 ,
c21 , . . . , c2m 2 , . . . , cn1 , . . . , cnmn ).

Finally, a chromosome C is coded in the following way:
C = CS CT . To make use of the available information, all the
candidate rules are included in the population as an initial solu-
tion. To do this, the initial pool is obtained with the first individ-
ual having all genes with value “1” in the CS part and all genes
with value “0.0” in the CT part. The remaining individuals are
generated at random.

3) Chromosome Evaluation: To evaluate a determined chro-
mosome penalizing a large number of rules, we compute the
classification rate and the following function is maximized:

Fitness(C) =
#Hits

N
− δ · NRinitial

NRinitial − NR + 1.0
(11)

where #Hits is the number of patterns that are correctly clas-
sified (see Section II-C), NRinitial is the number of candidate
rules, NR is the number of selected rules, and δ is a weight-
ing percentage given by the system expert that determines the
tradeoff between accuracy and complexity. If there is at least
one class without selected rules or if there are no covered pat-
terns, the fitness value of a chromosome will be penalized with
the number of classes without selected rules and the number of
uncovered patterns.

4) Crossover Operator: The crossover operator will depend
on the chromosome part where it is applied.

1) For the CT part, we consider the Parent Centric BLX
(PCBLX) operator [59] (an operator that is based on BLX-
α). This operator is based on the concept of neighborhood,
which allows the offspring genes to be around the genes
of one parent or around a wide zone that is determined by
both parent genes. Let us assume that X = (x1 , . . . , xn ),
and Y = (y1 , . . . , yn ), where xi, yi ∈ [ai, bi ] ⊂ 
, i =
1, . . . , n, are two real-coded chromosomes that are going
to be crossed. We generate the following two offspring.

a) O1 = (o11 · · · o1n ), where o1i is a randomly (uni-
formly) chosen number from the interval [l1i , u

1
i ],

with l1i = max{ai, xi − Ii · α}, u1
i = min{bi, xi +

Ii · α}, and Ii = |xi − yi |.
b) O2 = (o21 · · · o2n ), where o2i is a randomly

(uniformly) chosen number from the interval
[l2i , u

2
i ], with l2i = max{ai, yi − Ii · α}, and u2

i =
min{bi, yi + Ii · α}.

2) In the CS part, the half-uniform crossover scheme (HUX)
is employed [58]. The HUX crossover exactly inter-
changes the mid of the alleles that are different in the
parents (the genes to be crossed are randomly selected
from among those that are different in the parents). This
operator ensures the maximum distance of the offspring
to their parents (exploration).

In this case, four offspring are generated by the combination
of the two from the part CT with the two from the part CS . The
two best offspring obtained in this way are considered as the
two corresponding descendents.

Notice that since we consider a real coding scheme for the
CT part, the incest prevention mechanism has to transform each
gene considering a Gray code (binary code) with a fixed number
of bits per gene (BITSGENE) that is determined by the expert
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Fig. 5. Scheme of the FARC-HD method.

to calculate the hamming distance between two individuals in
order to apply the crossover operators.

5) Restarting Approach: To get away from local optima,
this algorithm uses a restart approach. In this case, the best
chromosome is maintained, and the remaining are generated at
random. The restart procedure is applied when the threshold
value L is below zero, which means that all the individuals
coexisting in the population are very similar.

D. Flowchart

In accordance with the previous description, the proposed
algorithm to obtain a fuzzy association rule-based classifier is
described in the following.

INPUT: A dataset with size T and m attributes, each with qj

predefined linguistic terms.
OUTPUT: A fuzzy associative classifier.
Stage 1. Fuzzy Association Rule Extraction for Classification.
For each class Cj :
Step 1: Calculate the minimum support of class Cj according

to (9).
Step 2: Create the levels 0 and 1 of the tree.
Step 3: Create a new level in the tree.
Step 4: Prune nodes.
Step 5: If there are more than two nodes in the new level, and

the depth of the tree is less than Depthmax , go to Step 3.
Step 6: Generate the rules with class Cj on the right-hand

side.
Stage 2. Candidate Rule Prescreening.
For each class Cj :
Step 7: Set the weight of the patterns as 1.
Step 8: Calculate the wWRAcc′′ value for each rule.
Step 9: Select the best rule as a part of the initial RB for Stage

3 and remove it from the candidate rule set.
Step 10: Decrease the weight of the patterns covered by the

selected rule.
Step 11: If any pattern has been covered less than kt times

and there are more rules in the candidate rule set, go to Step 8.
Stage 3. Rule Selection and Lateral Tuning.
Step 12: Generate the initial population with P chromosomes.
Step 13: Evaluate the population.
Step 14: Initialize the threshold value taking into account

Gray codings, i.e., L = Linitial .
Step 15: Generate the next population as following.
1) Shuffle the population.

2) Select the parents two by two. Each pair is crossed if
the hamming distance between the parent Gray codings
divided by 2 is more than L.

3) Evaluate the new individuals.
4) Join the parents with their offspring, and select the best P

individuals to take part in the next population.
Step 16: If the best chromosome does not change or there are

no new individuals in the population, then L = L − (Linitial ∗
0.1).

Step 17: If L < 0, restart the population and initialize L.
Step 18: If the maximum number of evaluations is not reached,

go to Step 15.
A scheme of this algorithm is shown in Fig. 5.

IV. EXPERIMENTAL SETUP

Several experiments have been carried out in this paper to
evaluate the usefulness of our proposal. In the following, first,
we describe the real-world databases that are used in these exper-
iments; second, we introduce a brief description of the methods
considered for comparison; third, we show the configuration of
the methods (determining all the parameters used); and finally,
we describe the statistical analysis that is adopted in this study.

A. Datasets

In order to analyze the performance of the proposed approach,
we have considered 26 real-world datasets. Table II summa-
rizes the main characteristics of the 26 datasets and shows
the link to the Knowledge Extraction based on Evolutionary
Learning (KEEL)-dataset repository [60] from which they can
be downloaded, where “Attributes(R/I/N)” is the number of
(Real/Integer/Nominal) attributes in the data, “Patterns” is the
number of patterns, and “Classes” is the number of classes.
Notice that we have removed the instances with any missing
value in the datasets (Cleveland and Crx), and 12 datasets have
a number of variables greater than or equal to 15.

To develop the different experiments, we consider a tenfold
cross-validation model, i.e., we randomly split the dataset into
ten folds, each containing 10% of the patterns of the dataset,
and use nine folds for training and one for testing.1 For each
of the ten partitions, we executed three trials of the algorithms.

1The corresponding data partitions (tenfold) for these datasets are avail-
able at the KEEL-dataset repository [60]: http://sci2s.ugr.es/keel/
datasets.php
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TABLE II
DATASETS CONSIDERED FOR THE EXPERIMENTAL STUDY

For each dataset, we therefore consider the average results of 30
runs.

B. Methods Considered for Comparison

In these experiments, we compare the proposed approach
with other ten methods, which are available in the KEEL soft-
ware tool [61]. A brief description of these methods is as
follows.

1) C4.5 [39]: This is a well-known algorithm used to generate
a decision tree from a set of training data in the same way as
the ID3 algorithm [62]. The extensions or improvements
with respect to ID3 are that it accounts for unavailable
or missing values in data, it handles continuous attribute
value ranges, it chooses an appropriate attribute selection
measure (maximizing the gain ratio), and it prunes the
resulting decision trees.

2) Classification based on associations (CBA) [12]: This
method consists of two parts. In the first part, an algo-
rithm based on the Apriori algorithm [31] is used to mine
the interval association rules for classification. In the sec-
ond part, this sorts the generated rules according to their
precedence relation and chooses a set of high precedence
rules to cover the training data.

3) CBA2 [13]: This method is the second version of the CBA
algorithm, which improves the previous system by the use
of multiple class minimum support in rule generation.

4) Classification based on multiple association rules
(CMAR) [14]: This method extends an efficient frequent
pattern (FP) mining method, i.e., FP-Growth [63], con-
structs a class distribution-associated FP-tree, and mines
large databases efficiently. Moreover, it applies a CR-tree
structure to store and retrieve mined interval association
rules efficiently, and it prunes rules effectively based on
confidence, correlation (by using a weighted chi-square
method), and database coverage. The classification is per-
formed based on a weighted chi-square analysis using
multiple strong association rules.

5) Structural learning algorithm on vague environment
(2SLAVE) [64]: This method is a modification of the GA
of the SLAVE algorithm [65] in order to include a feature
selection process. This is an inductive learning algorithm
based on the iterative rule learning approach, in which
each chromosome represents a rule, to obtain a set of dis-
junctive normal form (DNF) fuzzy rules. Chromosomes
compete in every GA run, choosing the best rule per run.
The global solution is formed by the best rules obtained
when the algorithm is run multiple times.

6) Learning algorithm to discover fuzzy association rules for
classification (LAFAR) [24]: This method uses a GA to
automatically determine the minimum fuzzy support and
the minimum fuzzy confidence. To evaluate a determined
chromosome, this method finds frequent fuzzy grids and
generates fuzzy classification rules from them. Once the
whole classifier is obtained, the fitness value can be cal-
culated, which maximizes the classification accuracy rate
and minimizes the number of fuzzy rules. When reaching
the termination condition, the chromosome with the max-
imum fitness value is used to test the performance of the
proposed method.

7) Classification based on predictive association rules
(CPAR) [15]: This method adopts a greedy algorithm to
generate interval association rules directly from training
data. In this process, this algorithm selects multiple literals
with similar gains to build multiple rules simultaneously
in order to avoid missing important rules. To perform the
classification, this uses expected accuracy to evaluate each
rule and uses the best k rules in prediction.

8) Fuzzy hybrid genetic-based machine learning algo-
rithm (FH-GBML) [66]: This method follows a genetic
cooperative–competitive learning (GCCL) approach and
consists of two processes. The first process is used to gen-
erate good fuzzy rules while the second one is used to find
good combinations of generated fuzzy rules. This method
simultaneously uses multiple fuzzy partitions with dif-
ferent granularities for fuzzy rule extraction, using four
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TABLE III
PARAMETERS CONSIDERED FOR COMPARISON

homogeneous fuzzy partitions with triangular fuzzy sets
and a don’t-care condition.

9) Steady-state GA for extracting fuzzy classification rules
from data (SGERD) [67]: It is a steady-state GA to gener-
ate a prespecified number of Q rules per class following a
GCCL approach. In each iteration, parents and their corre-
sponding offspring compete to select the best Q rules for
each class. This method also simultaneously uses multiple
fuzzy partitions with different granularities and a don’t-
care condition for fuzzy rule extraction.

10) Classification with fuzzy association rules (CFAR) [27]:
This method uses the Apriori algorithm to mine all the
fuzzy association rules for classification and remove the
conflicting and redundant rules to generate a compact set
of rules denoted as CompSet. Then, this method selects
the best rules to build the classifier by means of two pro-
cesses. In the first process, for each pattern, CompSet
is sorted by matching and confidence degree, reward-
ing the best rule that classify this pattern and punishing
the rules that do not classify it. In the second process,
the worst rules from CompSet are removed. These pro-
cesses are iterated until the error rate in the training set
increases.

C. Parameters of the Methods

The parameters of the analyzed methods are shown in
Table III.2 Notice that only the rules with a number of antecedent
conditions less than or equal to 3 are examined for our proposal.
This restriction is intended to facilitate the discovery of a small
number of short (i.e., simple) fuzzy rules. The parameters of
the remaining methods were selected according to the recom-
mendation of the corresponding authors within each proposal,

2With these values for our proposal, we have tried to facilitate comparisons,
selecting standard common parameters that work well in most cases instead of
searching for very specific values.

which are the default parameter settings included in the KEEL
software tool [61]. Notice that in the FH-GBML algorithm, the
authors used three different probabilities of don’t care (0.5, 0.8,
and 0.95 depending on the size of the dataset) to obtain fuzzy
rules with a few antecedent fuzzy sets. In these experiments, we
have used these three probabilities of don’t care in each dataset
and have shown in the tables the best average result obtained
for each one. Furthermore, in the CFAR algorithm, the authors
used 0.1 as the minimum support and this could be very high
for some datasets (we are using 0.05 as the minimum support
in our proposal). Likewise, we have used these two minimum
supports in each dataset (0.1 and 0.05), and we have shown in
the tables the best average result obtained in each one.

The initial linguistic partitions for our proposal and the fuzzy
methods analyzed are comprised of five linguistic terms with
uniformly distributed triangular MFs giving meaning to them,
except in the FH-GBML and SGERD algorithms, where the
partitions are comprised of two, three, four, and five linguistic
terms for each attribute. The discretization of the continuous
attributes for the CBA, CBA2, CMAR, and CPAR algorithms is
done by the use of the entropy method [68]. Notice that we use
a crisp label for each value of the nominal variables.

D. Statistical Analysis

In order to assess whether significant differences exist among
the results, we adopt statistical analysis [41]–[43] and, in par-
ticular, nonparametric tests, according to the recommendations
made in [40], where a set of simple, safe, and robust nonpara-
metric tests for statistical comparisons of classifiers has been
introduced.

For pairwise comparison, we use Wilcoxon’s Signed-Ranks
test [69], [70], and for multiple comparison we employ Fried-
man’s test [71], Iman and Davenport’s test [72], and Holm’s
method [73]. In order to perform multiple comparisons, it is
necessary to check whether all the results obtained by the algo-
rithms present any significant difference (Friedman’s test and
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TABLE IV
RESULTS OBTAINED BY THE ANALYZED METHODS

Iman–Davenport’s test), and in the case of finding one, then,
we can find out by using a post-hoc test to compare the control
algorithm with the remaining algorithms (Holm’s test). We use
α = 0.05 as the level of confidence in all cases. A wider de-
scription of these tests, together with software for their use, can
also be found at: http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL RESULTS

In this section, we analyze the results obtained in the different
experiments. This section is organized as follows.

1) In Section V-A, we show a statistical study obtained from
the comparison with other three GFSs, including FH-
GBML [66], 2SLAVE [64], and SGERD [67].

2) In Section V-B, we compare the performance of our ap-
proach with two other approaches to obtain a fuzzy as-
sociative classifier: the LAFAR algorithm [24] and the
CFAR algorithm [27].

3) In Section V-C, we compare the performance of our ap-
proach with the C4.5 decision tree [39] and four classical
approaches for associative classification: the CBA algo-
rithm [12], the CBA2 algorithm [13], the CMAR algo-
rithm [14], and the CPAR algorithm [15].

4) In Section V-D, we show an analysis of the performance
of our approach, depending on the depth of the trees and
the number of evaluations in the genetic process.

5) In Section V-E, we analyze the scalability of our proposal.

A. Comparison With Other Genetic Fuzzy Systems

This section analyzes the performance of our model against
three recognized GFSs. The results obtained by the analyzed
methods are shown in Table IV, where we have the following.

1) #R stands for the average number of rules.
2) #C stands for the average number of conditions in the

antecedent of the rules.
3) Tra stands for the average classification percentage ob-

tained over the training data.
4) Tst stands for the average classification percentage ob-

tained over the test data.
The best global result for each one is stressed in boldface in

each case.
In order to compare the results, we have used nonparamet-

ric tests for multiple comparison to find the best approach
(see Section IV-D), considering the average results obtained
in test (Tst). First of all, we have used the Friedman and Iman–
Davenport tests in order to find out whether significant differ-
ences exist among all the mean values. Table V shows the Fried-
man and Iman–Davenport statistics, and it relates them to the
corresponding critical values for each distribution by using a
level of significance, i.e., α = 0.05. The p-value obtained is
also reported for each test. Given that the statistics of Friedman
and Iman–Davenport are clearly greater than their associated
critical values, there are significant differences among the ob-
served results with a level of significance α ≤ 0.05. Table VI
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TABLE V
RESULTS OF THE FRIEDMAN AND IMAN–DAVENPORT TESTS (α = 0.05)

TABLE VI
AVERAGE RANKINGS OF THE METHODS

TABLE VII
HOLM’S TABLE FOR THE SELECTION METHODS WITH α = 0.05

shows the rankings (which are computed by the use of a Fried-
man test) of the different methods that are considered in this
study.

We now apply Holm’s test to compare the best ranking method
(FARC-HD) with the remaining methods. Table VII presents
these results. In this table, the methods are ordered with respect
to the z-value obtained. Holm’s test rejects the hypothesis of
equality with the rest of the methods (p < α/i). Therefore, by
the analysis of the statistical study that is shown in Tables VI
and VII, we conclude that our model is a solid approach to deal
with high-dimensional datasets, as it has shown itself to be the
best accuracy method when compared with the remaining fuzzy
GFSs that are applied in this study.

Finally, the results presented in Table IV show that our pro-
posal obtains a higher average number of rules (39.2 rules on
average) than all the GFSs (good approaches to obtain very com-
pact models), showing a good trade-off closer to the accuracy
with rules involving no more than three attributes in their an-
tecedent and giving the advantage of easier understanding with
respect to the 2SLAVE and FH-GBML.

B. Comparison With Other Fuzzy Associative Classifiers

In this section, we compare the performance of our model with
two other approaches to obtain a fuzzy associative classifier:
the LAFAR algorithm [24] and the CFAR algorithm [27]. The
results obtained by these methods are shown in Table VIII.
(This kind of table was described in Section V-A.) Notice that
we show less datasets; this is due to scalability problems in
the LAFAR and CFAR algorithms, which cannot run in all
datasets.

In order to compare the two algorithms, we use a Wilcoxon
test, which is shown in Table IX. We can observe that the null
hypothesis for the Wilcoxon test has been rejected (p-value<=

TABLE VIII
RESULTS OBTAINED BY THE ANALYZED METHODS

TABLE IX
WILCOXON’S TEST (α = 0.05)

α), and our proposal has achieved a higher ranking. We may
conclude that our proposal also presents the best performance
in this case.

On the other hand, the results presented in Table VIII show
that our approach obtains an average number of rules lower
than the LAFAR and CFAR algorithms. However, the CFAR
algorithm obtains less rules than our approach in 11 of the 18
datasets.

C. Comparison With Classical Approaches

This section analyzes the performance of our model against
five classical approaches. The results obtained by the analyzed
methods are shown in Table X.

In order to compare the results, we have applied the nonpara-
metric tests described in Section V-A. Table XI shows that the
statistics of Friedman and Iman–Davenport are clearly greater
than their associated critical values, and there are significant dif-
ferences among the observed results with a level of significance,
i.e., α ≤ 0.05. Table XII shows the rankings (computed using
a Friedman test) of the different methods considered in this
study.

Table XIII shows that Holm’s test rejects the hypothesis of
equality with the rest of the methods (p < α/i). Therefore, by
the analysis of the statistical study shown in Tables XII and
XIII, we conclude that our model is the best performing method
when compared with the remaining classical approaches applied
in this study. Finally, the results presented in Table X show that
our proposal obtains a smaller average number of rules than the
remaining approaches.
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TABLE X
RESULTS OBTAINED BY THE ANALYZED METHODS

TABLE XI
RESULTS OF THE FRIEDMAN AND IMAN–DAVENPORT TESTS (α = 0.05)

TABLE XII
AVERAGE RANKINGS OF THE METHODS

TABLE XIII
HOLM’S TABLE FOR THE SELECTION METHODS WITH α = 0.05

D. Analysis of the Influence of Depthmax and the Number
of Evaluations

In this section, several experiments have been carried out
to analyze the performance of our approach depending on
Depthmax and the number of evaluations in the genetic se-
lection and tuning process (using the experimental setting de-
scribed in Section IV). In order to make this analysis easier
to interpret, we have used four representative datasets in this
experiments: Yeast, Vowel, Ringnorm, and Spectfheart (8, 13,
20, and 44 variables, respectively). Table XIV shows the re-
sults obtained with three different values for Depthmax (2, 3,
and 4), where #R1 stands for the average number of rules
obtained at the end of Stage 1, #R2 stands for the average
number of rules obtained at the end of Stage 2, #R3 stands
for the average number of rules obtained at the end of Stage
3, and “time” stands for the average runtime (in format hh :
mm : ss).

By the analysis of the results presented in Table XIV, we can
highlight the following facts.

1) Candidate rule prescreening allows the selection of a re-
duced number of interesting rules with the three values
for Depthmax , decreasing the computational cost in the
genetic selection and tuning process. Notice that the num-
ber of rules obtained in Stage 1 for the dataset Spectfheart
is higher than 300 000 rules.



ALCALÁ-FDEZ et al.: FUZZY ASSOCIATION RULE-BASED CLASSIFICATION MODEL FOR HIGH-DIMENSIONAL PROBLEMS 869

TABLE XIV
ANALYSIS OF THE PERFORMANCE DEPENDING ON Depthm ax

TABLE XV
AVERAGE RUNTIME OF THE ANALYZED METHODS (HH:MM:SS)

2) When we use Depthmax = 4, we can see how the pro-
posed approach does not obtain important improvement
in training for three of the four datasets and only improves
the results obtained in test for two of the four datasets.
Moreover, the increase of the computational cost is high
in all datasets, where Depthmax = 3 is a value with a good
compromise between both properties.

On the other hand, Fig. 6 depicts the accuracy obtained over
the training data along with different numbers of evaluations in
the genetic process with Depthmax = 4. In this figure, we can
highlight how this process obtains the best solution in less than
14 000 evaluations in all datasets because the initial RBs consist
of a reduced number of rules.

Taking into account both studies, a good neutral choice en-
suring the convergence may be to use 3 for Depthmax and
15 000 for the number of evaluations in the genetic process,
obtaining a good trade-off between accuracy and computa-
tional cost (good accuracy and not too great a computational
cost).

Fig. 6. Accuracy obtained over the training data with different numbers of
evaluations in the genetic process with Depthm ax = 4.

E. Analysis of Scalability

Table XV shows the average runtime of the analyzed meth-
ods in the previous sections on 26 real-world problems (with



870 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 5, OCTOBER 2011

a number of variables ranging from 4 to 90 and a number of
patterns ranging from 150 to 19 020) and using the tenfold
cross-validation model. The methods were implemented using
Java, and all of the experiments were performed using a Pentium
Core 2 Quad, 2.5-GHz CPU with 4 GB of memory and running
Linux.

By the analysis of the results presented in Table XV, we can
draw the following conclusions.

1) The SGERD algorithm presents a very low average run-
time in all datasets, obtaining a good scalability when
we increase the size of the problem. This method,
however, should be the worst in Friedman’s test when
we compare the results obtained in the test data (see
Table VI).

2) The 2SLAVE, FH-GBML, LAFAR, and CFAR algorithms
expend a large amount of time when the number of at-
tributes and patterns in the dataset is high. Notice that
the CFAR and LAFAR cannot run in 7 and 18 of the 26
datasets, respectively.

3) The remainder of the methods obtain low computational
costs in all datasets and present good results in accuracy.
However, our proposal obtains the best ranking in Fried-
man’s test when we compare the results that are obtained
in the test partitions.

4) Notice that the CBA and CBA2 algorithms present similar
runtimes to the CMAR and CPAR algorithms because
they limit the total number of candidates rules that are
generated in datasets with more than 15 variables since
they cannot be completed within this limit.

5) The FARC-HD approach presents a good computational
cost in all datasets, obtaining a good scalability and the
best performance in accuracy.

VI. CONCLUDING REMARKS

In this paper, we have proposed a new fuzzy associative clas-
sification method for high-dimensional datasets, named FARC-
HD. Our aim was to obtain accurate and compact fuzzy asso-
ciative classifiers with a low computational cost. To do this, we
mine fuzzy association rules limiting the order of the associa-
tions in order to obtain a reduced set of candidate rules with
less attributes in the antecedent. We have made use of a pattern
weighting scheme in order to reduce the number of candidate
rules, preselecting the rules with the best quality. A genetic
rule selection and lateral tuning have been applied to select a
small set of fuzzy association rules with a high classification
accuracy.

Taking into account the results obtained, we can conclude that
our model is a solid approach to deal with high-dimensional
datasets, as it obtains the best accuracy in the experimental
study. Moreover, the FARC-HD obtains models with a reduced
number of rules (39.2 rules on average) and, particularly, with
few attributes in the antecedent. Finally, the limit in the depth
of the trees, along with candidate rule prescreening using the
fuzzy measure wWRACC′′, allows us to reduce the search space
considerably. Thus, the genetic process for selection and tuning

does not introduce an excessive computational cost in to the
whole process.
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[54] J. Alcalá-Fdez, R. Alcalá, M. Gacto, and F. Herrera, “Learning the mem-
bership function contexts for mining fuzzy association rules by using
genetic algorithms,” Fuzzy Sets Syst., vol. 160, no. 7, pp. 905–921,
2009.

[55] F. Herrera and L. Martı́nez, “A 2-tuple fuzzy linguistic representation
model for computing with words,” IEEE Trans. Fuzzy Syst., vol. 8, no. 6,
pp. 746–752, Dec. 2000.

[56] L. Eshelman, “The CHC adaptive search algorithm: How to have safe
search when engaging in nontraditional genetic recombination,” in Foun-
dations of Genetic Algorithms, vol. 1, G. Rawlin, Ed. San Mateo, CA:
Morgan Kaufmann, 1991, pp. 265–283.

[57] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating evolu-
tionary algorithms,” Artif. Intell., vol. 85, pp. 245–276, 1996.

[58] L. Eshelman, J. Schaffer, “Real-coded genetic algorithms and interval
schemata,” in Foundations of Genetic Algorithms, vol. 2, D. Whitley, Ed.
San Mateo, CA: Morgan Kaufmann, 1993 pp. 187–202.

[59] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina, “Real-coded
memetic algorithms with crossover hill-climbing,” Evol. Comput., vol. 12,
no. 3, pp. 273–302, 2004.
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