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Abstract: The consensus reaching process (CRP) is a dynamic and iterative process for improving 

the consensus level among experts in group decision making. A large number of non-cooperative 

behaviors exist in the CRP. For example, some experts will express their opinions dishonestly or 

refuse to change their opinions to further their own interests. In this study, we propose a novel 

consensus framework for managing non-cooperative behaviors. In the proposed framework, a 

self-management mechanism to generate experts’ weights dynamically is presented and then 

integrated into the CRP. This self-management mechanism is based on multi-attribute mutual 

evaluation matrices (MMEMs). During the CRP, the experts can provide and update their 

MMEMs regarding the experts’ performances (e.g., professional skill, cooperation, and fairness), 

and the experts’ weights are dynamically derived from the MMEMs. Detailed simulation 

experiments and comparison analysis are presented to justify the validity of the proposed 

consensus framework in managing the non-cooperative behaviors. 

Keywords: Group decision making, consensus reaching process, self-management mechanism, 

non-cooperative behaviors 

1. Introduction 

Group decision making (GDM) [29, 63] can be viewed as a task to find a collective solution 

to a decision problem in situations in which experts express their opinions regarding multiple 
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alternatives. Usually, at the beginning of the GDM problem, the experts’ opinions may differ 

substantially. The consensus reaching process (CRP) is often a necessity to achieve a general 

consensus regarding the selected alternatives in GDM [21, 24]. Classically, consensus is defined 

as the full and unanimous agreement of all experts regarding all possible alternatives. However, 

this definition is inconvenient and complete agreement is not always necessary in real life. This 

belief has led to the use of a “soft” consensus level (i.e., consensus measure) [7, 8, 26, 30, 31, 39, 

56]. Based on a “soft” consensus level, different types of CRPs have been proposed: (i) CRPs 

under different preference representation formats [10, 13, 15, 17, 28, 35, 55]; (ii) CRPs with 

minimum adjustments or cost [5, 6, 12, 16, 22, 23, 66, 68, 69]; (iii) CRPs based on consistency 

and consensus measures [18, 20, 25, 54, 67]; (iv) CRPs that consider the attitudes of experts [38, 

45]; (v) CRPs under dynamic/Web contexts [1, 2, 32, 43, 65]; (vi) CRPs based on trust or experts’ 

weights [4, 42, 53]. 

In GDM problems, a large number of non-cooperative behaviors exist. For example, some 

experts will express their opinions dishonestly or refuse to change their opinions to obtain their 

own interests. Hence, it is necessary to address non-cooperative behaviors to ensure the quality of 

the GDM results. In the extant literature, Pelta and Yager [41] and Yager [59, 60] investigated the 

non-cooperative behaviors that are called strategic manipulation behaviors and occur in the 

aggregation function that is used in the selection process of GDM problems. Recently, Palomares 

et al. [40] proposed a consensus model for addressing non-cooperative behaviors in the CRP of 

GDM problems, in which the weights of the experts who have the non-cooperative behaviors are 

compulsively penalized by a moderator. Although these approaches are very useful they still need 

to be further improved to cope with non-cooperative behaviors in real-world GDM problems 

because (1) in the works of Pelta and Yager [41] and Yager [59, 60], the non-cooperative behaviors 

are considered solely in the selection process of GDM problems and are not considered in the CRP 

and (2) in the work of Palomares et al. [40], the management of the non-cooperative behaviors is 

heavily dependent on a moderator and is occasionally excessively demanding for the moderator. 

Therefore, the objective of this study is to propose a novel consensus framework based on a 

self-management mechanism to manage non-cooperative behaviors in the CRP. In this novel 

consensus framework, the experts provide not only preference information about alternatives but 

also mutual evaluation information for experts. The mutual evaluation information is given by 
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means of multi-attribute mutual evaluation matrices (MMEMs). We propose an 

optimization-based approach to obtain the experts’ weights from the MMEMs. Furthermore, the 

obtained experts’ weights are integrated into the CRP. During the CRP, the experts not only 

modify their preference information about alternatives to achieve a consensus but also modify 

their MMEMs regarding experts’ performances (e.g., professional skill, cooperation, and fairness). 

We propose detailed simulation experiments and a comparison analysis to justify the validity of 

the proposed consensus framework in managing non-cooperative behaviors. 

The proposal with the self-management mechanism can be applied to address 

non-cooperative behaviors in the CRPs of practical GDM problems. When an academic 

conference committee wants to select a best paper or a science foundation committee hopes to find 

outstanding projects to support, some committee members may adopt non-cooperative behaviors 

to obtain their own interests; thus, the committees are confronted with the need to manage 

non-cooperative behaviors. The proposal provides a self-management mechanism to help the 

committees cope with the non-cooperative behaviors by using the means that the committee 

members provide and update their MMEMs in the multiple rounds of discussion. 

The remainder of this study is arranged as follows. Section 2 introduces preliminaries. Then, 

Section 3 describes the consensus-based GDM with non-cooperative behaviors, and proposes the 

resolution framework. Next, we apply the proposed consensus framework to manage 

non-cooperative behaviors in Section 4. Following this, in Section 5, an illustrative example is 

provided. Finally, concluding remarks are included in Section 6. 

2. Preliminaries 

This section introduces the basic knowledge regarding the ordered weighted average (OWA) 

operator, the additive preference relations (also called fuzzy preference relations), and the 

selection process to obtain the ranking of alternatives, which provide a basis for this study. 

For a GDM problem, let 1 2{ , ,..., }nX x x x  ( 2)n   be a finite set of alternatives and 

1 2{ , ,..., }mE e e e  ( 2)m   be a set of experts. When experts express their opinions about 

alternatives, the preference representation formats are popular techniques. There are several 

different preference representation formats, including: utility functions [51], preference orderings 

[47], multiplicative preference relations [46, 48], additive preference relations [27, 36, 51], and 
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linguistic preference relations [14, 44, 50]. Herrera-Viedma et al. [28] discussed the 

transformation functions among different preference representation formats. In this study we 

assume that experts provide their opinions about alternatives by means of additive preference 

relations. 

(1) OWA operator 

Let 
1 2

{ , ,..., }
N

c c c  be a set of values to aggregate. The OWA operator [57] is defined as 

                    1 2 1
( , ,..., )  .

N

N k kk
OWA c c c b


                       (1) 

where kb  is the k th largest value in 
1 2

{ , ,..., }
N

c c c , and 1 2( , ,..., )T

N     is an 

associated weight vector such that [0,1]k   and 
1

1
N

kk



 . 

In [58], Yager suggested an effective method to compute 1 2( , ,..., )T

N     using 

linguistic quantifiers, which, in the case of a non-decreasing proportional quantifier Q  [64], is 

given by the following expression:  

1( ) ( )i i
i N N

Q Q   , 1,2,...,i l ,                     (2) 

where ( )Q c  can be represented as 

                     

0  ,  ,

( )  ,  ,

1  ,  ,

c a

c a
Q c a c b

b a

c b





  




                          (3) 

with ,  ,  [0,1]a b c .  

There are several common linguistic quantifiers, such as all, most, at least half and as many 

as possible, where the parameters ( , )a b  are (0,1) , (0.3,0.8) , (0,0.5)  and (0.5,1) , 

respectively. When a linguistic quantifier Q  is used to compute the weights of the OWA operator, 

it is symbolized by QOWA . 

(2) Additive preference relations 

Definition 1: Additive preference relations [36, 51]. A additive preference relation on a set of 

alternatives 1 2{ , ,..., }nX x x x  is represented by a matrix ( )ij n nP p  , where [0,1]ijp   

denotes the preference degree of the alternative ix  over jx . An additive preference relation 

usually assumed to be additive reciprocal, i.e., 1ij jip p  , ji, . 

For simplicity, we call the additive preference relations the preference relations in this study. 

Let 1 2( , ,..., )T

nPr pr pr pr  be the preference vector over alternatives X  derived from the 
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preference relation ( )ij n nP p  , where 0ipr   is the preference value of the alternative 
ix . In 

this study, the quantifier-guided dominance degree iQGDD  is used to quantify the preference 

value of the alternative ix  as follows [28]: 

                 1 2, , ,i i Q i i inQGDD OWA p p ppr   .                    (4) 

(3) Selection process in GDM 

The selection process which is used to obtain the ranking of alternatives from a group of 

preference relations consists of two phases [28]: aggregation and exploitation. 

1) Aggregation phase 

Let 
( ) ( )( )c c

ij n nP p   be a collective preference relation obtained by means of the 

aggregation of the individual preference relations 
( ) ( )( )k k

ij n nP p   ( 1,2,..., )k m . The 

weights average (WA) operator and OWA operators are most widely used in GDM problems. This 

study integrates the experts’ weights into the CRP; thus, we use the WA operator to implement the 

aggregation operation as follows: 

( ) (1) (2) ( ) ( )

1

( , ,..., )
m

c m k

ij ij ij ij k ij

k

p WA p p p p


                       (5) 

where [0,1]k   is weight of the expert ke E  and 
1

1
m

kk



 . 

2) Exploitation Phase 

Let ( ) ( ) ( ) ( )

1 2( , ,..., )c c c c T

nPr pr pr pr  be the collective preference vector over alternatives X  

derived from the collective preference relation 
( ) ( )( )c c

ij n nP p  , where ( ) 0c

ipr   is the 

collective preference value of the alternative 
ix . Based on Eq. (4), we can obtain ( )c

ipr , i.e.,  

( ) ( ) ( ) ( ) ( )

1 2, , ,( )c c c c c

i i Q i i inQGDD OWA p p ppr   .                  (6) 

Based on 
( )cPr , the collective ranking of the alternatives X  can be obtained. 

3. Consensus-based GDM with non-cooperative behaviors  

This section describes the consensus-based GDM problem with non-cooperative behaviors, 

and then proposes its resolution framework. 

3.1. Decision problem and proposed framework 

(1) Decision problem 

As noted in Section 1, a large number of non-cooperative behaviors exist in the CRP. Here, 

we propose the consensus-based GDM problem with non-cooperative behaviors as follow: 

Let 1 2{ ,  ,  ...,  }mE e e e  ( 2)m   be a set of experts, 1 2{ ,  ,  ...,  }nX x x x  ( 2)n   be a 

set of alternatives, and 
( ) ( )( )k k

ij n nP p   ( 1,  2,  ...,  )k m  be a preference relation provided by 

the expert ke .  

In the CRP, some experts may adopt non-cooperative behaviors to obtain their own interests. 
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The question is how to help experts achieve a consensus in the GDM context with 

non-cooperative behaviors. 

(2) Proposed framework 

Solving GDM problems follows a common resolution scheme composed by two different 

processes (or models) [24, 28]: consensus and selection. The consensus process includes two parts: 

consensus measure and feedback adjustment. By integrating the experts’ weights generated 

dynamically into the consensus process, we propose a novel consensus framework. The 

implementation of the novel consensus framework addresses a three-process procedure. The 

details of the novel consensus framework are presented in Fig. 1. 

Experts

Provide/update 

MMEMs

MMEMs

Optimization 

model

Experts’weights

Individual 

preference 

relations

Express 

preferences
Aggregation

Collective 

preference 

relation

Suggestions to 

modify individual 

preferences

Feedback 

adjustment

Consensus 

measure

Selection 

process

Is the consensus level 

acceptable?

Maxrounds?

Yes
No

No Yes

Process of generating experts-weights

Consensus process

 

Fig. 1. Framework for GDM with non-cooperative behaviors 

1) Process of generating experts’ weights 

In the CRP, the experts provide and update their MMEMs regarding the experts’ 

performances (e.g., professional skill, cooperation, and fairness). Then, an optimization-based 

approach is proposed to obtain the experts’ weights from the MMEMs. 

The process used to generate experts’ weights is introduced in Section 3.2. 

2) Consensus process 

The objective of the consensus process is to improve the consensus level among the experts. 

The implementation of this consensus process involves a two-step procedure: 

(i) Consensus measure 

In this step, a consensus measure method that incorporates experts’ weights is introduced to 

measure the consensus level among the experts.  

(ii) Feedback adjustment 

Based on consensus measure, the feedback adjustment rules are used to help experts modify 
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their preference information to improve the consensus level among experts. 

The details of the consensus process are introduced in Section 3.3. 

3) Selection process 

Once the consensus among experts is achieved, the selection process introduced in Section 2 

is employed to derive the collective final ranking of alternatives.  

3.2. Process of generating experts’ weights 

In this section, we propose an optimization-based method to obtain the experts’ weights from 

the MMEMs. 

In the CRP, the experts provide and update their MMEMs based on multiple attributes (e.g., 

professional skill, cooperation, and fairness). Let 1 2{ , ,..., }lA a a a  ( 1)l   be a set of attributes 

in the MMEMs. Let 1 2( ,  ,  ...,  )T

lw w w w  be weight vector over A , where 0iw   and 

1
1

l

ii
w


 . Let 

( ) ( )( )k k

ij m lV v   ( 1,2,..., )k m  be a MMEM, where 
( )k

ijv  denotes the 

evaluation value that the expert ke  assigned to the expert ie  with respect to the attribute ja . In 

this study, we assume that 
( ) [0,100]k

ijv   for i k  and 
( )k

ijv null  for i k . 

 Transform 
( ) ( )[ ]k k

ij m lV v 
 

( 1,2,..., )k m  into normalized 
( ) ( )[ ]k k

ij m lV v   by using the 

following formulae [62]: 

( )

( )

( )

1,

k

ijk

ij m k

iji i k

v
v

v
 




 ( i k ), for benefit attribute ja , 1, 2,...,j l            (7)

 
 

( )

( )

( )

1,

1

1

k

ijk

ij m k

iji i k

v
v

v
 




 ( i k ), for cost attribute ja , 1, 2,...,j l           (8) 

( )k

ijv null  ( i k ), for attribute ja , 1, 2,...,j l                         (9) 

Let 1 2( , ,..., )T

m     be the vector of the experts’ weights, where 0i   is the weight 

of the expert ie  and 
1

1
m

i

i




 . The overall evaluation value of the expert ke  assigned to the 

expert ie  can be computed as 
( ) ( )

1

lk k

i j ijj
u w v


 . A larger 

( )k

iu  value indicates that the 

expert ke  believes the expert ie  is more important, and the deviation value between 
( )k

iu  and 

i  can be calculated as  
2

( )k

i iu  . The total deviation value between 
( )k

iu  and i  for all 
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experts can be computed as  
2

( )

1 1

m m
k

i i

k i

u 
 

 . Naturally, we hope that the total deviation value 

is as small as possible. In accordance with this idea, we construct a nonlinear programming model 

to determine the 
1 2( , ,..., )T

l     as follows: 

 
2

( )

1
1 1

1

min

1
. .

0,  ( 1,  2,  ...,  )

m m
l k

j ij ij
k i

m

i

i

i

w v

s t

i m








 









  

 


.                        (10) 

Theorem 1：The optimal solution to model (10) is unique and can be given as follows: 

 ( )

1 1

m l k

j ijk j

i

w v

m


 

 

 ( 1,  2,  ...,  )i m .                   (11) 

The proof of Theorem 1 is included in Appendix A. 

In the CRP, the experts update MMEMs based on the other experts’ performances. Thus, the 

experts’ weights derived from the MMEMs are dynamically changed. 

3.3. Consensus process 

Usually, the consensus process is used to help experts improve the consensus level among the 

experts [1, 9, 34, 52]. There are two key elements in the consensus process: consensus measure 

and feedback adjustment. 

(1) Consensus measure 

Consensus levels are used to measure the current level of consensus in the CRP. Many 

consensus measure methods have been proposed [9, 37, 39]. This section introduces the consensus 

measure method proposed by Palomares et al. [40]. 

The consensus levels are defined at three different levels: pair of alternatives, alternatives, 

and relations. 

1) For each pair of experts ( ke , he ) ( 1,..., 1k m  , 1,...,h k m  ), a similarity matrix, 

( ) ( )( )kh kh

ij n nSM sm  , is defined as 

( ) ( ) ( )1 | |kh k h

ij ij ijsm p p   .                             (12) 

where 
( ) [0,1]kh

ijsm   is the similarity level between experts ke  and he  in their preference 

values 
( )k

ijp  and 
( )h

ijp . 
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2) A consensus matrix ( )ij n nCM cm  , is computed by aggregating similarity matrices, 

considering the importance weights [0,1]khw   associated to each pair of experts ( , )k he e  

( 1,..., 1,  1,..., )k m h k m    . In the work of Palomares et al. [40], the khw  is computed as 

min( , )kh k hw w w . The element [0,1]ijcm   ( i j ) is the collective consensus level on the 

pair of alternatives ( ix , jx ), obtained by the following formula: 

1 ( )

1 +1

1

1 +1

m m kh

kh ijk h k
ij m m

khk h k

w sm
cm

w



 



 


 

 
.                            (13) 

3) Once the consensus matrix is computed, the consensus levels are computed at three 

different levels:  

(i) Consensus level on a pair of alternatives ( ix , jx ), ij ijcp cm .  

(ii) Consensus level on alternative ix , 
1, 

1

n

ijj j i

i

cm
ca

n

 





.                                

(iii) Collective consensus level, 

1

n

ii
ca

cl
n




.                                  (14) 

Obviously, [0,  1]cl . If 1cl  , then all experts are at full consensus. Otherwise, a larger 

cl  value indicates a higher consensus level among experts.  

(2) Feedback adjustment 

Feedback adjustment aims to provide adjustment suggestions to help the experts improve the 

consensus level. Many feedback adjustment methods have been proposed [18, 28, 49]. Here, we 

introduce the feedback adjustment rules to help experts modify their preferences. 

Let 
( ) ( )( )k k

ij n nP p   ( 1,2,..., )k m  and 
( ) ( )( )c c

ij n nP p   be as before. Let 

 ( ) ( )k k

ij
n n

P p


  ( 1,2,..., )k m  be the adjusted preference relation associated with 
( )kP . 

When constructing 
( ) ( )[ ]k k

ij n nP p  , we suggest that 

( ) ( ) ( ) ( ) ( )

( ) ( )

[min( , ),max( , )],  

1 ,                                       

k k c k c

ij ij ij ij ij

k k

ij ji

p p p p p if i j

p p if i j

  


  

.                      (15) 

The detailed consensus process is presented in Algorithm I, which is provided in Appendix B. 

4. Application of the proposed consensus framework to manage non-cooperative 

behaviors 

In this section, we employ the proposed consensus framework to manage non-cooperative 
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behaviors. Specifically, several non-cooperative behaviors are introduced. Then, the detailed 

simulation methods and comparison analysis are designed to justify the validity of the proposed 

consensus framework in managing the non-cooperative behaviors. 

4.1. Non-cooperative behaviors 

The purpose of the CRP is to achieve a high level of agreement before making a decision. 

However, in a real-world CRP, some experts will express their preferences dishonestly or refuse to 

change their preferences to obtain their own interests. In the following, we introduce several 

non-cooperative behaviors. 

(1) Non-cooperative behavior I 

In the CRP, experts need to modify their individual preferences based on the suggestions 

received to achieve a consensus. However, some experts will refuse to change their preferences or 

change their preferences by only a small fraction. In this study, we call this type of behavior 

non-cooperative behavior I.  

Let 
( , ) ( , )( )k z k z

ij n nP p   ( 1,2,..., )k m  be a preference relation provided by the expert ke  

in consensus round z . 

Let 

( , ) ( , 1) ( , ) ( , 1) ( , 1) ( , 1) ( , 1)

( , )
| |,  [min( , ),max( , )]

       0,                 

k z k z k z k z c z k z c z

ij ij ij ij ij ij ijk z

ij

p p if p p p p p
d

otherwise

      
 


,  (16) 

( , ) ( , )

1 1

n n
k z k z

ij

i j

AD d
 

 ,                              (17) 

and 

( , ) ( , 1) ( , 1)

1 1

| |
n n

k z k z c z

ij ij

i j

D p p 

 

  ,                           (18) 

where 
( , )k z

ijd  denotes the adjustment amount of expert ke  regarding the pair ( , )i jx x  

according to Eq. (15), 
( , )k zAD  denotes the total adjustment amount of expert ke  regarding all 

of the pairs ( , )i jx x ( , 1,2,..., )i j n , and 
( , )k zD  denotes the total adjustment amount of expert 

ke  to achieve complete consensus over all of the pairs ( , )i jx x  ( , 1,2,..., )i j n .  

Let 

( , )
( , )

1 ( , )
1

k z
k z

k z

AD
s

D
  .                               (19) 
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The 

( , )

( , )

k z

k z

AD

D
 value represents the degree to which expert ke  modifies his/her preferences 

and moves them closer to consensus, according to the advice received. Clearly, 
( , )

1 [0,1]k zs  , and 

a larger 
( , )

1

k zs  value indicates a higher probability of expert ke , who exhibits non-cooperative 

behavior I. Let   ( [0,1])  be the established threshold. If 
( , )

1

k zs  , we deduce that expert 

ke  satisfies the characteristic of the non-cooperative behavior I in the consensus round z . 

Example 1: Let 
(1, 1)

0.5 0.45 0.45

0.55 0.5 0.4

0.55 0.6 0.5

zP 

 
 

  
 
 

 and 
( , 1)

0.5 0.51 0.52

0.49 0.5 0.65

0.48 0.35 0.5

c zP 

 
 

  
 
 

. 

We assume that expert 1e  provides the adjusted preference relation 
(1, )zP  as follows: 

(1, )

0.5 0.44 0.48

0.56 0.5 0.42

0.52 0.58 0.5

zP

 
 

  
 
 

. 

Based on Eq. (16), we can obtain that 
(1, )

12 0zd  , 
(1, )

13 0.03zd  , 
(1, )

21 0zd  , 
(1, )

23 0.02zd  , 

(1, )

31 0.03zd  , and 
(1, )

32 0.02zd  . Using Eq. (17) and Eq. (18) yields 
(1, ) 0.1zAD   and 

(1, ) 0.76zD  , respectively. Then, we can obtain that 
(1, )

1 0.868zs  , according to Eq. (19). In this 

example, if we set 0.8  , we will deduce that expert 1e  satisfies the characteristic of the 

non-cooperative behavior I because 
(1, )

1

zs  . 

(2) Non-cooperative behavior II 

In the CRP, some experts will express their preferences dishonestly to obtain their own 

interests. A common dishonest behavior is that an expert decreases the evaluation for the 

collective most preferred alternative in the CRP. In this study, we call this type of behavior 

non-cooperative behavior II. 

Let 
( , 1) ( , 1) ( , 1) ( , 1)

1 2( , ,..., )c z c z c z c z T

nPr pr pr pr     be the preference vector that derived from 

( , 1)c zP 
 according to Eq. (6). Let 

( , 1)c z

ox 
 be the collective most preferred alternative based on 

( , 1)c zPr 
. Using Eq. (4) obtains the preference vector 

( , ) ( , ) ( , ) ( , )

1 2( , ,..., )k z k z k z k z T

nPr pr pr pr  

( 1,2,..., )k m  from 
( , )k zP .  

Let  
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( , ) ( , ) ( , ) ( , )

1 2( ( ), ( ),..., ( ))k z k z k z k z T

nO o x o x o x                        (20) 

be the preference ordering associated with ke , where 
( , ) ( )k z

io x  is the position of the alternative 

ix  in X  according to 
( , )k zPr . For example, if 

( , ) (0.3,  0.5,  0.2)k z TPr  , 

( , ) (2,  1,  3)k z TO  . 

Let 

( , ) ( , 1)

( , )

2

1,  ( ) ( )

0,

k z c z

k z oif o x round n
s

otherwise

  
 


  ,                       (21) 

where the round is the usual rounding  operation and   ( [0,1])   is a parameter. If 

( , )

2 1k zs  , we deduce that expert ke  satisfies the characteristic of the non-cooperative behavior 

II in the consensus round z . 

Example 2: Let 
(1, 1)zP 

 and 
( , 1)c zP 

 be as in Example 1. Suppose that expert 1e  

provides his/her adjusted preference relation 
(1, )zP  as  

(1, )

0.5 0.49 0.48

0.51 0.5 0.48

0.52 0.52 0.5

zP

 
 

  
 
 

. 

Using Eq. (6) yields the preference vector 
( , 1) (0.5033,  0.4933,  0.4367)c z TPr    from 

( , 1)c zP 
. Based on 

( , 1)c zPr 
, we have 

( , 1)

1

c z

ox x  . According to Eq. (4) and Eq. (20), we can 

obtain that 
(1, ) (0.4833,  0.4867,  0.5067)z TPr   and 

(1, ) (3,  2,  1)z TO  , respectively. In this 

example, if we set 0.5  , we will deduce that expert 1e  has the characteristic of the 

non-cooperative behavior II because 
(1, )

2 1zs  . 

(3) Non-cooperative behavior III 

In the CRP, if there is an expert whose preference always has a significant difference from the 

remainder of the experts, we deduce that this expert has non-cooperative behavior III in this study. 

Let 

( , ) ( , ) ( , )

3 2
1, 1 1

1
= | |

( 1)( )

m n n
k z k z h z

ij ij

h h k i j

s p p
m n n    


 

  .                       (22) 

Clearly, ( , )

3 [0,  1]k zs   and reflects the deviation of opinions between expert 
ke  with the 

other experts. 
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Let   ( [0,1])   be the established threshold. If 
( , )

3

k zs  , we deduce that expert ke  

satisfies the characteristic of non-cooperative behavior III in consensus round z . 

Example 3: Let 
(1, )zP  be as in Example 1. Let 

(2, )

0.5 0.49 0.47

0.51 0.5 0.42

0.53 0.58 0.5

zP

 
 

  
 
 

 and  

(3, )

0.5 0.88 0.8

0.12 0.5 0.9

0.2 0.1 0.5

zP

 
 

  
 
 

. 

Base on Eq. (22), we can obtain that (1, )

3 0.2167zs  , (2, )

3 0.21zs   and (3, )

3 0.4067zs  . In 

this example, if we set 0.35  , then we will deduce that expert 3e  satisfies the characteristic 

of the non-cooperative behavior III because (3, )

3

zs  . 

Note 1: The parameters  ,  , and   are used as thresholds to deduce whether experts’ 

behaviors satisfy the characteristics of the non-cooperative behaviors I-III, respectively. Larger  , 

 , and   values indicate the stricter criteria to deduce non-cooperative behaviors I-III, 

respectively. According to the actual situation, the experts can set  ,  , and   values. When 

setting different  ,  , and   values, the proposed consensus framework is effective for 

managing non-cooperative behaviors, as shown in the following simulation experiments and 

comparison analysis. 

4.2. Simulation experiments 

To study whether the proposed consensus framework can manage non-cooperative behaviors, 

this section presents detailed simulation methods. 

In the simulation methods, we randomly generate the initial preference relations and 

MMEMs. The MMEMs involve three attributes: professional skill 1( )a , cooperation 2( )a , and 

fairness 3( )a . There are numerous approaches to set the attribute weights in multiple attribute 

decision making (e.g., [3, 11, 62]). In practical group decision situation, there are different types of 

non-cooperative behaviors, and we don't know which type of non-cooperative behaviors experts 

will use. In our consensus framework each type of non-cooperative behaviors is managed by one 

or more attributes in MMEMs, so we set that the attribute weights are equal to effectively manage 

non-cooperative behaviors. In the following, Simulation methods I-III, which are based on the 

natural hypotheses 1-3, are presented, respectively. 
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Hypothesis 1: If an expert is deduced as using the non-cooperative behavior I, the other 

experts will decrease the evaluation of this expert regarding the attribute “cooperation 2( )a ”. 

Hypothesis 2: If an expert is deduced as using the non-cooperative behavior II, the other 

experts will decrease the evaluation of this expert regarding the attribute “fairness 3( )a ”. 

Hypothesis 3: If an expert is deduced as using the non-cooperative behavior III, the other 

experts will decrease the evaluation of this expert regarding the attributes “professional skill 1( )a ” 

and “cooperation 2( )a ”. 

(1) Simulation experiment I 

The main idea of Simulation method I is that we randomly generate the initial preference 

relations and MMEMs. In the CRP, if expert ke  is deduced as using the non-cooperative 

behavior I, then based on Hypothesis 1, other experts he  ( 1,..., ,  )h m h k   will decrease the 

evaluation of expert ke  regarding the attribute “cooperation 2( )a ”. 

(2) Simulation experiment II 

The basic idea of Simulation method II is similar to Simulation method I. If expert ke  is 

deduced as using the non-cooperative behavior II, based on Hypothesis 2, other experts he  

( 1,..., ,  )h m h k   will decrease the evaluation of expert ke  regarding the attribute 

“fairness 3( )a ”. 

 (3) Simulation experiment III 

The basic idea of Simulation method III is also similar to Simulation method I. If expert ke  

is deduced as using the non-cooperative behavior III, based on Hypothesis 3, other experts he  

( 1,..., ,  )h m h k   will decrease the evaluation of expert ke  regarding the attributes 

“professional skill 1( )a ” and “cooperation 2( )a ”. 

Simulation methods I-III are included in Appendixes C, D and E, respectively.   

Note 2: In Simulation methods I-III, (1) the parameter z  denotes the iteration number to 

achieve a consensus, and the parameter s  reflects whether the predefined consensus level can be 

achieved or not; (2) the parameter   ( [0,  1])   that is used in Steps 5, 5´, and 5" denotes the 

penalty coefficient, and the larger the parameter   value is, the larger the penalty strength will 

be; (3) the parameter r  denotes the number of experts who adopt non-cooperative behaviors, and 
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Steps 6, 6´, and 6" can guarantee that experts 1{ ,..., }re e  have non-cooperative behaviors I-III, 

respectively; (4) we use the OWA operator with the linguistic quantifier “as many as possible” to 

derive the preference vector from a preference relation. 

4.3. Simulation results 

Let max 5z  , and 0.85cl  . When setting different input parameters m , n ,  ,  , and 

r  for Simulation methods I and setting different input parameters m , n ,  ,  , and r  for 

Simulation method II, we run these two simulation methods 1000 times to obtain the average 

values of s  and z . The average s  and z  value, respectively, reflect the success ratio and 

iteration number of achieving the established consensus level in the simulation experiments. The 

average values of s  and z , under different input parameters for Simulation methods I and II, 

are listed in Tables 1 and 2, respectively. 

Table 1: Average values of z  and s  in Simulation method I under different parameters 

   1r   2r   3r   

   0.2   0.4   0.6   0.2   0.4   0.6   0.2   0.4   0.6   

m n   z s z s z s z s z s z s z s z s z s 

5 5 0.5 2.332 1 2.202 1 1.986 1 3.156 1 2.899 1 2.466 1 4.497 0.821 3.912 1 3.368 1 

  0.65 2.421 1 2.300 1 2.132 1 3.321 0.988 3.012 1 2.645 1 4.577 0.712 4.125 0.852 3.801 1 

  0.8 2.625 1 2.432 1 2.211 1 3.413 0.976 3.225 1 2.792 1 4.693 0.645 4.411 0.845 4.055 0.927 

 7 0.5 2.351 1 2.115 1 1.998 1 3.048 1 2.792 1 2.401 1 4.655 0.729 3.757 1 3.580 1 

  0.65 2.461 1 2.222 1 2.106 1 3.201 0.992 3.123 1 2.655 1 4.675 0.681 4.210 0.821 3.715 1 

  0.8 2.656 1 2.442 1 2.323 1 3.322 0.985 3.285 1 2.825 1 4.854 0.589 4.555 0.830 4.275 0.872 

7 5 0.5 1.992 1 1.875 1 1.767 1 2.432 1 2.276 1 1.976 1 2.975 1 2.755 1 2.452 1 

  0.65 2.162 1 1.992 1 1.843 1 2.655 1 2.456 1 2.245 1 3.332 1 3.178 1 2.845 1 

  0.8 2.253 1 2.145 1 2.138 1 2.867 1 2.672 1 2.575 1 3.519 0.995 3.389 1 3.126 1 

 7 0.5 2.002 1 1.864 1 1.705 1 2.295 1 2.001 1 1.977 1 2.967 1 2.701 1 2.554 1 

  0.65 2.156 1 1.997 1 1.854 1 2.489 1 2.247 1 2.012 1 3.290 1 3.079 1 2.799 1 

  0.8 2.345 1 2.152 1 2.028 1 2.755 1 2.557 1 2.452 1 3.501 1 3.312 1 3.099 1 

9 5 0.5 1.967 1 1.743 1 1.684 1 2.245 1 1.989 1 1.879 1 2.675 1 2.345 1 2.201 1 

  0.65 2.002 1 1.878 1 1.701 1 2.379 1 2.224 1 2.078 1 2.804 1 2.654 1 2.476 1 

  0.8 2.084 1 1.921 1 1.798 1 2.516 1 2.398 1 2.275 1 2.931 1 2.828 1 2.719 1 

 7 0.5 1.962 1 1.754 1 1.601 1 2.289 1 1.981 1 1.856 1 2.654 1 2.445 1 2.300 1 

  0.65 1.994 1 1.865 1 1.704 1 2.487 1 2.312 1 2.221 1 2.879 1 2.652 1 2.425 1 

  0.8 2.112 1 1.994 1 1.890 1 2.772 1 2.644 1 2.523 1 3.081 1 2.866 1 2.692 1 

11 5 0.5 2.097 1 1.992 1 1.843 1 2.356 1 2.278 1 1.948 1 2.643 1 2.432 1 2.005 1 

  0.65 2.194 1 2.078 1 1.996 1 2.477 1 2.411 1 2.192 1 2.894 1 2.612 1 2.441 1 

  0.8 2.208 1 2.100 1 2.001 1 2.642 1 2.621 1 2.332 1 3.010 1 2.812 1 2.600 1 

 7 0.5 1.999 1 1.855 1 1.810 1 2.408 1 2.178 1 1.989 1 2.702 1 2.525 1 2.375 1 

  0.65 2.079 1 1.927 1 1.900 1 2.555 1 2.467 1 2.301 1 2.844 1 2.671 1 2.471 1 

  0.8 2.215 1 2.098 1 1.999 1 2.874 1 2.770 1 2.599 1 3.171 1 2.967 1 2.821 1 
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Table 2: Average values of z  and s  in Simulation method II under different parameters 

   1r   2r   3r   

   0.2   0.4   0.6   0.2   0.4   0.6   0.2   0.4   0.6   

m n   z s z s z s z s z s z s z s z s z s 

5 6 0.35 2.015 1 1.997 1 1.798 1 3.115 1 2.712 1 2.482 1 4.835 0.337 4.662 0.845 4.518 0.955 

  0.5 2.256 1 2.026 1 1.976 1 3.543 0.984 3.161 1 2.876 1 4.939 0.130 4.756 0.634 4.616 0.823 

  0.65 2.445 1 2.224 1 2.111 1 3.773 0.967 3.312 1 3.001 1 4.998 0.082 4.881 0.316 4.788 0.607 

 8 0.35 2.113 1 1.897 1 1.722 1 3.233 0.989 2.631 1 2.256 1 4.969 0.122 4.621 0.852 4.552 0.942 

  0.5 2.249 1 2.014 1 1.895 1 3.556 0.982 3.182 1 2.878 1 4.988 0.090 4.766 0.515 4.675 0.744 

  0.65 2.398 1 2.156 1 2.078 1 3.786 0.896 3.264 1 2.997 1 4.994 0.060 4.892 0.261 4.765 0.623 

7 6 0.35 2 1 1.998 1 1.993 1 2.559 1 2.453 1 2.309 1 3.67 0.914 3.165 1 2.938 1 

  0.5 2.027 1 2 1 1.995 1 2.645 1 2.528 1 2.402 1 3.72 0.886 3.286 1 3.104 1 

  0.65 2.17 1 2.091 1 2 1 2.786 1 2.655 1 2.513 1 3.976 0.715 3.465 1 3.256 1 

 8 0.35 2.141 1 1.996 1 1.992 1 2.445 1 2.256 1 2.205 1 3.650 0.924 3.156 1 2.742 1 

  0.5 2.214 1 2.152 1 2.002 1 2.625 1 2.545 1 2.301 1 3.741 0.884 3.242 1 3.025 1 

  0.65 2.276 1 2.192 1 2.101 1 2.765 1 2.705 1 2.655 1 3.866 0.794 3.488 1 3.166 1 

9 6 0.35 1.996 1 1.987 1 1.899 1 2.183 1 2.099 1 2.061 1 2.833 1 2.786 1 2.765 1 

  0.5 2.003 1 1.995 1 1.966 1 2.259 1 2.112 1 2.099 1 2.895 1 2.841 1 2.804 1 

  0.65 2.256 1 2.112 1 2.071 1 2.388 1 2.218 1 2.159 1 3.172 1 3.103 1 3 1 

 8 0.35 1.965 1 1.921 1 1.867 1 2.222 1 2.008 1 1.998 1 2.796 1 2.642 1 2.589 1 

  0.5 2.222 1 2.192 1 2.004 1 2.345 1 2.221 1 2.123 1 2.992 1 2.812 1 2.756 1 

  0.65 2.358 1 2.289 1 2.178 1 2.445 1 2.312 1 2.212 1 3.179 1 3.117 1 2.942 1 

11 6 0.35 2.235 1 2.100 1 2.095 1 2.334 1 2.178 1 2.101 1 2.885 1 2.712 1 2.501 1 

  0.5 2.323 1 2.203 1 2.196 1 2.443 1 2.276 1 2.198 1 2.944 1 2.855 1 2.615 1 

  0.65 2.489 1 2.308 1 2.277 1 2.632 1 2.445 1 2.321 1 3.313 1 3.105 1 2.975 1 

 8 0.35 2.188 1 2.065 1 2.021 1 2.324 1 2.201 1 2.092 1 2.787 1 2.521 1 2.388 1 

  0.5 2.413 1 2.234 1 2.189 1 2.524 1 2.300 1 2.240 1 2.888 1 2.744 1 2.687 1 

  0.65 2.499 1 2.295 1 2.208 1 2.678 1 2.512 1 2.368 1 3.258 1 3.189 1 2.946 1 

Let max 5z  , 0.85cl  , and 1r  . When setting different input parameters m ,  , and 

  for Simulation method III, we run this simulation method 1000 times, obtaining the average 

values of s  and z . The obtained average values of s  and z  are listed in Table 3. 

Table 3: Average values of z  and s  in Simulation method III under different parameters 

    0.2   0.4   0.6       0.2   0.4   0.6   

m n   z s z s z s  m n   z s z s z s 

4 5 0.25 4.566 0.991 3.886 1 3.402 1  7 5 0.25 2.548 1 2.388 1 2.175 1 

  0.35 4.815 0.988 4.067 1 3.612 1    0.35 2.929 1 2.676 1 2.267 1 

  0.45 4.895 0.898 4.210 1 3.823 1    0.45 3.202 1 2.997 1 2.481 1 

 7 0.25 4.440 1 3.788 1 3.271 1   7 0.25 2.606 1 2.293 1 2.006 1 

  0.35 4.796 0.992 3.946 1 3.662 1    0.35 2.866 1 2.495 1 2.285 1 

  0.45 4.897 0.897 4.196 1 3.875 1    0.45 3.292 1 2.886 1 2.553 1 

5 5 0.25 3.652 1 3.286 1 2.578 1  8 5 0.25 2.601 1 2.345 1 2.074 1 

  0.35 3.783 1 3.452 1 2.665 1    0.35 2.747 1 2.512 1 2.215 1 
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  0.45 3.992 1 3.578 1 2.948 1    0.45 3.299 1 2.678 1 2.532 1 

 7 0.25 3.586 1 3.046 1 2.447 1   7 0.25 2.468 1 2.278 1 1.939 1 

  0.35 3.740 1 3.421 1 2.749 1    0.35 2.742 1 2.438 1 2.021 1 

  0.45 4.063 1 3.668 1 2.982 1    0.45 2.911 1 2.718 1 2.253 1 

6 5 0.25 2.723 1 2.348 1 2.102 1  9 5 0.25 2.656 1 2.545 1 2.174 1 

  0.35 3.084 1 2.668 1 2.355 1    0.35 2.767 1 2.678 1 2.305 1 

  0.45 3.346 1 3.005 1 2.411 1    0.45 3.199 1 2.878 1 2.562 1 

 7 0.25 2.589 1 2.259 1 2.003 1   7 0.25 2.768 1 2.478 1 2.239 1 

  0.35 2.642 1 2.402 1 2.208 1    0.35 2.822 1 2.638 1 2.321 1 

  0.45 3.153 1 2.896 1 2.462 1    0.45 3.121 1 2.918 1 2.663 1 

Furthermore, the average z  values in Simulation methods I-III under different parameters 

are depicted in Figs. 2-4, respectively. 

   
(a) 4m  , 5n  , 1r       (b) 6m  , 6n  , 2r         (c) 8m  , 7n  , 3r   

Fig. 2. Average z  values in Simulation method I under different parameters   and   

    

(a) 4m  , 6n  , 1r         (b) 6m  , 7n  , 2r         (c) 8m  , 8n  , 3r   

Fig. 3. Average z  values in Simulation method II under different parameters   and   

   
 (a) 4m  , 5n  , 1r        (b) 6m  , 6n  , 1r         (c) 8m  , 7n  , 1r   

Fig. 4. Average z  values in Simulation method III under different parameters   and   

 

From Tables 1-3 and Figs. 2-4, we have the following observations: 

(1) The proposed consensus framework can manage non-cooperative behaviors I-III when 

setting different parameter values. Generally, it needs an average of 2-3 rounds to achieve a 



18 
 

consensus, and it has high consensus success ratios (close to 1) for most cases. 

(2) When the proportion of the experts who adopt non-cooperative behaviors increases to a 

certain level (approximately 30%-40%), the ability to manage non-cooperative behaviors of the 

proposed consensus framework will decrease. 

(3) With decreasing  ,  , and   values or an increasing   value, the average z  

value decreases, and the average s  value increases. This finding implies that adopting the 

relaxed criteria to deduce the non-cooperative behaviors or using the strong penalty strength will 

accelerate the speed to achieve a consensus and will improve the success ratio of achieving a 

consensus.  

4.4. Comparison analysis 

In the proposed consensus framework, the experts’ weights are dynamically updated and 

integrated into the CRP. However, in traditional CRPs, the experts’ weights remain unchanged. In 

the following, we compare the proposed consensus framework with the traditional CRPs. In other 

words, we remove Steps 6, 6´, and 6" from Simulation methods I-III and we obtain Simulation 

methods I´- III´ based on the traditional CRPs, respectively. 

Let 5n  , max 5z  , 0.9cl  , 0.2  , and 2r  . When setting different input 

parameters m  and   for Simulation methods I and I´, we run these two simulation methods 

1000 times, obtaining the average values of s and z . The average values z  and s  under 

Simulation methods I and I´ are described in Fig. 5.  

Let 6n  , max 5z  , 0.9cl  , 0.2  , and 2r  , and set different parameters m  and 

  for Simulation methods II and II´. We run these two simulation methods 1000 times to obtain 

the average values of s  and z . The average values z  and s  under Simulation methods II 

and II´ are described in Fig. 6.  

Let 5n  , max 5z  , 0.9cl  , 0.2  , and 1r  . When setting different input 

parameters m  and   for Simulation methods III and III´, we run these two simulation methods 

III and III´1000 times to obtain the average values of s and z . The average values z  and s  

under Simulation methods III and III´ are described in Fig. 7. In Figs. 5-7, SM is the abbreviation 

of the simulation method. 
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Fig. 5. Average z  and s  values in Simulation methods I and I´ under different parameters m  

and   

  
Fig. 6. Average z  and s  values in Simulation methods II and II´ under different parameters 

m  and   

  

Fig. 7. Average z  and s  values in Simulation methods III and III´ under different parameters 

m  and   

From Figs 5-7, we have the following observations: 

(1) There are clearly fewer average consensus rounds in the proposed consensus framework 

than in the traditional CRP. This finding implies that the proposed consensus framework can 

accelerate the speed to achieve a consensus. 

(2) The consensus success ratios in the proposed consensus framework are obviously higher 

than those in the traditional CRP. This finding means that the proposed consensus framework can 

improve the success ratio of achieving a consensus by managing the non-cooperative behaviors.  

5. Illustrative example  

To demonstrate our proposal, let us consider the example presented by Herrera-Viedma et al. 

[28]. In Herrera-Viedma et al.’s example, a set of eight experts 1 2 8{ ,  ,  ...,  }E e e e  provide their 

preferences over a set of six alternatives 1 2 6{ ,  ,  ...,  }X x x x  with different preference 



20 
 

representation structures. By using transformation functions, these different preference 

representation structures are transformed into preference relations. These preference relations 

( )kP ( 1,  2,  ...,  8)k   are listed below: 

(1)

0.5 0.4 0.6 0.9 0.7 0.8

0.6 0.5 0.7 1 0.8 0.9

0.4 0.3 0.5 0.8 0.6 0.7

0.1 0 0.2 0.5 0.3 0.4

0.3 0.2 0.4 0.7 0.5 0.6

0.2 0.1 0.3 0.6 0.4 0.5

P

 
 
 
 

  
 
 
  
 

, 
(2)

0.5 0.7 0.8 0.6 1 0.9

0.3 0.5 0.6 0.4 0.8 0.7

0.2 0.4 0.5 0.3 0.7 0.6

0.4 0.6 0.7 0.5 0.9 0.8

0 0.2 0.3 0.1 0.5 0.4

0.1 0.3 0.4 0.2 0.6 0.5

P

 
 
 
 

  
 
 
  
 

, 

(3)

0.5 0.69 0.12 0.2 0.36 0.9

0.31 0.5 0.06 0.1 0.2 0.8

0.88 0.94 0.5 0.64 0.8 0.98

0.8 0.9 0.36 0.5 0.69 0.97

0.64 0.8 0.2 0.31 0.5 0.94

0.1 0.2 0.02 0.03 0.06 0.5

P

 
 
 
 

  
 
 
  
 

, 
(4)

0.5 0.1 0.36 0.69 0.16 0.26

0.9 0.5 0.84 0.95 0.62 0.76

0.64 0.16 0.5 0.8 0.25 0.39

0.31 0.05 0.2 0.5 0.08 0.14

0.84 0.38 0.75 0.92 0.5 0.66

0.74 0.24 0.61 0.86 0.34 0.5

P

 
 
 
 

  
 
 
  
 

, 

(5)

0.5 0.55 0.45 0.25 0.7 0.3

0.45 0.5 0.7 0.85 0.4 0.8

0.55 0.3 0.5 0.65 0.7 0.6

0.75 0.15 0.35 0.5 0.95 0.6

0.3 0.6 0.3 0.05 0.5 0.85

0.7 0.2 0.4 0.4 0.15 0.5

P

 
 
 
 

  
 
 
  
 

, 
(6)

0.5 0.7 0.75 0.95 0.6 0.85

0.3 0.5 0.55 0.8 0.4 0.65

0.25 0.45 0.5 0.7 0.6 0.45

0.05 0.2 0.3 0.5 0.85 0.4

0.4 0.6 0.4 0.15 0.5 0.75

0.15 0.35 0.55 0.6 0.25 0.5

P

 
 
 
 

  
 
 
  
 

, 

(7)

0.5 0.34 0.25 0.82 0.75 0.87

0.66 0.5 0.25 0.18 0.82 0.91

0.75 0.75 0.5 0.94 0.91 1

0.18 0.82 0.06 0.5 0.34 0.75

0.25 0.18 0.09 0.66 0.5 0.82

0.13 0.09 0 0.25 0.18 0.5

P

 
 
 
 

  
 
 
  
 

, 
(8)

0.5 0.13 0.18 0.34 0.75 0.09

0.87 0.5 0.66 0.82 0.91 0.25

0.82 0.34 0.5 0.75 0.87 0.82

0.66 0.18 0.25 0.5 0.75 0.91

0.25 0.09 0.13 0.25 0.5 0.97

0.91 0.75 0.18 0.09 0.03 0.5

P

 
 
 
 

  
 
 
  
 

. 

In this example, we assume that three attributes, i.e., professional skill 1( )a , cooperation 

2( )a , fairness 3( )a , are used in the MMEMs. The original MMEMs 
( )kV ( 1,  2,  ...,  8)k   that 

the experts provided are listed in Tables 4-5: 

Table 4: MMEMs V
(1) 

- V
(4) 

 V
(1)

  V
(2)

  V
(3)

  V
(4)

 

a1 a2 a3  a1 a2 a3  a1 a2 a3  a1 a2 a3 

e1 null null null  80 89 94  85 93 92  80 92 87 

e2 85 88 94  null null null  85 90 100  85 89 88 

e3 90 96 87  85 92 93  null null null  90 88 89 

e4 80 95 88  90 90 92  80 88 94  null null null 

e5 95 93 86  80 92 91  85 89 85  85 89 90 

e6 85 92 89  80 90 88  85 91 83  80 91 91 

e7 85 91 92  85 90 89  85 87 82  85 92 90 

e8 80 90 95  80 89 91  90 89 90  92 93 88 
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Table 5: MMEMs V
(5) 

- V
(8) 

 V
(5)

  V
(6)

  V
(7)

  V
(8)

 

a1 a2 a3  a1 a2 a3  a1 a2 a3  a1 a2 a3 

e1 82 91 90  81 100 97  85 90 91  86 85 84 

e2 85 89 88  87 92 98  86 88 85  85 87 89 

e3 92 92 89  90 93 89  84 89 84  90 84 88 

e4 86 100 86  85 94 84  85 90 82  86 85 91 

e5 null null null  84 89 85  86 92 86  84 84 92 

e6 83 90 92  null null null  90 91 87  91 85 90 

e7 86 88 91  85 88 86  null null null  83 83 88 

e8 91 87 90  90 92 87  88 89 90  null null null 

In this example, let 0.85cl  , 0.2  , 0.8  , 0.5  , and 0.35  . When deriving 

a preference vector from a preference relation, we use the OWA operator with the linguistic 

quantifier “as many as possible”. 

In the following, we use the proposed consensus framework to help experts achieve a 

consensus.  

(1) In the first round, using Eq. (11) obtains the experts’ weights from 
(1) (2) (8){ , ,..., }V V V , 

(0.1252,  0.1256,  0.1263,  0.1248,  0.1244,  0.1245,  0.1233,  0.1259) T  .  

Based on Eq. (14), we obtain that 0.6973cl  .  

The MMEMs in this round are equal to the original MMEMs, i.e., 
( ,1) ( )k kV V  

( 1,2,...,8)k  . 

Using Eq. (5) provides the collective preference relation 
( )cP ,  

( )

0.5 0.4515 0.4385 0.5927 0.6273 0.6212

0.5485 0.5 0.5448 0.6373 0.6185 0.7206

0.5615 0.4552 0.5 0.6969 0.6788 0.6927

0.4073 0.3627 0.3031 0.5 0.6081 0.622

0.3727 0.3815 0.3212 0.3919 0.5 0.7488

0.3789 0.2794 0.3073 0.378 0.2512 0.

cP 

5

 
 
 
 
 
 
 
  
 

. 

When constructing 
( ,1) ( ,1)( )k k

ij n nP p   ( 1,2,...,8)k  , we suggest that 

( ,1) ( ) ( ) ( ) ( )

( ,1) ( ,1)

[min( , ),max( , )],   

 1 ,                                     

k k c k c

ij ij ij ij ij

k k

ij ji

p p p p p if i j

p p if i j

  


  

. 

Without loss of generality, based on the adjustment suggestions, the experts provided their 

adjusted preference relations 
( ,1)kP  ( 1,2,...,8)k  , which are as follows: 
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(1,1)

0.5 0.4043 0.5942 0.8843 0.6997 0.767

0.5957 0.5 0.6711 0.9881 0.7666 0.8715

0.4058 0.3289 0.5 0.7909 0.6041 0.6989

0.1157 0.0119 0.2091 0.5 0.304 0.4341

0.3003 0.2334 0.3959 0.696 0.5 0.6213

0.233 0.1285 0.3011 0.5659 0.3787 0.

P 

5

 
 
 
 
 
 
 
  
 

, 

(2,1)

0.5 0.6806 0.741 0.5995 0.9393 0.856

0.3194 0.5 0.5944 0.4302 0.7655 0.7018

0.259 0.4056 0.5 0.3688 0.6973 0.6066

0.4005 0.5698 0.6312 0.5 0.8869 0.7768

0.0607 0.2345 0.3027 0.1131 0.5 0.427

0.144 0.2982 0.3934 0.2232 0.573 0.5

P






 
 
 
 
 
 
  
 

, 

(3,1)

0.5 0.6386 0.2129 0.437 0.6178 0.7417

0.3614 0.5 0.4276 0.3325 0.4743 0.7293

0.7871 0.5724 0.5 0.6507 0.7111 0.9219

0.563 0.6675 0.3493 0.5 0.6711 0.7598

0.3822 0.5257 0.2889 0.3289 0.5 0.7559

0.2583 0.2707 0.0781 0.2402 0.2441

P 

0.5

 
 
 
 
 
 
 
  
 

, 

(4,1)

0.5 0.2588 0.4079 0.5985 0.3076 0.539

0.7412 0.5 0.5818 0.678 0.6186 0.7209

0.5921 0.4182 0.5 0.7645 0.56 0.5508

0.4015 0.322 0.2355 0.5 0.4136 0.201

0.6924 0.3814 0.44 0.5864 0.5 0.6688

0.461 0.2791 0.4492 0.799 0.3312 0.5

P















 
 
 
  



, 

(5,1)

0.5 0.4708 0.4422 0.3584 0.6431 0.3806

0.5292 0.5 0.6539 0.7555 0.4403 0.7375

0.5578 0.3461 0.5 0.6928 0.6938 0.6517

0.6416 0.2445 0.3072 0.5 0.6649 0.6137

0.3569 0.5597 0.3062 0.3351 0.5 0.7661

0.6194 0.2625 0.3483 0.3863 0.23

P 

39 0.5

 
 
 
 
 
 
 
  
 

, 

(6,1)

0.5 0.4699 0.6516 0.7365 0.6269 0.7132

0.5301 0.5 0.5456 0.6994 0.4352 0.7035

0.3484 0.4544 0.5 0.698 0.654 0.5214

0.2635 0.3006 0.302 0.5 0.8095 0.5327

0.3731 0.5648 0.346 0.1905 0.5 0.7492

0.2868 0.2965 0.4786 0.4673 0.2508 0.

P 

5

 
 
 
 
 
 
 
  
 

, 

(7,1)

0.5 0.3801 0.3533 0.7615 0.6794 0.728

0.6199 0.5 0.2572 0.3127 0.6825 0.8444

0.6447 0.7428 0.5 0.9244 0.7847 0.7666

0.2385 0.6873 0.0756 0.5 0.5436 0.7168

0.3206 0.3175 0.2153 0.4564 0.5 0.7563

0.272 0.1556 0.2334 0.2832 0.2437

P 

0.5

 
 
 
 
 
 
 
  
 

, 
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(8,1)

0.5 0.1982 0.2055 0.5481 0.6488 0.1769

0.8018 0.5 0.6478 0.7317 0.8233 0.3223

0.7945 0.3522 0.5 0.7256 0.8088 0.6973

0.4519 0.2683 0.2744 0.5 0.7143 0.6567

0.3512 0.1767 0.1912 0.2857 0.5 0.8209

0.8231 0.6777 0.3027 0.3433 0.17

P 

91 0.5

 
 
 
 
 
 
 
  
 

. 

 

(2) In the second round, using Eq. (11) obtains the experts’ weights from 

(1,1) (2,1) (8,1){ , ,..., }V V V , 1 (0.1252,  0.1256,  0.1263,  0.1248,  0.1244,  0.1245,  0.1233,  0.1259)T  . 

Based on Eq. (14), we obtain 1 0.8071cl  . 

Using Eq. (19) yields 
(1,1)

1 0.9065s  , 
(2,1)

1 0.8716s  , 
(3,1)

1 0.4361s  , 
(4,1)

1 0.4401s  , 

(5,1)

1 0.5043s  , 
(6,1)

1 0.5038s  , 
(7,1)

1 0.5641s  , and 
(8,1)

1 0.6089s  . Then, Eq. (21) results in 

(1,1)

2 0s  , 
(2,1)

2 0s  , 
(3,1)

2 1s  , 
(4,1)

2 0s  , 
(5,1)

2 0s  , 
(6,1)

2 0s  , 
(7,1)

2 0s  , and 
(8,1)

2 0s  . Next, 

using Eq. (22) provides 
(1,1)

3 0.2033s  , 
(2,1)

3 0.229s  , 
(3,1)

3 0.1877s  , 
(4,1)

3 0.1993s  , 

(5,1)

3 0.1627s  , 
(6,1)

3 0.1609s  , 
(7,1)

3 0.189s  , and 
(8,1)

3 0.2109s  . 

Due to 
(1,1)

1s  , 
(2,1)

1s  , and 
(3,1)

2 1s  , we deduce that experts 1e  and 2e  have the 

characteristic of non-cooperative behavior I and that expert 3e  has the characteristic of 

non-cooperative behavior II. In this situation, we assume that the experts provide the adjusted 

MMEMs 
( ,2)kV  ( 1,2,...,8)k   that are listed in Tables 6-7. 

Table 6: MMEMs V
(1,2) 

- V
(4,2) 

 V
(1,2)

  V
(2,2)

  V
(3,2)

  V
(4,2)

 

a1 a2 a3  a1 a2 a3  a1 a2 a3  a1 a2 a3 

e1 null null null  80 65 94  85 70 92  80 70 87 

e2  85 60 94  null null null  85 68 100  85 65 88 

e3 90 96 60  85 92 70  null null null  90 88 68 

e4 80 95 88  90 90 92  80 88 94  null null null 

e5 95 93 86  80 92 91  85 89 85  85 89 90 

e6 85 92 89  80 90 88  85 91 83  80 91 91 

e7 85 91 92  85 90 89  85 87 82  85 92 90 

e8 80 90 95  80 89 91  90 89 90  92 93 88 

Table 7: MMEMs V
(5,2) 

- V
(8,2) 

 V
(5,2)

  V
(6,2)

  V
(7,2)

  V
(8,2)

 

a1 a2 a3  a1 a2 a3  a1 a2 a3  a1 a2 a3 

e1 82 72 90  81 78 97  85 70 91  86 65 84 

e2 85 64 88  87 72 98  86 68 85  85 65 89 

e3 92 92 67  90 93 70  84 89 65  90 84 67 

e4 86 100 86  85 94 84  85 90 82  86 85 91 

e5 null null null  84 89 85  86 92 86  84 84 92 

e6 83 90 92  null null null  90 91 87  91 85 90 
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e7 86 88 91  85 88 86  null null null  83 83 88 

e8 91 87 90  90 92 87  88 89 90  null null null 

Then, using Eq. (5) yields the collective preference relation 
( ,1)cP ,  

( ,1)

0.5 0.438 0.4511 0.6151 0.6455 0.6127

0.562 0.5 0.5478 0.616 0.626 0.7034

0.5489 0.4522 0.5 0.7014 0.6892 0.6772

0.3849 0.384 0.2986 0.5 0.6263 0.5867

0.3545 0.374 0.3108 0.3737 0.5 0.6955

0.3873 0.2966 0.3228 0.4133 0.3045 0.5

cP






 
 
 
 
 
 
  
 

. 

When constructing 
( ,2) ( ,2)( )k k

ij n nP p   ( 1,2,...,8)k  , we suggest that 

( ,2) ( ,1) ( ,1) ( ,1) ( ,1)

( ,2) ( ,2)

[min( , ),max( , )],   

 1 ,                                              

k k c k c

ij ij ij ij ij

k k

ij ji

p p p p p if i j

p p if i j

  


  

. 

Without loss of generality, based on the adjustment suggestions, the experts provided their 

adjusted preference relations 
( ,2)kP  ( 1,  2,  ...,  8)k   as follows: 

(1,2)

0.5 0.4071 0.5733 0.8422 0.6957 0.744

0.5929 0.5 0.6651 0.9785 0.7603 0.8597

0.4267 0.3349 0.5 0.7743 0.605 0.6963

0.1578 0.0215 0.2257 0.5 0.358 0.4392

0.3043 0.2397 0.395 0.642 0.5 0.6361

0.256 0.1403 0.3037 0.5608 0.3639 0.5

P






 
 
 
 
 
 
  
 

, 

(2,2)

0.5 0.5821 0.521 0.6126 0.8973 0.8471

0.4179 0.5 0.5581 0.4722 0.7009 0.703

0.479 0.4419 0.5 0.5222 0.6944 0.6713

0.3874 0.5278 0.4778 0.5 0.8128 0.6965

0.1027 0.2991 0.3056 0.1872 0.5 0.6645

0.1529 0.297 0.3287 0.3035 0.3355 0.

P 

5

 
 
 
 
 
 
 
  
 

, 

(3,2)

0.5 0.565 0.3615 0.4954 0.64 0.7416

0.435 0.5 0.4429 0.3984 0.4779 0.7191

0.6385 0.5571 0.5 0.6713 0.7086 0.8113

0.5046 0.6016 0.3287 0.5 0.6356 0.663

0.36 0.5221 0.2914 0.3644 0.5 0.703

0.2584 0.2809 0.1887 0.337 0.297 0.5

P















 
 
 
  



, 

(4,2)

0.5 0.2666 0.4378 0.6147 0.4033 0.5489

0.7334 0.5 0.5787 0.6539 0.6252 0.7068

0.5622 0.4213 0.5 0.7232 0.6141 0.5705

0.3853 0.3461 0.2768 0.5 0.5465 0.4859

0.5967 0.3748 0.3859 0.4535 0.5 0.6706

0.4511 0.2932 0.4295 0.5141 0.32

P 

94 0.5

 
 
 
 
 
 
 
  
 

, 



25 
 

(5,2)

0.5 0.4628 0.4488 0.5717 0.6435 0.4867

0.5372 0.5 0.6467 0.7325 0.6066 0.7233

0.5512 0.3533 0.5 0.7001 0.6894 0.6743

0.4283 0.2675 0.2999 0.5 0.6277 0.6068

0.3565 0.3934 0.3106 0.3723 0.5 0.7057

0.5133 0.2767 0.3257 0.3932 0.29

P 

43 0.5

 
 
 
 
 
 
 
  
 

, 

(6,2)

0.5 0.4483 0.5316 0.6644 0.6341 0.674

0.5517 0.5 0.546 0.6239 0.4969 0.7035

0.4684 0.454 0.5 0.7005 0.6784 0.6498

0.3356 0.3761 0.2995 0.5 0.68 0.5494

0.3659 0.5031 0.3216 0.32 0.5 0.713

0.326 0.2965 0.3502 0.4506 0.287 0.5

P















 
 
 
  



, 

(7,2)

0.5 0.4123 0.3805 0.7147 0.6534 0.6653

0.5877 0.5 0.4137 0.6135 0.6687 0.8416

0.6195 0.5863 0.5 0.8192 0.6941 0.7449

0.2853 0.3865 0.1808 0.5 0.6145 0.7153

0.3466 0.3313 0.3059 0.3855 0.5 0.7204

0.3347 0.1584 0.2551 0.2847 0.27

P 

96 0.5

 
 
 
 
 
 
 
  
 

, 

(8,2)

0.5 0.248 0.2593 0.5699 0.6458 0.5027

0.752 0.5 0.6021 0.6552 0.7902 0.5329

0.7407 0.3979 0.5 0.723 0.7319 0.6882

0.4301 0.3448 0.277 0.5 0.6811 0.6425

0.3542 0.2098 0.2681 0.3189 0.5 0.7113

0.4973 0.4671 0.3118 0.3575 0.2887 0.

P 

5

 
 
 
 
 
 
 
  
 

. 

 (3) In the third round, using Eq. (11) provides the experts’ weights from 

(1,2) (2,2) (8,2){ , ,..., }V V V , 2 (0.1187,0.1184,0.12,0.1288,0.1283,0.1286,0.1273,0.1298)T  . 

Based on Eq. (14), we obtain 2 0.8837cl  . The predefined consensus level is achieved. 

Then, using the selection process, we can observe that the collective ranking of alternatives is 

2 3 1 4 5 6x x x x x x . 

6. Conclusion 

In this study, we consider the non-cooperative behaviors in the CRP, and propose a novel 

consensus framework to manage non-cooperative behaviors. In this framework, a 

self-management mechanism to generate experts’ weights is devised and then integrated into the 

CRP, in which the experts’ weights are dynamically derived from the MMEMs. The detailed 

simulation experiments and a comparison analysis are presented to show the validity of the 

proposed consensus framework in managing the non-cooperative behaviors. 
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The proposal in this study can provide the decision support to help experts cope with the 

non-cooperative behaviors, and this ability will be key either for an academic conference 

committee attempting to select a best paper or for a science foundation committee that wants to 

find outstanding projects to support. 

Modeling large-scale GDM has become a trend with the development of technology and 

society (e.g., e-democracy [19, 33] and social networks [61]). However, in a large-scale GDM 

context, the experts may feel that it is difficult to provide the MMEMs. We argue that it will be 

interesting in future research to design a self-management mechanism to manage non-cooperative 

behaviors in a large-scale GDM. 
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Appendix A. The Proof of Theorem 1 

We construct the following Lagrange function: 

 
2

( )

1
1 1 1

( , ) 1
m m m

l k

i j ij i ij
k i i

L w v    


  

 
    

 
   ,                     (23) 

where   is the Lagrange multiplier. 

Then, the partial derivatives of L  are computed as 

 ( )

1
1

( , )
2 0

m
l ki

j ij ij
ki

L
w v

 
 

 



    


  ,                       (24) 

and 

1

( , )
1 0

m
i

i

i

L  


 


  


 ,                                  (25) 

By solving Eq. (24), we have  

( )

1 1

2

m l k

j ijk j

i

w v
w

m m

  
  

 
,                              (26) 

Putting Eq. (26) into Eq. (25), we can obtain 

( )

1 1 1
1

2

m m l k

j iji k j
w v

m

   
  

  
,                                (27) 

Base on Eq. (7), Eq. (8) and Eq. (9), we have 
( ) ( )

1 1

m mk k

j ij j ij ji i
w v w v w

 
   ; thus, 

( ) ( )

1 1 1 1 1 1 1 1

m m l m l m m lk k

j ij j ij ji k j k j i k j
w v w v w m

       
          ,       (28) 

Putting Eq. (28) into Eq. (27), we can obtain 0  . Then, based on Eq. (26), we have  
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 ( )

1 1

m l k

j ijk j

i

w v

m


 

 

 ( 1,  2,  ...,  )i m . 

This completes the proof of Theorem 1. □ 

Appendix B. Algorithm I 

Input: The preference relations 
( ) ( )( )k k

ij n nP p   ( 1,  2,  ...,  )k m , the MMEMs 

( ) ( )( )k k

ij m lV v   ( 1,  2,  ...,  )k m , the weight vector of the attributes 1 2( , ,..., )T

lw w w w  in the 

MMEMs, the established consensus level cl , and the established maximum number of rounds 

max 1z  . 

Output: The adjusted preference relations  ( ) ( )k k

ij
n n

P p


  ( 1,  2,  ...,  )k m , the adjusted 

MMEMs  ( ) ( )k k

ij
m l

V v


  ( 1,  2,  ...,  )k m , and the number of iterations z . 

Step 1: Let 0z  , 
( , ) ( )k z kP P , and 

( , ) ( )k z kV V  ( 1,  2,  ...,  )k m . 

Step 2: Use Eq. (11) to obtain the experts’ weights 
1, 2, ,( ,  ,  ...,  )T

z z z m z    , where 

 ( , )

1 1

,

m l k z

j ijk j

i z

w v

m


 

 

. 

Step 3: Use Eq. (14) to obtain the consensus level among experts zcl . If 
zcl cl

 
or 

maxz z , go to Step 6; otherwise, continue with the next step. 

Step 4: Expert ke  ( 1,  2,  ...,  )k m  provides his/her updated MMEM 

( , 1) ( , 1)( )k z k z

ij m lV v 

  based on other experts’ performances. 

Step 5: Use Eq. (5) to obtain the collective preference relation 
( , ) ( , )( )c z c z

ij n nP p  , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
p p


 . When constructing 

( , 1) ( , 1)( )k z k z

ij n nP p 

  ( 1,  2,  ...,  )k m , we 

suggest that  

( , 1) ( , ) ( , ) ( , ) ( , )

( , 1) ( , 1)

[min( , ),max( , )],  

 1 ,                                          

k z k z c z k z c z

ij ij ij ij ij

k z k z

ij ji

p p p p p if i j

p p if i j



 

  


  

. 

Let 1z z  , then go to Step 2. 

Step 6: Let 
( ) ( , )k k zP P  and 

( ) ( , )k k zV V . Output the adjusted preference relations 

 ( ) ( )k k

ij
n n

P p


 , the MMEMs  ( ) ( )k k

ij
m l

V v


  ( 1,  2,  ...,  )k m , and the number of rounds z . 

Appendix C. Simulation method I 
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Input: m , n , cl , maxz ,  ,   and r . 

Output: s , z . 

Step 1: We randomly generate m  n n  preference relations 
(1) ( ){ ,  ...,  }mP P

 
and m  

m l  MMEMs 
(1) ( ){ ,  ...,  }mV V . 

Step 2: Let 0z  , 
( , ) ( )k z kP P , and 

( , ) ( )k z kV V  ( 1,  2,  ...,  )k m . 

Step 3: Use Eq. (11) to yield the experts’ weights 
1, 2, ,( ,  ,  ...,  )T

z z z m z    , where 

 ( , )

1 1

,

m l k z

j ijk j

i z

w v

m


 

 

. 

Step 4: Use Eq. (14) to obtain the consensus level among experts, zcl . If 
zcl cl

 
or 

maxz z , then go to Step 7; otherwise, continue with the next step. 

Step 5: If 0z  , then let 
( , 1) ( , )k z k zV V  ; otherwise, use Eq. (19) to obtain 

( , )

1

i zs ( 1,2,.., )i m . Based on Hypothesis 1, if 
( , )

1

i zs   ( 1)z  , then experts ke  

( 1,2,.., ,  )k m k i   will decrease the evaluation of expert ie  regarding the attribute 

“cooperation 2( )a ”. Without loss of generality, the updated MMEMs 
( , 1) ( , 1)( )k z k z

ij m lV v 

  

( 1,2,.., ,  1)i m z   are provided by using the following method: 

(i) If  j = 1, 3, then let 
( , 1) ( , )k z k z

ij ijv v  .                                        

(ii) If  j = 2, then let 

( , 1) ( , ) ( , )

1

( , ) ( , )

1

,  

max( 100 ,0),  

,  

k z k z i z

ij ij

k z i z

ij

null if i k

v v if i k s

v if i k s

 





 


    


  

.       

Step 6: Use Eq. (5) to obtain the collective preference relation 
( , ) ( , )( )c z c z

ij n nP p  , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
p p


 . When constructing 

( , 1) ( , 1)( )k z k z

ij n nP p 

  ( 1,  2,  ...,  )k m , two 

cases are considered. 

Case A: k r . In this case, expert ke  provides 
( , 1)k zP 

 as follows: 

For 1,  2,  ...,  i n  and 1,  ...,  j i n  , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijp p p     , where the 

value of u  is uniformly randomly selected from the interval [0,  1 ] , 
( , 1) ( , 1)1k z k z

ji ijp p   , 

and 
( , 1) 0.5k z

iip   . 

Case B: r k m  . In this case, expert ke  provides ( , 1)k zP  , as follows: 
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For 1,  2,  ...,  i n  and 1,  ...,  j i n  , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijp p p     , where the 

value of u  is uniformly randomly selected from the interval [1 ,  1] , 
( , 1) ( , 1)1k z k z

ji ijp p   , 

and 
( , 1) 0.5k z

iip   . 

Let 1z z  , then go to Step 3. 

Step 7: If zcl cl , then 1s  ; otherwise 0s  . Output s  and z . 

Appendix D. Simulation method II 

In Simulation method I, we replace Input and Steps 5 and 6 with Input´ and Steps 5´ and 6´, 

respectively, and then obtain a new simulation method: Simulation method II. Input´ and Steps 5´ 

and 6´ are given below:  

Input´: m , n , cl , maxz ,  ,   and r . 

Step 5 ´ : If 0z  , let 
( , 1) ( , )k z k zV V  ; otherwise, use Eq. (21) to obtain 

( , )

2

i zs  

( 1,  2,  ...,  )i m . Based on Hypothesis 2, if 
( , )

2 1i zs   ( 1)z  , experts ke  

( 1,  2,  ...,  ,  )k m k i   will decrease the evaluation of expert ie  regarding the attribute 

“fairness 3( )a ”. Without loss of generality, the updated MMEMs 
( , 1) ( , 1)( )k z k z

ij m lV v 

  

( 1,  2,  ...,  ,  1)k m z   are provided, as follows: 

(i) if  j =1, 2, let 
( , 1) ( , )k z k z

ij ijv v  ;                                        

(ii) if  j =3, let 

( , 1) ( , ) ( , )

2

( , ) ( , )

2

,  

max( 100 ,0),  1

,  0

k z k z i z

ij ij

k z i z

ij

null if i k

v v if i k s

v if i k s



 


    


  

.                

Step  6´: Use Eq. (5) to obtain the collective preference relation 
( , ) ( , )( )c z c z

ij n nP p  , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
p p


 . Then, use Eq. (6) to obtain the preference vector 

( , )c zPr  and the 

collective most preferred alternative 
( , )c z

ox  from ( , )c zP . When constructing 

( , 1) ( , 1)( )k z k z

ij n nP p 

  ( 1,  2,  ...,  )k m , two cases are considered. 

Case A: k r . In this case, the expert ke  provides 
( , 1) ( , 1)( )k z k z

ij n nP p 

  as follows: 

(i) For 1,  2,  ...,  i n , 1,  ...,  j i n  , and ,  i j o , then let 

( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijp p p     , where the value of u  is uniformly randomly selected from the 

interval [0.2,1] , 
( , 1) ( , 1)1k z k z

ji ijp p   , and 
( , 1) 0.5k z

iip   . 
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(ii) For 1,  2,  ...,  j n  and j o , then let the value of 
( , 1)k z

ojp 
 be uniformly randomly 

selected from the interval [0,1] , and 
( , 1) ( , 1)1k z k z

jo ojp p   ; 

(iii) For j o , then let 
( , 1)

, 0.5k z

o op   . 

Use Eq. (20) and Eq. (21) to obtain the 
( , 1) ( , 1) ( , 1)

1( ( ),  ...,  ( ))k z k z k z T

nO o x o x    and 
( , 1)

2

k zs 
, 

respectively. Repeat (ii) until 
( , 1)

2 1k zs    ( )k r . 

Case B: r k m  . In this case, expert ke  provides 
( , 1) ( , 1)( )k z k z

ij n nP p 

  by means of 

For 1,  2,  ...,  i n  and 1,  ...,  j i n  , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijp p p     , where the 

value of u  is uniformly randomly selected from the interval [1 ,  1] , 
( , 1) ( , )1k z k z

ji ijp p   , and 

( , 1) 0.5k z

iip   . 

Let 1z z  , then go to Step 3. 

Appendix E. Simulation method III 

In Simulation method I, we replace Input and Steps 5 and 6 with Input" and Steps 5" and 6", 

respectively, and then obtain a new simulation method: Simulation method III. Input" and Steps 

5" and 6" are provided as follows: 

Input": m , n , cl , maxz ,  ,   and r . 

Step 5": If 0z  , let 
( , 1) ( , )k z k zV V  ( 1,  2,  ...,  )i m ; otherwise, use Eq. (22) to provide 

( , )

3

i zs ( 1,  2,  ...,  )i m . Based on Hypothesis 3, if 
( , )

3

i zs   ( 1)z  , experts ke  

( 1,  2,  ...,  ,  )k m k i   will decrease the evaluation of expert ie  regarding the attributes 

“professional skill 1( )a ” and “cooperation 2( )a ”. Without loss of generality, the updated MMEMs 

( , 1) ( , 1)( )k z k z

ij m lV v 

  ( 1,  2,  ...,  ,  1)k m z   are provided, as follows: 

(i) if  j = 3, then let 
( , 1) ( , )k z k z

ij ijv v  ;                                       

(ii) If j = 1, 2, then let  

( , 1) ( , ) ( , )

3

( , ) ( , )

3

,  

max( 100 ,0),  

,  

k z k z i z

ij ij

k z i z

ij

null if i k

v v if i k s

v if i k s

 





 


    


  

.         

Step 6": Use Eq. (5) to obtain the collective preference relation 
( , ) ( , )( )c z c z

ij n nP p  , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
p p


 . When constructing

( , 1) ( , 1)( )k z k z

ij n nP p 

  ( 1,  2,  ...,  )k m , two cases 

are considered. 

Case A: 1k r  . In this case, expert ke  provides 
( , 1) ( , 1)( )k z k z

ij n nP p 

  as follows: for 
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1, 2,  ...,  i n  and 1,  ...,  j i n  , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijp p p     , where the value of 

u  is uniformly randomly selected from the interval [0.2,  1] , 
( , 1) ( , 1)1k z k z

ji ijp p   , and 

( , 1) 0.5k z

iip   . 

Case B: 1k r  . In this case, expert 1e  provides 
( , 1) ( , 1)( )k z k z

ij n nP p 

  as follows: for 

1,  2,  ...,  i n  and 1,  ...,  j i n  , then let the value of 
( , 1)k z

ijp 
 be uniformly randomly selected 

from the interval [0,  1] , 
( , 1) ( , 1)1k z k z

ji ijp p   , and ( , 1) 0.5k z

iip   . 

Use the Eq. (22) to obtain the 
( , )

3

k zs . Repeat this process until 
( , )

3

k zs   ( 1)k r  . 

Let 1z z  , then go to Step 3. 
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