
Steady state particle swarm
Carlos M. Fernandes1,*, Nuno Fachada1,2,*, Juan-Julián Merelo3 and
Agostinho C. Rosa1

1 LARSyS: Laboratory for Robotics and Systems in Engineering and Science, University of Lisbon,
Lisbon, Portugal

2 HEI-Lab—Digital Human-Environment and Interactions Lab, Universidade Lusófona de
Humanidades e Tecnologias, Lisbon, Portugal

3Department of Architecture and Computer Technology, University of Granada, Granada, Spain
* These authors contributed equally to this work.

ABSTRACT
This paper investigates the performance and scalability of a new update strategy for
the particle swarm optimization (PSO) algorithm. The strategy is inspired by the
Bak–Sneppen model of co-evolution between interacting species, which is basically
a network of fitness values (representing species) that change over time according to
a simple rule: the least fit species and its neighbors are iteratively replaced with
random values. Following these guidelines, a steady state and dynamic update
strategy for PSO algorithms is proposed: only the least fit particle and its neighbors
are updated and evaluated in each time-step; the remaining particles maintain the
same position and fitness, unless they meet the update criterion. The steady state
PSO was tested on a set of unimodal, multimodal, noisy and rotated benchmark
functions, significantly improving the quality of results and convergence speed of the
standard PSOs and more sophisticated PSOs with dynamic parameters and
neighborhood. A sensitivity analysis of the parameters confirms the performance
enhancement with different parameter settings and scalability tests show that
the algorithm behavior is consistent throughout a substantial range of solution vector
dimensions.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Artificial Intelligence, Distributed and Parallel Computing
Keywords Bak–Sneppen model, Particle swarm optimization, Velocity update strategy

INTRODUCTION
Particle swarm optimization (PSO) is a social intelligence model for optimization and
learning (Kennedy & Eberhart, 1995) that uses a set of position vectors (or particles) to
represent candidate solutions to a specific problem. Every particle is evaluated by
computing its fitness, after its speed and position are updated according to local and global
information about the search. During the search, the particles move through the fitness
landscape of the problem, following a simple set of equations that define the velocity
(Eq. (1)) and position (Eq. (2)) of each particle in each time step and drive them
heuristically toward optimal regions of a D-dimensional search space. Here, Eqs. (1)
and (2) describe a variant proposed by Shi & Eberhart (1999) that is widely used in PSO
implementations. The difference to the original PSO is the introduction of the inertia
weight parameter v in order to help (together with c1 and c2) fine-tuning the balance
between local and global search. All PSO implementations in this paper use inertia weight.

How to cite this article Fernandes CM, Fachada N, Merelo J-J, Rosa AC. 2019. Steady state particle swarm. PeerJ Comput. Sci. 5:e202
DOI 10.7717/peerj-cs.202

Submitted 21 December 2018
Accepted 3 June 2019
Published 26 August 2019

Corresponding author
Carlos M. Fernandes,
cfernandes@laseeb.org

Academic editor
Julian Togelius

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.202

Copyright
2019 Fernandes et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.202
mailto:cfernandes@�laseeb.�org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.202
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

The velocity vi,d and position xi,d of the d-th dimension of the i-th particle are therefore
updated as follows:

vi;d tð Þ ¼ vvi;d t � 1ð Þ þ c1r1i;d pbesti;d � xi;d t � 1ð Þ� �þ c2r2i;d gbesti;d � xi;d t � 1ð Þ� �
(1)

xi;d tð Þ ¼ xi;d t � 1ð Þ þ vi;d tð Þ (2)

where ~Xi ¼ ðxi;1; xi;2; . . . x1;D) is the position vector of particle i; ~Vi ¼ ðvi;1; vi;2; . . . v1;D) is
the velocity of particle i;~pbesti ¼ ðpbesti;1; pbesti;2; . . . pbest1;D) is the best solution found
so far by particle i;~gbesti ¼ ðgbesti;1; gbesti;2; . . . gbest1;DÞ is the best solution found so
far by the neighborhood of particle i. The neighborhood of a particle is defined by the
network configuration that connects the population and structures the information
flow. Parameters r1i,d and r2i,d are random numbers uniformly distributed within the
range (0, 1) and c1 and c2 are the acceleration coefficients, which are used to tune the
relative influence of each term of the formula.

Most of the PSOs use one of two simple sociometric principles for constructing the
neighborhood network (which defines the~gbest values). Gbest (where g stands for global)
connects all the members of the swarm to one another. The degree of connectivity of
gbest is k = n, where n is the number of particles. Lbest (where l stands for local), creates a
neighborhood with the particle itself and its k nearest neighbors. A particular case of the
lbest topology is the ring structure, in which the particles are arranged in a ring, with a
degree of connectivity k = 3, including the particle itself. Between the k = 3 connectivity
of lbest ring and k = n of gbest, there are several possibilities. Two of the most used
are the two-dimensional square lattices with von Neumann and Moore neighborhoods.

Usually, PSOs are synchronous, meaning that first, the fitness values of all vectors
must be computed, and only then their velocity is updated. However, there is another
possible approach, in which the velocity of the particles is updated immediately after
computing the fitness. In this case, the particles move with incomplete knowledge about
the global search: if, for instance, the underlying network connecting the particles is a
regular graph, then, on average, each particle is updated knowing the current best position
found by half of its neighbors and the previous best found by the other half. This variant,
which is called asynchronous PSO (A-PSO), was tested by Carlisle & Dozier (2001).
In the paper, the authors claim that A-PSO yields better results than the synchronous
version (i.e., S-PSO), but since then other authors reached different conclusions:
Engelbrecht (2013) and Rada-Vilela, Zhang & Seah (2013), for instance, reported that
S-PSO is better than A-PSO in terms of the quality of the solutions and convergence speed.

The importance of investigating update strategies for PSO lies in the possibility of
distributed computation (McNabb, 2014). Even though standard PSOs can be easily
parallelized—a particle or a set of particles can be assigned to each processor, for
instance—, load imbalances may cause an inefficient use of the computational resources
if synchronous updates are used. Asynchronous strategies do not require that all particles
in the population have perfect knowledge about the search before the update step
(a requirement that may cause idle processor times in a synchronous implementation),
and therefore are a valid approach for parallelizing particle swarms. In addition,

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 2/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

asynchronism can also be useful in preventing premature convergence (Aziz et al., 2014),
or to speed up convergence by skipping function evaluations (Majercik, 2013).

Here, we are mainly concerned with performance issues, in general, and convergence
speed in particular. The goal is to design an A-PSO that, unlike the standard A-PSO,
significantly improves on the convergence speed of S-PSO in a wide range of problems.
We hypothesize that reducing the number of evaluations in each time step, while focusing
only on harder cases (i.e., worst solutions), reduces the total number of evaluations
required to converge to a specific criterion, that is, the computational effort to reach a
solution. With that objective in mind, we have designed and implemented a novel strategy
for one of the fundamental mechanisms of PSO: the velocity update strategy. Following the
nature of the method, the algorithm has been entitled steady state PSO (SS-PSO).

In systems theory, a system is said to be in steady state when some of its parts do not
change for a period of time (Baillieul & Samad, 2015). SS-PSO only updates and evaluates
a fraction of the population in each time step: the worst particles and its neighbors,
thus imposing a kind of selection pressure upon the whole population. The other particles
remain in the same position until they eventually fulfill the criterion (being the worst
particle or one of its neighbors).

Steady state replacement strategies are common in other population-based
metaheuristics, namely Evolutionary Algorithms (Whitley & Kauth, 1988). However,
steady state populations are much less frequent in PSO (Majercik, 2013; Fernandes et al.,
2014; Allmendiger, Li & Branke, 2008). In fact, the strategy proposed in this paper is,
to the extent of the authors’ knowledge, the first that uses dynamic steady state update
coupled with selective pressure. Furthermore, results demonstrate that the criterion for
selecting the pool of individuals to update is very important for the success of the update
strategy: the update step should be restricted to the worst individuals and their neighbors
for optimizing performance. With this design, the steady state update strategy is not
only able to improve the convergence speed of PSO standard configurations, but also more
sophisticated variants of the algorithm, such as PSOs with time-varying parameters
(Ratnaweera, Halgamuge & Watson, 2004) and dynamic neighborhood (Vora &
Mirlanalinee, 2017).

The strategy was inspired by the Bak–Sneppen model of co-evolution between
interacting species and by the theory of self-organized criticality (SOC) (Bak & Sneppen,
1993). SOC is a property of some systems that have a critical point as an attractor.
However, unlike classical phase transitions, where a parameter needs to be tuned for the
system to reach critical point, SOC systems spontaneously reach that critical state between
order and randomness. In a SOC system near the critical point, small disturbances
can cause changes of all magnitudes. These events, which are spatially or temporally spread
through the system, are known as avalanches.

Avalanches occur independently of the initial state. Moreover, the same perturbation
may cause small or large avalanches, depending on the current state of the system—that is,
its proximity to the critical point. The distribution of avalanches during a large period
displays a power-law between their size and frequency: small avalanches occur very often
while large events that reconfigure almost the entire system are scarcer. SOC complex

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 3/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

systems balance between stability and creative destruction. In fact, power-law relationships
between the size of events and their frequency, one of SOC’s signatures, are widespread
in Nature. Earthquake distribution, for instance, follows the Gutenberg-Richter law
(Gutenberg & Richter, 1956), a power-law proportion between the magnitude of the
earthquakes that occurred in a specific area during a specific period of time, and the
frequency of those earthquakes.

Self-organized criticality was studied for the first time in the sandpile model (Bak,
Tang & Wiesenfeld, 1987). Since then, the concept has been extended to other complex
systems: besides the aforementioned earthquakes, the proponents of the theory claim that
SOC may be a link between a broad range of phenomena, like forest-fires, ecosystems,
financial markets and the brain (Bak, 1996). One of such systems is the Bak–Sneppen
model of co-evolution between interacting species (Bak & Sneppen, 1993).

The Bak–Sneppen model was developed with the main objective of trying to understand
the mechanisms underlying mass extinctions in nature. Ecosystems are complex adaptive
systems in which the agents (the natural species) are related through several features,
like food chains or symbiosis, for instance. In such interconnected environments,
the extinction of one species affects the species that are related to it, in a chain reaction
that can be of any size: in fact, fossil records suggest that the size of extinction outbreaks is
in power-law proportion to their frequency.

In order to model the extinction patterns in nature and search for SOC signatures
in co-evolutionary systems, Bak & Sneppen (1993) structured a set of species in a ring
network and assigned a fitness value to each. Then, in every time step, the least fit species
and its neighbors are eliminated from the system and replaced by individuals with random
fitness. To put it in mathematical terms, the system is defined by n fitness values
arranged as a ring (ecosystem). At each time step, the smallest value and its two neighbours
are replaced by uncorrelated random values drawn from a uniform distribution. Operating
with this set of rules, the system is driven to a critical state where most species have
reached a fitness value above a certain threshold. Near the critical point, extinction events
of all scales can be observed.

Self-organized criticality theory has been a source of inspiration for metaheuristics and
unconventional computing techniques. Extremal optimization (EO) (Boettcher & Percus,
2003), for example, is based in the Bak–Sneppen model. EO uses a single solution
vector that is modified by local search. The algorithm removes the worst components of
the vector and replaces them with randomly generated material. By plotting the fitness
of the solution, it is possible to observe distinct stages of evolution, where improvement is
disturbed by brief periods of dramatic decrease in the quality.

Løvbjerg & Krink (2002) modeled SOC in a PSO in order to control the convergence of
the algorithm and maintain population diversity. The authors claim that their method
is faster and attains better solutions than the standard PSO. However, the algorithm adds
several parameters to the standard PSO parameter set: overall five parameters must be
tuned or set to constant ad hoc values.

Complex and dynamic population structures have been one of most popular PSO research
areas in the last decade. The comprehensive-learning PSO (CLPSO) (Liang et al., 2006;

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 4/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Lynn & Suganthan, 2015) abandons the global best information, replacing it by a complex
and dynamic scheme that uses all other particles’ past best information. The algorithm
significantly improves the performance of other PSOs on multimodal problems.

Ratnaweera, Halgamuge &Watson (2004) propose new parameter automation strategies
that act upon several working mechanisms of the algorithm. The authors introduce the
concepts of time-varying acceleration coefficients (PSO-TVAC) and also mutation, by
adding perturbations to randomly selected modulus of the velocity vector. Finally, the
authors describe a self-organizing hierarchical particle swarm optimizer with time-varying
acceleration coefficients, which restricts the velocity update policy to the influence of
the cognitive and social part, reinitializing the particles whenever they are stagnated in
the search space.

Liu, Du &Wang (2014) describe a PSO that uses a scale-free (SF) network for connecting
the individuals. SF-PSO attains a better balance between solution quality and convergence
speed when compared to standard PSOs with gbest and lbest neighborhood topology.
However, the algorithm is not compared under more sophisticated frameworks or against
state-of-the art PSOs. Furthermore, the size of the test set is small and does not comprise
shifted or rotated functions.

Finally, Vora & Mirlanalinee (2017) propose a dynamic small world PSO (DSWPSO).
Each particle communicates with the four individuals of its von Neumann neighborhood,
to which two random connections are added (and then removed) in each time step.
In other words, the neighborhood of each particle is comprised of six particles, four of
them fixed throughout the run while the remaining two keep changing. The authors
compare the performance of DSWPSO with other PSOs and conclude that due to a more
balanced exploration and exploitation trade-off, DSWPSO is consistently better.

In this work, the Bak–Sneppen model is used to design an alternative update strategy for
the PSO. The strategy has been previously tested on a set of benchmark functions and
compared to a standard S-PSO (Fernandes, Merelo & Rosa, 2016). The results show
that SS-PSO significantly improves the performance of a S-PSO structured in a
two-dimensional square lattice with Moore neighborhood. This paper is an extension of
the aforementioned work. The main contributions here are: (a) a complete statistical
analysis of the performance, comparing the algorithm with standard PSOs and variations
of the proposed strategy; (b) a parameter sensitivity analysis and scalability tests
showing that the performance enhancement introduced by the steady-state strategy is
maintained throughout a reasonable range of parameter values and search space
dimension ranging from 10 to 50; and (c) a comparison with state-of-the-art dynamic
PSOs: CLPSO, PSO-TVAC and DSWPSO.

MATERIALS AND METHODS
SS-PSO algorithm
Steady state PSO was inspired by a similarity between PSO and the Bak–Sneppen model:
both are population models in which the individuals are structured by a network and
evolve toward better fitness values. With this likeness in mind, we have devised an

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 5/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

asynchronous and steady state update strategy for PSO in which only the least fit particle
and its neighbors are updated and evaluated in each time step. Please note that SS-PSO is
not an extinction model like the Bak–Sneppen system: the worst particle and its
neighbors are not replaced by random values; they are updated according to Eqs. (1)
and (2). As for the other particles, they remain steady—hence the name of the algorithm:
SS-PSO.

The particles to be updated are defined by the social structure. For instance, if the
particles are connected by a lbest topology with k = 3, then only the worst particle and its
two nearest neighbors are updated and evaluated. Please note that local synchronicity
is used here: the fitness values of the worst and its neighbors are first computed and only
then the particles update their velocity. For the remaining mechanisms and parameters,
the algorithm is exactly as a standard PSO. For a detailed description of SS-PSO,
please refer to Algorithm 1.

The PSOs discussed in this paper, including the proposed SS-PSO, are available in the
OpenPSO package, which offers an efficient, modular and multicore-aware framework
for experimenting with different approaches. OpenPSO is composed of three modules:

1. A PSO algorithm library.

2. A library of benchmarking functions.

3. A command-line tool for directly experimenting with the different PSO algorithms and
benchmarking functions.

The library components can be interfaced with other programs and programming
languages, making OpenPSO a flexible and adaptable framework for PSO research.
Its source code is available at https://github.com/laseeb/openpso.

Algorithm 1 Steady state particle swarm optimization.

for all particles i 2 1; 2 . . .mf g do

initialize velocity and position of particle i

compute fitness of particle i

end

for all particles i 2 1; 2 . . .mf g do

compute pbest and gbest of particle i

end

repeat

update velocity (Eq. (1)) of particle with worst fitness and its neighbors

update position (Eq. (2)) of particle with worst fitness and its neighbors

compute fitness of particle with worst fitness and its neighbors

for all particles i 2 1; 2 . . .mf g do

compute pbest and gbest of particle i

until termination criterion is met

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 6/30

https://github.com/laseeb/openpso
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Experimental setup
For testing the algorithm, 10 benchmark problems (Table 1) are used. Functions f1–f3 are
unimodal; f4–f8 are multimodal; f9 is the shifted f2 with noise and f10 is the rotated f5
(f9 global optimum and f10 matrix were taken from the CEC2005 benchmark). Population
size m is set to 49. This particular value, which lies within the typical range (Kennedy &
Eberhart, 1995), was set in order to construct square lattices with von Neumann and
Moore neighborhood. Following (Rada-Vilela, Zhang & Seah, 2013), c1 and c2 were set to
1.494 and v to 0.7298. Xmax, the maximum position value, and Vmax, the maximum
velocity value, are defined by the domain’s upper limit. Asymmetrical initialization is used,
with the initialization ranges in Table 1. Each algorithm was executed 50 times with
each function and statistical measures were taken over those 50 runs. Stop criteria have
been defined according to the functions and objectives of the experiments (see details in
the section “Results”).

This work reports an extensive study of the proposed methodology. Different kinds
of experiments have been performed, each one to investigate different aspects of the
steady-state update strategy. The first experiment attempts at a proof-of-concept: SS-PSO

Table 1 Benchmark functions.

Mathematical representation Range of
search/initialization

Stop criterion

Sphere
f1

f1 ~xð Þ ¼PD
i¼1

xi2
(-100, 100)D

(50, 100)D
0.01

Quadric
f2 f2 ~xð Þ ¼PD

i¼1

Pi
j¼1

xj

 !2 (-100, 100)D

(50, 100)D
0.01

Hyper Ellipsoid
f3

f1 ~xð Þ ¼PD
i¼1

ixi2
(-100, 100)D

(50, 100)D
0.01

Rastrigin
f4

f4 ~xð Þ ¼PD
i¼1

xi2 � 10 cos 2pxið Þ þ 10ð Þ (-10, 10)D

(2.56, 5.12)D
100

Griewank
f5

f5 ~xð Þ ¼ 1þ 1
4; 000

PD
i¼1

xi2 �
QD
i¼1

cos xiffi
i

p
� � (-600, 600)D

(300, 600)D
0.05

Schaffer
f6 f6 ~xð Þ ¼ 0:5þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �2 � 0:5

1:0þ 0:001 x2 þ y2ð Þð Þ2
(-100, 100)2

(15, 30)2
0.00001

Weierstrass
f7

f7 ~xð Þ ¼PD
i¼1

Pkmax

k¼0
ak cos 2pbk xi þ 0:5ð Þ� �� �	

� D
Pkmax

k¼0
ak cos 2pbk � 0:5� �� �

;

a ¼ 0:5; b ¼ 3; kmax ¼ 20

(-0.5, 0.5)D

(-0.5, 0.2)D
0.01

Ackley
f8 f8 ~xð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1

x2i

s !
� exp 1

D

PD
i¼1

cos 2pxið Þ
	

þ 20þ e
(-32.768, 32.768)D

(2.56, 5.12)D
0.01

Shifted Quadric
with noise

f9

f9 ~zð Þ ¼PD
i¼1

Pi
j¼1

zj

 !2

� 1þ 0:4jN 0; 1ð Þjð Þ;

~z ¼~x �~o,~o ¼ o1; ::oD½ �: shifted global optimum

(-100, 100)D

(50, 100)D
0.01

Rotated Griewank
f10

f10 ~zð Þ ¼ 1þ 1
4; 000

PD
i¼1

z2i �
QD
i¼1

cos ziffi
i

p
� �

,~z ¼ M~x, M: orthogonal matrix
(-600, 600)D

(300, 600)D
0.05

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 7/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

is compared with standard (and synchronous) update strategies. The objective of the
second experiment is to check if the convergence speed-up is caused indeed by the
selective strategy or instead by the restricted evaluation pool, which is a consequence of
the proposed method. The third test aims at studying the parameter sensitivity and
the scalability with problem size. For that purpose, several tests have been conducted
in a wide range of parameter values and problem dimension. The fourth experiment
investigates SS-PSO under time-varying parameters and experiment number five
compares SS-PSO with dynamically structured PSOs.

RESULTS
Proof-of-concept
The first experiment intends to determine if SS-PSO is able to improve the performance
of a standard S-PSO. For that purpose, three S-PSOs with different topologies have been
implemented: lbest with k = 3 (or ring) and two-dimensional square lattices with von
Neumann (k = 5) and Moore neighborhood (k = 9). Gbest k = n is not included in the
comparisons because SS-PSO uses the neighborhood structure to decide how many and
which particles to update: for instance, in the von Neumann topology (k = 5), five particles
are updated. Since gbest has k = n, the proposed strategy would update the entire
population, that is, it would be equivalent to a S-PSO. Therefore, we have restricted the
study to lbest, von Neumann and Moore structures, labeling the algorithms, respectively,
S-PSOlbest, S-PSOVN and S-PSOMoore.

Two sets of experiments were conducted. First, the algorithms were run for a specific
amount of function evaluations (49,000 for f1, f3 and f6, 980,000 for the remaining). After
each run, the best solution was recorded. In the second set of experiments the algorithms
were all run for 980,000 function evaluations or until reaching a function-specific stop
criterion (given in Table 1). A success measure was defined as the number of runs in which
an algorithm attains the stop criterion. This experimental setup is similar to those in
Kennedy & Mendes (2002) and Rada-Vilela, Zhang & Seah (2013). The dimension of

Table 2 Median, minimum and maximum best fitness (50 runs).

S-PSOlbest S-PSOVN S-PSOMoore

Median Min Max Median Min Max Median Min Max

f1 4.57e-06 9.44e-07 2.83e-05 9.13e-10 1.68e-10 6.70e-09 5.05e-12 8.81e-13 4.43e-11
f2 5.39e-13 3.09e-15 1.57e-11 4.52e-23 3.06e-25 2.81e-21 1.18e-30 1.01e-33 9.41e-28
f3 3.01e-05 8.44e-06 1.65e-04 5.58e-09 1.16e-09 4.60e-08 2.53e-11 3.08e-12 1.94e-10
f4 1.09e+02 6.57e+01 1.53e+02 6.02e+01 3.38e+01 1.09e+02 5.17e+01 3.78e+01 1.13e+02

f5 0.00e00 0.00e00 7.40e-03 0.00e00 0.00e00 5.38e-02 0.00e00 0.00e00 4.92e-02
f6 0.00e00 0.00e00 9.72e-03 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 9.72e-03
f7 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 3.29e-02 9.03e-04 0.00e00 1.12e00

f8 1.33e-15 8.88e-16 1.33e-15 1.33e-15 8.88e-16 1.33e-15 8.88e-16 8.88e-16 1.33e-15
f9 1.74e+02 3.41e+01 1.07e+03 4.76e-02 4.87e-04 2.05e+02 9.80e-05 6.44e-07 1.64e+03

f10 0.00e00 0.00e00 9.86e-03 0.00e00 0.00e00 3.19e-02 7.40e-03 0.00e00 5.19e-01
Note:

Best median fitness among the three algorithms shown in bold.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 8/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

the functions search space is D = 30 (except f6, with D = 2). The results are in Table 2
(fitness), Table 3 (evaluations) and Table 4 (success rates). The best results among the three
algorithms are shown in bold.

When compared to S-PSOlbest, S-PSOMoore attains better solutions (considering median
values of fitness distributions over 50 runs) in most of the functions and is faster
(considering median values of evaluations required to meet the criteria) in every function.
When compared to S-PSOVN, S-PSOMoore is faster in every function and yields better
median fitness values in unimodal functions.

In terms of success rates, S-PSOMoore clearly outperforms the other topologies in
function f9, and is much more efficient than S-PSOlbest in function f4. These results are
consistent with Kennedy & Mendes (2002).

The algorithms were ranked by the Friedman test for each function. Table 5 shows the
ranks according to the quality of solutions, while Table 6 shows the ranks according to

Table 3 Median, minimum and maximum evaluations required to meet the criteria (50 runs).

S-PSOlbest S-PSOVN S-PSOMoore

Median Min Max Median Min Max Median Min Max

f1 32,511.5 30,135 34,937 23,544.5 21,952 24,990 20,212 18,669 22,050

f2 365,270 313,551 403,858 217,854 188,111 242,893 173,117 142,688 194,530

f3 36,799 34,496 40,425 26,827 25,029 29,253 23,104 21,462 24,353

f4 77,518 21,462 866,173 15,582 9,604 74,872 13,524.0 7,448 49,392

f5 31,213 27,244 34,594 22,736 20,188 25,333 19,379.5 17,248 23,765

f6 18,865 5,243 145,334 12,323.5 3,626 80,213 7,105.0 3,822 39,788

f7 62,377 56,399 69,776 41,356 37,191 45,766 33,492 31,801 42,973

f8 35,206.5 31,556 39,249 24,206 22,834 28,928 20,923.0 19,012 24,794

f9 – – – 883,911 758,961 976,962 706,972 453,201 922,327

f10 33,001.5 30,331 37,926 24,157 21,805 26,460 21,021 18,865 29,939

Note:
Best median number of evaluations among the three algorithms shown in bold.

Table 4 Success rates.

S-PSOlbest S-PSOVN S-PSOMoore

f1 50 50 50

f2 50 50 50

f3 50 50 50

f4 17 49 49

f5 50 50 50

f6 50 50 50

f7 50 47 34

f8 50 50 50

f9 6 9 47

f10 50 50 47

Note:
Best success rate among the three algorithms shown in bold.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 9/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

the convergence speed (only the functions on which the three algorithms attained the
same success rates were considered in the ranking by convergence speed). Overall,
S-PSOMoore ranks first in terms of solutions quality and convergence speed—see Fig. 1.
Therefore, we conclude that the Moore structure is well suited for assessing the validity and
relevance the SS-PSO.

Once the best network has been found for this particular set of problems, the next step
was to compare synchronous and A-PSOs on the most efficient topology. For that purpose,
we have implemented a SS-PSOMoore and tested it on the 10-function set under the
same conditions described above. The results can be found in Table 7.

Table 8 gives a comparison between the performance of S-PSOMoore and SS-PSOMoore

based on the numerical results and statistical analysis of those same results. The non-
parametric Mann–Whitney test was used to compare the distribution of fitness values and
number of evaluations to meet criteria of each algorithm in each function. The ranking
of fitness distributions are significant at P � 0.05 for f1, f2, f3, f6, f7, f9, that is, in these
functions, the null hypothesis that the two samples come from the same population
is rejected. For the remaining functions (f5, f8, f10), the null hypothesis is not rejected:
the differences are not significant.

Table 5 Fitness rank by Friedman test (with 0.05 significance level). The table gives the rank of each
algorithm and in parenthesis the algorithms to which the differences are significant according to the
Friedman test.

S-PSOlbest (1) S-PSOVN (2) S-PSOMoore (3) P-value

f1 3.0 (2) (3) 2.0 (1) (3) 1.0 (1) (2) <0.0001

f2 3.0 (2) (3) 2.0 (1) (3) 1.0 (1) (2) <0.0001

f3 3.0 (2) (3) 2.0 (1) (3) 1.0 (1) (2) <0.0001

f4 2.98 (2) (3) 1.47 (1) 1.55 (1) <0.0001

f5 1.57 (2) (3) 2.03 (1) (2) 2.40 (1) (3) <0.0001

f6 2.24 (2) (3) 1.94 (1) 1.82 (1) 0.00025

f7 1.57 (3) 1.78 (3) 2.65 (1) (3) <0.0001

f8 2.44 (2) (3) 1.96 (1) (3) 1.60 (1) (2) <0.0001

f9 2.96 (2) (3) 1.98 (1) (3) 1.06 (1) (2) <0.0001

f10 1.61 (2) (3) 1.99 (2) (3) 2.40 (1) (2) <0.0001

Table 6 Convergence speed rank by Friedman test (with 0.05 significance level). The table gives the
rank of each algorithm and in parenthesis the algorithms to which the differences are significant
according to the Friedman test.

S-PSOlbest (1) S-PSOVN (2) S-PSOMoore (3) P-value

f1 3.0 (2) (3) 1.99 (1) (3) 1.01 (1) (2) <0.0001

f2 3.0 (2) (3) 1.98 (1) (3) 1.02 (1) (2) <0.0001

f3 3.0 (2) (3) 1.99 (1) (3) 1.01 (1) (2) <0.0001

f5 3.0 (2) (3) 1.96 (1) (3) 1.04 (1) (2) <0.0001

f6 2.35 (3) 2.07 (3) 1.58 (1) (2) 0.00039

f8 3.00 (2) (3) 2.00 (1) (3) 1.00 (1) (2) <0.0001

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 10/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

In terms of function evaluations, SS-PSOMoore is faster in the entire set of unimodal
problems. In multimodal problems, SS-PSOMoore needs less evaluations in f5, f6, f7 and f8.
Results of Mann–Whitney tests are significant at P � 0.05 for functions f1, f2, f3, f5, f7, f8, f9
and f10—see Table 8.

The success rates are similar, except for f7 (in which SS-PSO clearly outperforms the
standard algorithm) and f9. In conclusion: empirical results, together with statistical
tests, show that according to accuracy, speed and reliability, SS-PSOMoore outperforms

(A) fitness (B) convergence speed

1.0

1.5

2.0

2.5

3.0

lbest VN Moore
1.0

1.5

2.0

2.5

3.0

lbest VN Moore

Figure 1 S-PSOlbest, S-PSOVN and S-PSOMoore: solutions quality (A) and convergence speed (B) rank
by the Friedman test. Full-size DOI: 10.7717/peerj-cs.202/fig-1

Table 7 SS-PSOMoore results: solutions quality, convergence speed and success rates.

Fitness Evaluations

Median Min Max Median Min Max SR

f1 5.42e-15 3.45e-16 6.49e-14 17,019 15,327 18,819 50

f2 7.18e-54 8.41e-60 4.87e-49 133,191 102,258 163,251 50

f3 2.99e-14 1.15e-15 2.97e-13 19,768.5 17,460 21,069 50

f4 5.12e+01 2.19e+01 1.04e+02 14,256 7,659 58,248 49

f5 7.40e-03 0.00e00 3.69e-02 16,884 14,814 24,291 50

f6 0.00e00 0.00e00 0.00e00 6,381 2,727 21,744 50

f7 0.00e00 0.00e00 1.32e-01 30,717 28,089 34,254 48

f8 8.88e-16 8.88e-16 1.33e-15 17,752.5 15,750 19,809 50

f9 1.01e-05 1.73e-08 7.11e-04 671,175 425,655 852,786 50

f10 3.70e-03 0.00e00 5.24e-01 17,662.5 15,669 27,252 48

Table 8 Comparing S-PSOMoore and SS-PSOMoore with the Mann–Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness + + + ≈ ≈ + + ≈ + ≈
Evaluations + + + ≈ + ≈ + + + +

Notes:
+If SS-PSOMoore ranks first in the Mann–Whitney test and the result is significant.
≈If the differences are not significant.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 11/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-1
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

S-PSOMoore in most of the benchmark functions selected for this test, while not being
outperformed in any case.

Update strategy
The preceding tests show that the steady state update strategy when implemented in a PSO
structured in a lattice with Moore neighborhood improves its performance. The following
experiment aims at answering an important question: what is the major factor in the
performance enhancement? Is it the steady state update, or instead the particles that
are updated?

In order to investigate this issue, two variants of SS-PSO were implemented: one that
updates the best particle and its neighbors (replace-best); and another that updates a
randomly selected particle and its neighbors (replace-random). The algorithms were tested
on the same set of benchmark functions and compared the proposed SS-PSOMoore

(or replace-worst). Results are in Table 9.
Replace-best update strategy is outperformed by replace-worst SS-PSO.With the exception

of f1 and f3, the quality of solutions is degraded when compared to the proposed SS-PSO.
However, success rates are considerably lower in most functions, including f1 and f3. Please
note that functions f1 and f3 are unimodal and therefore they can be easily solved by
hill-climbing and greedy algorithms. It is not surprising that a greedy selective strategy like
SS-PSO with replace-best can find very good solutions in some runs. However, for more
difficult problem, replace-best is clearly unable to find good solutions.

As for replace-random, it improves S-PSO in some functions, but in general is not better
than replace-worst: replace-random SS-PSO is less accurate and slower in most of the
functions. The Friedman test shows that SS-PSO with replace-worst strategy ranks first
in terms of solutions quality—see Fig. 2.

Table 10 compares replace-random and replace-worst with the assistance of
Mann–Whitney statistical tests. Except for f4, replace-worst is significantly more efficient

Table 9 Results of SS-PSO variants: median, min, max and success rates (SR).

SS-PSOMoore (replace-best) SR SS-PSOMoore (replace-random) SR

Fitness Evaluations Fitness Evaluations

Median Min Max Median Min Max Median Min Max Median Min Max

f1 4.09e-29 2.50e-33 2.00e+04 9,468 6,714 24,669 45 6.04e-14 7.86e-14 6.59e-12 18,972 16,425 20,781 50

f2 1.50e+04 4.12e-89 3.50e+04 66,307 64,251 68,364 2 8.33e-32 4.59e-34 5.00e+03 170,091 136,062 195,498 47

f3 3.01e-27 9.54e-34 1.00e+05 11,718 8,208 36,000 35 1.66e-12 1.30e-13 2.25e-11 21,118 19,548 23,283 50

f4 1.30e+02 7.46e+01 2.00e+02 15,192 8,964 108,495 9 5.62e+01 2.39e+01 8.76e+01 11,052 5,679 23,571 50

f5 3.08e-02 0.00e00 1.81e+02 10,287 8,694 26,838 12 0.00e00 0.00e00 8.33e-02 19,849.5 17,748 26,739 36

f6 3.59e-04 0.00e00 9.72e-03 39,811.5 1,242 140,247 38 0.00e00 0.00e00 9.72e-03 8,460 3,276 62,091 50

f7 7.52e00 2.64e00 1.57e+01 – – – 0 1.58e-03 0.00e00 2.48e00 33,912 31,239 41,211 30

f8 2.28e00 8.86e-16 3.84e00 20,898 13,158 28,764 6 1.11e-15 8,86e-16 1.33e-15 19,822.5 18,252 25,416 50

f9 1.06e-01 1.98e-03 1.53e+04 902,407 812,736 949,590 12 1.64e-04 1.44e-06 6.01e+01 736,713 546,858 891,432 49

f10 1.04e+01 0.00e00 4.04e+02 16,065 8,388 23,742 2 3.70e-03 0.00e00 5.09e-01 21,915 18,567 50,607 39

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 12/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

than replace-random. The experiment demonstrates that selective pressure imposed on
the least fit individuals is the major factor in the performance of SS-PSO.

Scalability
The proof-of-concept showed that SS-PSO outperforms S-PSO in most of the functions in
the test set, and the previous experiment demonstrates that the major factor in the
performance enhancement is the pressure on the least fit particles. However, only instances
of the problems withD = 30 have been tested; therefore, another question arises at this point:
does the improvement shown by SS-PSO hold for a wide range of problem sizes? In
order to answer that question, we have conducted a scalability study: the algorithms were
tested on the same set functions but with D ranging from 10 to 50 (except f6, which is a
two-dimensional function and for that reason was excluded from this test).

As in previous experiments, the algorithms were first run for a limited amount of
function evaluations and the best fitness values were recorded. Then, the algorithms were
all run for 980,000 evaluations or until reaching a function-specific stop criterion.
The number of iterations required to meet the criterion was recorded and statistical
measures were taken over 50 runs. (Function f10 has not been tested for dimensions 20 and
40 because the CEC2005 benchmark, from where the orthogonal rotational matrices M
have been taken, does not provide the matrices for those dimensions).

Table 11 shows the median best fitness values attained by each algorithm on each
instance of the problems and Table 12 shows the success rates. In terms of quality of

1.0

1.5

2.0

2.5

3.0

rep. best rep. random rep. worst

Figure 2 Fitness rank by Friedman test. Full-size DOI: 10.7717/peerj-cs.202/fig-2

Table 10 Comparing replace-worst and replace-random with the Mann-Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness + + + ≈ ≈ ≈ + + + ≈
Evaluations + + + - + + + + + +

Notes:
+If replace-worst ranks first in the Mann–Whitney test and the result is significant.
-If replace-random ranks first and the result is significant.
≈If the differences are not significant.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 13/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-2
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

solutions, the performance patterns observed withD = 30 are maintained: the strategy does
not introduce scalability difficulties. As for the success rates, except for a few instances,
SS-PSO attains better or equal success rates.

The convergence speed has been graphically represented for better assessment of the
effects of growing problem size—see Fig. 3. The graphs show that the proposed strategy
does not introduce scalability difficulties (other than the ones intrinsic to standard
PSOs). It also shows that, in general, SS-PSO is faster than S-PSO.

Parameter sensitivity
Particle swarm optimization performance can be severely affected by the parameter
values. The inertia weight and acceleration coefficients must be tuned in order to balance
exploration and exploitation: if far from the optimal values, convergence speed and/or
solution quality can be significantly reduced. Population size also influences the
performance of population-based metaheuristics: larger populations help to maintain

Table 11 Solutions quality with different problem dimension.

D = 10 D = 20 D = 30 D = 40 D = 50

S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO

f1 1.06e-37 2.71e-47 1.87e-19 5.72e-24 1.04e-11 7.83e-15 7.15e-08 2.96e-10 3.69e-05 2.01e-10
f2 0.00e00 0.00e00 4.63e-82 1.37e-89 1.17e-30 9.52e-54 1.18e-13 1.10e-20 1.36e-06 2.36e-06
f3 1.57e-40 0.00e00 2.08e-19 3.37e-24 2.76e-11 1.58e-14 8.77e-07 2.58e-09 4.59e-04 3.19e-06
f4 1.99e00 1.99e00 2.09e+01 2.04e+01 6.17e+01 5.12e+01 1.01e+02 1.06e+02 1.70e+02 1.37e+02

f5 2.83e-02 3.60e-02 8.63e-03 1.11e-02 0.00e00 7.40e-03 0.00e00 7.40e-03 0.00e00 0.00e00

f7 0.00e00 0.00e00 0.00e00 0.00e00 9.03e-04 0.00e00 9.03e-04 3.39e-04 1.34e-01 2.15e-02
f8 4.44e-16 4.44e-16 8.88e-16 8.88e-16 8.88e-16 8.88e-16 1.33e-15 1.33e-15 1.33e-15 1.33e-15
f9 0.00e00 0.00e00 1.92e-10 1.32e-10 9.8e-05 1.01e-05 6.18e+01 3.40e+01 1.34e+03 1.70e+03

f10 3.20e-02 3.20e-02 – – 7.40e-03 7.40e-03 – – 0.00e00 0.00e00

Note:
Best median fitness among the two algorithms shown in bold.

Table 12 Success rates with different problem dimension.

D = 10 D = 20 D = 30 D = 40 D = 50

S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO S-PSO SS-PSO

f1 50 50 50 50 50 50 50 50 50 50

f2 50 50 50 50 50 50 43 50 32 48

f3 50 50 50 50 50 50 50 50 50 50

f4 50 50 50 50 49 49 25 21 0 3

f5 40 37 49 50 50 47 50 49 50 50

f7 50 50 49 49 34 48 8 35 4 19

f8 50 50 50 50 50 50 50 50 46 50

f9 50 50 50 50 47 50 0 0 0 0

f10 44 35 – – 46 48 – – 48 49

Note:
Best success rates among the two algorithms shown in bold.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 14/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

0

10000

20000

30000

40000

D = 10 D = 20 D = 30 D = 40 D = 50
ev

al
ua

�o
ns

(A) Sphere

S-PSO Moore

SS-PSO Moore

0

100000

200000

300000

400000

500000

600000

700000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(B) Quadric

S-PSO Moore

SS-PSO Moore

0

10000

20000

30000

40000

50000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(C) Hyper

S-PSO Moore

SS-PSO Moore

0

20000

40000

60000

80000

100000

120000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(D) Rastrigin

S-PSO Moore

SS-PSO Moore

0

5000

10000

15000

20000

25000

30000

35000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(E) Griewank
S-PSO Moore

SS-PSO Moore

0

10000

20000

30000

40000

50000

60000

70000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(F) Weierstrass
S-PSO Moore

SS-PSO Moore

0

10000

20000

30000

40000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(G) Ackley
S-PSO Moore

SS-PSO Moore

0

200000

400000

600000

800000

D = 10 D = 20 D = 30 D = 40 D = 50

ev
al

ua
�o

ns

(H) Shi�ed Quadric with noise

S-PSO Moore

SS-PSO Moore

0

5000

10000

15000

20000

25000

30000

35000

40000

D = 10 D = 30 D = 50

ev
al

ua
�o

ns

(I) Rotated Griewank

S-PSO Moore

SS-PSO Moore

Figure 3 Convergence speed versus problem dimension for Sphere (A), Quadric (B), Hyper (C),
Rastrigin (D), Griewank (E), Weierstrass (F), Ackley (G), Shifted Quadric with Noise (H) and
Rotated Griewank (I) benchmark functions. Full-size DOI: 10.7717/peerj-cs.202/fig-3

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 15/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-3
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

diversity, but they slow down convergence speed; on the other hand, smaller populations
are faster but they are more likely to converge to local optima.

Furthermore, PSOs empirical studies usually depend on a single set of parameters for
several functions with different characteristics. This is the case of this paper, in which a typical
parameter setting has been used for evaluating the performance of the PSOs. That set of
parameters is not expected to be the optimal tuning for every function, but instead a
compromised solution to avoid the exponential growth of experimental procedures.

For these reasons, when testing a new PSO, it is important to investigate its sensitivity to
the parameter values. With that purpose in mind, the following experimental procedure
has been designed.

Synchronous PSO and SS-PSO were tested on function f1 (unimodal), f2 (multimodal),
f9 (shifted and noisy) and f10 (rotated) with the following parameter values: inertia weight
was set to 0.6798, 0.7048, 0.7298, 0.7548 and 0.7798, while acceleration coefficients
and population size remained fixed at 1.494 and 49; then, c1 and c2 were set to 1.294, 1.394,
1.494, 1.594 and 1.694 while v and m remained fixed at 0.7298 and 49, respectively;
finally, population size was set to 36, 49 and 64, while v and the acceleration coefficients
were set to 0.7298 and 1.4962. The results are depicted in Figs. 4–7.

The graphics show that the performance indeed varies with the parameter values, as
expected. In the case of function f1, other parameter settings attain better results than
the ones used in previous section. However, the relative performance of S-PSO and SS-PSO
maintains throughout the parameters ranges. In functions f8, f9 and f10, the quality of
solutions is in general maximized by v and c values around the ones used in previous
sections. Convergence speed, in general, improves with lower v, c and m values.

As seen in Fig. 1, S-PSOMoore ranks first in terms of solutions quality and convergence
speed when compared to ring and von Neumann topologies. Although not a parameter
in the strict sense of the term, the network topology is a design choice that significantly
affects the performance of the algorithm: Kennedy & Mendes (2002) investigated several
types of networks and recommend the use of von Neumann lattices; Fernandes et al.
(2018) tested regular graphs and concluded that convergence speed improves with the degree
of connectivity but success rates are in general degraded when k is above nine (equivalent to
Moore neighborhood) and a that good compromise is achieved with 5 � k � 13.

In order to study the performance of SS-PSO with different network topologies, regular
graphs have been constructed with the following procedure: starting from a ring structure with
k = 3, the degree is increased by linking each individual to its neighbors’ neighbors, creating a
set of regular graphs with k ¼ f3; 5; 7; 9; 11 . . . ;mg, as exemplified in Fig. 8 for population
size 7. Parameters c1 and c2 were set to 1.494 and v to 0.7298 and population size m was set to
33. The algorithms were all run for 660,000 function evaluations or until reaching the
function-specific stop criterion given in Table 1. Each algorithm has been executed 50 times
with each function and statistical measures were taken over those 50 runs.

Figure 9 shows the success rates and convergence speed of SS-PSO structured by
topologies with varying k. Convergence generally improves with k, achieving optimal
values for 13 � k � 25 in most of the functions. However, as seen in Fig. 9A, best success
rates are achieved when 7 � k � 13 (except f10, for which k = 5 is the best topology).

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 16/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

1.E-22
1.E-20
1.E-18
1.E-16
1.E-14
1.E-12
1.E-10
1.E-08
1.E-06
1.E-04
1.E-02
1.E+00

0.679844 0.704844 0.729844 0.754844 0.779844

fit
ne

ss

iner�a weight, ω

A

S-PSO
SS-PSO

0

5000

10000

15000

20000

25000

30000

35000

40000

0.679844 0.704844 0.729844 0.754844 0.779844

ev
al

ua
�o

ns

iner�a weight, ω

B

S-PSO
SS-PSO

1.E-24

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

1.294 1.394 1.494 1.594 1.694

fit
ne

ss

accelera�on coefficients, c1, c2

C

S-PSO
SS-PSO

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1.294 1.394 1.494 1.594 1.694

ev
al

ua
�o

ns

accelera�on coefficients, c1, c2

D

S-PSO
SS-PSO

1E-21
1E-19
1E-17
1E-15
1E-13
1E-11
1E-09
1E-07
1E-05
0.001

0.1

36 49 64

fit
ne

ss

popula�on size, �

E

S-PSO

SS-PSO
0

5000

10000

15000

20000

25000

30000

36 49 64

ev
al

ua
�o

ns

popula�on size, �

F

S-PSO

SS-PSO

Figure 4 Fitness (A, C, E) and number of evaluations sensitivity (B, D, F) on sphere function (f1) to inertia weight (A–B), acceleration
coefficients (C–D) and population size (E–F). Full-size DOI: 10.7717/peerj-cs.202/fig-4

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 17/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-4
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

1E-16

1E-15

1E-14

0.679844 0.704844 0.729844 0.754844 0.779844

fit
ne

ss

iner�a weight, ω

A

S-PSO

SS-PSO
0

5000

10000

15000

20000

25000

30000

35000

40000

0.679844 0.704844 0.729844 0.754844 0.779844

ev
al

ua
�o

ns

iner�a weight, ω

B

S-PSO

SS-PSO

1E-16

1E-15

1E-14

1.294 1.394 1.494 1.594 1.694

fit
ne

ss

accelera�on coefficients, c1, c2

C

S-PSO

SS-PSO
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1.294 1.394 1.494 1.594 1.694

ev
al

ua
�o

ns

accelera�on coefficients, c1, c2

D

S-PSO

SS-PSO

1E-16

1E-15

1E-14

36 49 64

fit
ne

ss

popula�on size, µ

E

S-PSO

SS-PSO
0

5000

10000

15000

20000

25000

30000

36 49 64

ev
al

ua
�o

ns

popula�on size, µ

F

S-PSO

SS-PSO

Figure 5 Fitness (A, C, E) and number of evaluations sensitivity (B, D, F) on Ackley function (f8) to inertia weight (A–B), acceleration
coefficients (C–D) and population size (E–F). Full-size DOI: 10.7717/peerj-cs.202/fig-5

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 18/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-5
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.679844 0.704844 0.729844 0.754844 0.779844

fit
ne

ss

iner�a weight, ω

A

S-PSO

SS-PSO
400000

500000

600000

700000

800000

900000

1000000

0.679844 0.704844 0.729844 0.754844 0.779844

ea
lu

a�
on

s

iner�a weight, ω

B

S-PSO

SS-PSO

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.294 1.394 1.494 1.594 1.694

fit
ne

ss

accelera�on coefficients, c1, c2

C

S-PSO

SS-PSO
400000

500000

600000

700000

800000

900000

1000000

1.294 1.394 1.494 1.594 1.694

ev
al

ua
�o

ns

accelera�on coefficients, c1, c2

D

S-PSO

SS-PSO

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

36 49 64

fit
ne

ss

popula�on size, µ

E

S-PSO

SS-PSO
400000

500000

600000

700000

800000

900000

1000000

36 49 64

ev
al

ua
�o

ns

popula�on size, µ

F

S-PSO

SS-PSO

Figure 6 Fitness (A, C, E) and number of evaluations sensitivity (B, D, F) on shifted quadric with noise function (f9) to inertia weight (A–B),
acceleration coefficients (C–D) and population size (E–F). Full-size DOI: 10.7717/peerj-cs.202/fig-6

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 19/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-6
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

0.E+00

2.E-03

4.E-03

6.E-03

8.E-03

1.E-02

1.E-02

0.679844 0.704844 0.729844 0.754844 0.779844

fit
ne

ss

iner�a weight, ω

A

S-PSO

SS-PSO
0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

0.679844 0.704844 0.729844 0.754844 0.779844

fit
ne

ss

iner�a weight, ω

B

S-PSO

SS-PSO

0.E+00

2.E-03

4.E-03

6.E-03

8.E-03

1.E-02

1.E-02

1.294 1.394 1.494 1.594 1.694

fit
ne

ss

accelera�on coefficients, c1, c2

C

S-PSO

SS-PSO

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

4.E+04

4.E+04

5.E+04

1.294 1.394 1.494 1.594 1.694

fit
ne

ss

accelera�on coefficients, c1, c2

D

S-PSO

SS-PSO

0.E+00

2.E-03

4.E-03

6.E-03

8.E-03

1.E-02

1.E-02

36 49 64

fit
ne

ss

popula�on size, μ

E

S-PSO

SS-PSO

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

36 49 64

fit
ne

ss

popula�on size, μ

F

S-PSO

SS-PSO

Figure 7 Fitness (A, C, E) and number of evaluations sensitivity (B, D, F) on Griewank function (f10) to inertia weight (A–B), acceleration
coefficients (C–D) and population size (E–F). Full-size DOI: 10.7717/peerj-cs.202/fig-7

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 20/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-7
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

These conclusions are similar to those by Fernandes et al. (2018) related to the standard PSO
and are coincident with the typical rule of thumb for PSOs: highly connected topologies are
faster but less reliable, while topologies with lower connectivity require more evaluations to
meet the convergence criteria but converge more often to the solution.

Please remember that we are not trying to find the best set of parameters for each
function. The most important conclusions here is that SS-PSO does not seem to be more
sensitive to the parameters than S-PSO, displaying similar patterns when varying v, c1 and
c2 and m, and that the performance enhancement brought by SS-PSO is observed on a
reasonably wide range of parameter values.

Time-varying parameters
An alternative approach to parameter tuning is to let the parameters values change during
the run, according to deterministic or adaptive rules. In order to avoid tuning effort
and adapt the balance between local and global search to the search stage, Shi & Eberhart
(1999) proposed a linearly time-varying inertia weight: starting with an initial and
pre-defined value, the parameter value decreases linearly with time, until it reaches the
minimum value. The variation rule is given by Eq. (3):

v tð Þ ¼ v1 � v2ð Þ � max t � tð Þ
max t

þ v2 (3)

where t is the current iteration, max_t is the maximum number of iterations, v1 the inertia
weigh initial value and v2 its final value.

(A) k = 3 (B) k = 5 (C) k = 7 = μ

Figure 8 Regular graphs with population size μ = 7 and k = 3 (A), k = 5 (B) and k = 7 = μ (C).
Full-size DOI: 10.7717/peerj-cs.202/fig-8

A B

0

10

20

30

40

50

k = 3 k = 5 k = 7 k = 9 k = 13k = 17k = 25k = 33

su
cc

es
sf

ul
 ru

ns

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10 0

10000

20000

30000

40000

50000

60000

70000

k = 3 k = 5 k = 7 k = 9 k = 13k = 17k = 25k = 33

fit
ne

ss
 e

va
lu

a�
on

s

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

Figure 9 SS-PSO with different topologies. (A) Success rates. (B) Mean fitness evaluations to a solution.
Full-size DOI: 10.7717/peerj-cs.202/fig-9

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 21/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-8
http://dx.doi.org/10.7717/peerj-cs.202/fig-9
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Later, Ratnaweera, Halgamuge & Watson (2004) tried to improve Shi and Eberhart’s
PSO with time-varying inertia weight (PSO-TVIW) using a similar concept applied to the
acceleration coefficients. In the PSO with time-varying acceleration coefficients PSO
(PSO-TVAC) the parameters c1 and c2 change during the run according to the following
equations:

c1 ¼ c1f � c1i
� �� t

max t
þ c1i (4)

c2 ¼ c2f � c2i
� �� t

max t
þ c2i (5)

where c1i, c1f, c2i, c2f are the acceleration coefficients initial and final values.
The experiments in this section compare PSO-TVAC with SS-PSO-TVAC (i.e., PSO-

TVAC with the steady-state update strategy). Parameters v1 and v2 were set to 0.75 and
0.5. The acceleration coefficient c1 initial and final values were set to 2.5 and 0.5 and c2
ranges from 0.5 to 2.5, as suggested by Ratnaweera, Halgamuge & Watson (2004). The
results are in Table 13 (PSO-TVAC) and Table 14 (SS-PSO-TVAC).

Table 15 compares the algorithms using Mann–Whitney tests. SS-PSO-TVAC improves
PSO-TVAC in every unimodal function in terms of accuracy and convergence speed and
it is significantly faster in functions f6, f7, f8 and f10 while attaining similar results.
PSO-TVAC only outperforms SS-PSO-TVAC in the noisy f9 function. These results show
that the steady state version of PSO-TVAC is able to improve the convergence speed of the
original algorithm in several types of fitness landscapes. Furthermore, SS-PSO-TVAC
achieves more accurate solutions in the unimodal problems.

Comprehensive learning PSO
The following experiment aims at comparing the proposed SS-PSO with the CLPSO (Liang
et al., 2006; Lynn& Suganthan, 2015). CLPSO uses an alternative velocity updating equation:

vi;d tð Þ ¼ v� vi;d t � 1ð Þ þ c� r � pfi dð Þ;d � xi;d t � 1ð Þ� �
(6)

Table 13 PSO-TVAC results.

Fitness Evaluations SR

Median Min Max Median Min Max

f1 2.85e-21 2.55e-22 1.84e-20 11,956 11,221 13,181 50

f2 4.47e-51 1.23e-54 5.00e03 208,740 185,514 238,532 49

f3 3.87e-21 3.01e-22 1.57e-19 13,769 12,740 16,121 50

f4 3.08e+01 1.11e+01 5.8e+01 31,114 16,661 59,388 50

f5 0.00e00 0.00e00 4.91e-02 15,141 12,642 91,238 50

f6 0.00e00 0.00e00 0.00e00 11,956 5,145 38,612 49

f7 0.00e00 0.00e00 1.64e-01 35,280 31,017 42,336 49

f8 7.55e-15 4.00e-15 7.55e-15 21,070 17,346 29,988 50

f9 6.14e-09 1.74e-09 6.28e-06 227,066 199,528 287,042 47

f10 7.40e-03 0.00e00 5.24e-01 18,620 14,602 87,220 42

Note:
Medians are shown in bold if PSO-TVAC provides similar or better results than SS-PSO-TVAC (Table 14).

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 22/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

where fi
!¼ fi 1ð Þ; fi 2ð Þ; . . . fi Dð Þð Þ defines which particle’s best solutions particle i should

follow. Hence, the term pfi(d),d can refer to the corresponding dimension of any particle’s
best found solution so far. The decision depends on a probability pc, different for each
particle and computed a priori. Following the guidelines and parameters in Liang et al.
(2006), CLPSO and SS-CLPSO have been implemented and tested in the set of 10
benchmark functions.

Comprehensive-learning PSO performance is strongly dependent on the refreshing gap
parameter m, which defines the number of generations during which the particles are
allowed to learn from fi without improving their fitness. After m generations without fitness
improvement, fi is reassigned. In order to make fair comparisons, parameter m was first
optimized for each function. The other parameters were set as in Liang et al. (2006). Then,
SS-CLPSO was tuned using the same parameter setting as the corresponding CLPSO.

The results are in Tables 16 and 17 and statistical analysis is in Table 18. On the one
hand, the results show that, in general, a steady-state strategy applied to CLPSO does not
improve the performance of the algorithm. On the other hand, SS-CLPSO does not
degrade the general behavior of CLPSO. Please note that CLPSO does not use a traditional
topology. In this case, to construct SS-CLPSO, we use a Moore neighborhood to decide
which particles to update along with the least fit individuals, but, unlike SS-PSO or
SS-PSO-TVAC, the structure does not define the information flow within the swarm.

Table 14 SS-PSO-TVAC results.

Fitness Evaluations SR

Median Min Max Median Min Max

f1 7.85e-26 4.82e-27 2.35e-24 10,417 9,126 11,322 50

f2 5.18e-63 2.30e-67 5.77e-60 190,458 168,282 226,062 50

f3 1.66e-25 7.76e-27 9.14e-24 11,925 10,422 13,923 50

f4 3.48e+01 1.89e01 7.46e+01 38,043 22,032 108,927 50

f5 0.00e00 0.00e00 4.42e-02 13,662 9,963 56,421 49

f6 0.00e00 0.00e00 0.00e00 8,421 2,547 26,325 49

f7 0.00e00 0.00e00 2.62e-01 31,752 28,323 41,193 43

f8 7.55e-15 4.00e-15 7.55e-15 18,756 14,958 23,904 49

f9 5.41e-09 6.37e-10 5.80e-03 315,792 192,906 476,532 48

f10 0.00e00 0.00e00 3.93e-02 15,948 12,762 75,510 40

Note:
Medians are shown in bold if SS-PSO-TVAC provides similar or better results than PSO-TVAC (Table 13).

Table 15 Comparing SS-PSO-TVAC and PSO-TVAC with the Mann-Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness + + + ≈ ≈ ≈ ≈ ≈ ≈ ≈
Evaluations + + + ≈ ≈ + + + - +

Notes:
+If SS-PSO-TVAC ranks first in the Mann–Whitney test and the result is significant.
-If PSO-TVAC ranks first and the results is significant.
≈If the differences are not significant.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 23/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Since neighboring particles communicate and use each other’s information, they tend to
travel through similar regions of the landscape, but in CLPOS there is not necessarily a
relationship between the particles in the set and this clustering behavior is not present.
For a steady-state strategy to take full advantage of the CLPSO dynamic network, maybe it

Table 16 CLPSO results.

Fitness Evaluations

Median Min Max Median Min Max SR

f1 9.59e-07 4.00e-07 2.23e-06 34,848 33,355 35,909 50

f2 2.16e-01 8.66e-02 5.46e-01 – – – –

f3 2.31e-06 1.18e-06 4.96e-06 36,777 35,665 37,972 50

f4 4.97e00 1.99e00 1.20e+01 115,701 94,674 129,493 50

f5 0.00e00 0.00e00 9.74e-13 199,537 164,774 243,806 50

f6 6.49e-06 7.69e-09 1.13e-04 81,149 37,710 96,320 31

f7 8.67e-13 3.48e-13 1.61e-12 430,069 418,700 440,035 50

f8 7.55e-15 4.00e-15 7.55e-15 282,613 275,897 285,290 50

f9 4.36e-01 1.51e-01 1.11e00 – – – –

f10 0.00e00 0.00e00 2.26e-14 173,346 151,269 229,975 50

Note:
Medians are shown in bold if CLPSO provides similar or better results than SS-CLPSO (Table 17).

Table 17 SS-CLPSO results.

Fitness Evaluations

Median Min Max Median Min Max SR

f1 1.33e-06 2.99e-07 4.98e-06 35,998 34,063 37,956 50

f2 5.14e-01 1.71e-01 1.44e00 – – – –

f3 1.46e-06 4.82e-07 7.44e-06 36,079 33,177 37,961 50

f4 4.09e+00 1.04e00 1.05e+01 190,310 147,544 217,855 50

f5 0.00e00 0.00e00 2.16e-14 181,779 137,821 225,172 50

f6 6.64e-06 3.10e-07 6.90e-05 86,058 45,530 97,936 28

f7 6.26e-11 3.27e-12 1.69e-08 409,351 393,553 423,387 50

f8 7.55e-15 4.00e-15 7.55e-15 358,407 344,448 374,581 50

f9 7.70e-01 3.26e-01 6.16e01 – – – –

f10 0.00e00 0.00e00 1.04e-13 152,818 122,165 207,094 50

Note:
Medians are shown in bold if SS-CLPSO provides similar or better results than CLPSO (Table 16).

Table 18 Comparing SS-PSO and CLPSO with the Mann-Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness ≈ ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈
Eval. ≈ – ≈ - + ≈ + - – +

Notes:
+If SS-PSO ranks first in the Mann–Whitney test and the result is significant.
-If CLPSO ranks first and the results is significant.
≈If the differences are not significant.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 24/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

is necessary to define a dynamic update strategy which takes into account the current set of
particles from which an individual is learning at a specific period of the run. Steady-state
updates strategies for PSO in dynamic networks is planned as future work.

Dynamic small world PSO
The final experiment compares SS-PSO with the DSWPSO, recently proposed by Vora &
Mirlanalinee (2017). DSWPSO uses a static von Neumann topology to which a number
of random connections are added in each iteration. It is a very simple variation of the
standard PSO, but it attains quite interesting results when compared to a number of
state-of-the-art PSOs.

For this paper, DSWPSO was tested with von Neumann and Moore topologies.
The number of random neighbors in each topology was set to 2, as suggested by
Vora & Mirlanalinee (2017). Parameters c1 and c2 were set to 1.494 and v to 0.7298.
The algorithms were all run for 200,000 function evaluations. DSWPSO results are

Table 19 DSWPSO with von Neumann neighborhood and two random neighbors.

Fitness Evaluations

Median Min Max Median Min Max SR

f1 8.72e-12 1.07e-12 5.33e-11 20,188 18,767 22,589 50

f2 6.80E-36 5.61E-39 1.00e+04 151,704 121,765 218,393 49

f3 3.24e-11 1.14e-12 3.21e-10 22,981 20,972 26,166 50

f4 6.27e+01 2.69e+01 1.07e+02 11,417 5,586 31,654 47

f5 0.00e+00 0.00e+00 4.91e-02 19,477.5 17,101 25,627 50

f6 0.00e+00 0.00e+00 9.72e-03 7,448 2,989 28,567 43

f7 2.38e-02 0.00e+00 2.02e+00 34,937 32,977 40,180 20

f8 7.55e-15 4.00e-15 1.34e+00 20,972 18,767 24,892 47

f9 1.43e-05 6.42e-09 6.63e+03 639,842 374,066 901,110 41

f10 7.40e-03 0.00e+00 5.17e-01 21,021 18,130 25,284 47

Table 20 DSWPSO with Moore neighborhood and two random neighbors.

Fitness Evaluations

Median Min Max Median Min Max SR

f1 1.13e-12 8.12e-14 1.92e-11 19,306 17,395 21,119 50

f2 4.86e-38 2.52e-41 5.00e+03 141,708 121,079 219,520 45

f3 4.72e-12 7.08e-13 4.46e-11 22,050 19,845 25,480 50

f4 6.22e+01 3.48e+01 1.34e+02 10,731 6,958 23,520 47

f5 7.40e-03 0.00e+00 2.70e-02 18,497.5 16,611 20,531 50

f6 0.00e+00 0.00e+00 9.72e-03 6,811 3,136 25,480 48

f7 1.01e-01 0.00e+00 3.06e+00 35,035 32,683 39,494 16

f8 7.55e-15 4.00e-15 1.16e+00 20,090 16,954 24,941 47

f9 3.25e-05 4.29e-09 7.12e+03 620,487 365,981 916,692 35

f10 8.63e-03 0.00e+00 8.00e+00 19,747 17,052 25,235 43

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 25/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

presented in Table 19 (von Neumann) and Table 20 (Moore). The statistical analysis that
compares SS-PSO and DSWPSO are in Table 21 (von Neumann) and Table 22 (Moore).
It is clear that SS-PSO outperforms DSWPSO with both von Neumann and Moore
base-topology in most of the functions, not only in terms of convergence speed, but also
in solution quality.

Figure 10 shows the convergence curves (median best fitness values over 50 runs) of
S-PSO, SS-PSO and DSWPSO (von Neumann). The graphics show that SS-PSO converges
faster to the vicinity of the solutions. Furthermore, and although it is not perceivable
in the graphics, SS-PSO eventually reaches solutions closer to f(x) = 0 (the optimum of
both functions) as demonstrated by Tables 8 and 21.

Running times
A final experiment compares S-PSO and SS-PSO running times. The algorithms are run
on function f7 with D set to 10, 30, 50 and 100. Moore neighborhood is used in both

Table 21 Comparing SS-PSO and DSWPSO (von Neumann) with the Mann-Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness + + + ≈ ≈ + + + + +

Eval. + + + + + + + + ≈ +

Notes:
+If SS-PSO ranks first in the Mann–Whitney test and the result is significant.
-If DSWPSO ranks first and the results is significant.
≈If the differences are not significant.

Table 22 Comparing SS-PSO and DSWPSO (Moore) with the Mann-Whitney test.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fitness + + + ≈ ≈ ≈ + + + +

Eval. + + + + + ≈ + + ≈ +

Notes:
+If SS-PSO ranks first in the Mann–Whitney test and the result is significant.
-If DSWPSO ranks first and the results is significant.
≈If the differences are not significant.

0

0.2

0.4

0.6

0.8

1

fit
ne

ss

func�on evalua�ons

(A) Sphere (f1)

S-PSO

SS-PSO

DSWPSO

0

0.2

0.4

0.6

0.8

1

fit
ne

ss

func�on evalua�ons

(B) Weierstrass (f7)

S-PSO

SS-PSO

DSWPSO

Figure 10 S-PSO, SS-PSO and DSWPSO best fitness curves for the sphere (A) and Weierstrass (B)
benchmark functions. Full-size DOI: 10.7717/peerj-cs.202/fig-10

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 26/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-10
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

algorithms and parameters are set as in previous experiments. Figure 11 shows the running
times of 49,000 functions evaluations (median values over 10 runs for each algorithm).
The running times of each algorithm are statistically equivalent for every D value. Running
times of SS-PSO with von Neumann and Moore neighborhood are also equivalent.
The PerfAndPubTools software (Fachada et al., 2016) was used to analyze the running times.

DISCUSSION
The experiments in the previous sections demonstrate that SS-PSO is able to
significantly improve the performance of the standard PSO, at least on the set of
benchmark functions. The differences are particularly noticeable in the convergence
speed of the algorithms, but SS-PSO is also able to improve the solution quality in
several functions (see Table 8). An experiment comparing three different steady-state
strategies show that replacing the worst particle and its neighbors is the best strategy.
Our initial hypothesis (reducing the number of evaluations in each time step, while
focusing only on the worst solutions, reduces the computational effort to reach a
solution) is confirmed.

The relative performance of SS-PSO and standard PSO has also been verified for a
wide range of parameter values (see Figs. 4–7) as well as for different problem
dimensions (see Fig. 3). These results are important since they demonstrate that the
proposed strategy has not been fine-tuned and that its validity is not restricted to a
particular region of the parameter space or problem dimension. The algorithm was also
compared to a PSO with time-varying acceleration, again attaining good results, thus
reinforcing the idea that the steady-state strategy is consistent and robust. SS-PSO
was compared to CLPSO, and while being outperformed in terms of solution quality in
four functions, it yields better solutions in two problems, and is faster in other two
functions. Since CLPSO is considered to be a very efficient algorithm, these results
are promising. It deserves further examination whether variants of SS-PSO could
clearly outperform CLPSO. Finally, SS-PSO was compared to DSWPSO with excellent
results.

0

2

4

6

8

10

12

14

d = 10 d = 30 d = 50 d = 100

t(s
)

S-PSO

SS-PSO

Figure 11 S-PSO and SS-PSO running times. Full-size DOI: 10.7717/peerj-cs.202/fig-11

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 27/30

http://dx.doi.org/10.7717/peerj-cs.202/fig-11
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

CONCLUSIONS
This paper investigates the performance of a new and unconventional updated strategy
for the PSO. The SS-PSO is inspired by the Bak–Sneppen model of coevolution.
However, while in the Bak–Sneppen model the worst individual and its neighbors are
replaced by random values, in SS-PSO the worst particle and its neighbors are updated and
evaluated in each time step. The remaining particles are kept in a steady state until
they eventually satisfy the update criterion. Due to its strategy, SS-PSO may be classified
within the A-PSOs category. However, its working mechanisms are radically different
from standard A-PSOs.

After preliminary tests that determined the best topology for a set of ten unimodal,
multimodal, shifted, noisy and rotated benchmark problems, the strategy was implemented
on the winning structure: two-dimensional lattice with Moore neighborhood. Quality
of solutions, convergence speed and success rates were compared and statistical analyses
were conducted on the results. SS-PSO significantly improved the performance of a
standard S-PSO in every function, at least in one of the two criteria (quality of final
solutions and convergence speed). A parameter sensitivity analysis showed that SS-PSO is
not more sensitive to the variation of parameter values than S-PSO. A scalability test
showed that the proposed strategy does not introduce scalability difficulties. The algorithm
was compared to PSO-TVA, CLPSO and DSWPSO with good results.

The first step in future works is to increase the size of the test with more
functions, hoping that an extended test set can improve our insight into the behavior of
the algorithm. The emergent properties of the algorithm (size of events, duration
of stasis, critical values) will be also studied and compared to those of the
Bak–Sneppen model. Finally, steady-state update strategies in dynamic topologies
will be investigated.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Fundação para a Ciência e Tecnologia (FCT) Research
Fellowship SFRH/BPD/66876/2009 and FCT Project (UID/EEA/50009/2013),
EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity),
PROY-PP2015-06 (Plan Propio 2015 UGR), project CEI2015-MP-V17 of the
Microprojects program 2015 from CEI BioTIC Granada. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Fundação para a Ciência e Tecnologia (FCT), Research Fellowship: SFRH/BPD/66876/2009.
FCT PROJECT: UID/EEA/50009/2013.
EPHEMECH: TIN2014-56494-C4-3-P, Spanish Ministry of Economy and Competitivity.
PROY-PP2015-06: Plan Propio 2015 UGR.
CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 28/30

http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Carlos M. Fernandes conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared
figures and/or tables, performed the computation work, authored or reviewed drafts of
the paper, approved the final draft.

� Nuno Fachada conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, performed the computation work,
authored or reviewed drafts of the paper, approved the final draft.

� Juan-Julián Merelo authored or reviewed drafts of the paper, approved the final draft.
� Agostinho C. Rosa authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: https://github.com/laseeb/openpso.

REFERENCES
Allmendiger R, Li X, Branke J. 2008. Reference point-based particle swarm optimization using a

steady-state approach, SEAL 2008. Lecture Notes in Computer Science 5361:200–209
DOI 10.1007/978-3-540-89694-4_21.

Aziz NAB, Mubin M, Mohamad MS, Aziz KA. 2014. A synchronous-asynchronous
particle swarm optimisation algorithm. Scientific World Journal 2014:123019
DOI 10.1155/2014/123019.

Baillieul J, Samad T. 2015. Encyclopedia of systems and control. London: Springer-Verlag.

Bak P. 1996. How nature works. New York: Springer-Verlag, 1996.

Bak P, Sneppen K. 1993. Punctuated equilibrium and criticality in a simple model of evolution.
Physical Review Letters 71(24):4083–4086 DOI 10.1103/physrevlett.71.4083.

Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: an explanation of 1/f noise.
Physical Review Letters 59(4):381–384 DOI 10.1103/PhysRevLett.59.381.

Boettcher S, Percus AG. 2003. Optimization with extremal dynamics. Complexity 8(2):57–62.

Carlisle A, Dozier G. 2001. An off-the-shelf PSO. In: Proceeding of Workshop on Particle Swarm
Optimization, Indianapolis, Purdue School of Engineering and Technology, IUPUI, Indianapolis,
IN, USA. Vol. 1, 1–6.

Engelbrecht AP. 2013. Particle swarm optimization: iteration strategies revisited. In: 2013 BRICS
Congress on Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence, Recife, Brazil. 119–123.

Fachada N, Lopes VV, Martins RC, Rosa AC. 2016. PerfAndPubTools—tools for software
performance analysis and publishing of results. Journal of Open Research Software 4(1):e18
DOI 10.5334/jors.115.

Fernandes CM, Fachada N, Laredo J, Merelo J, Castillo P, Rosa AC. 2018. Revisiting population
structure and particle swarm performance. In: Proceedings of the 10th International Joint
Conference on Computational Intelligence—Volume 1, Seville. 248–254.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 29/30

https://github.com/laseeb/openpso
http://dx.doi.org/10.1007/978-3-540-89694-4_21
http://dx.doi.org/10.1155/2014/123019
http://dx.doi.org/10.1103/physrevlett.71.4083
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.5334/jors.115
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

Fernandes CM, Laredo JLJ, Merelo JJ, Cotta C, Rosa AC. 2014. Particle swarms with dynamic
topologies and conservation of function evaluations. In: Proceedings of the International Joint
Conference on Computational Intelligence, Rome, Italy. 86–94 DOI 10.5220/0005087900860094.

Fernandes CM, Merelo JJ, Rosa AC. 2016. An asynchronous and steady state update strategy for
the particle swarm optimization algorithm. In: Proceedings of Parallel Problem Solving from
Nature—PPSN XIV, Edimburgh, Scotland. Berlin: Springer, 166–177.

Gutenberg B, Richter CF. 1956.Magnitude and energy of earthquakes. Annali di Geofisica 9:1–15
DOI 10.4401/ag-5590.

Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks, Perth, Autralia. Vol. 4, 1942–1948
DOI 10.1109/ICNN.1995.488968.

Kennedy J, Mendes R. 2002. Population structure and particle swarm performance. In: Proceedings
of the IEEE World Congress on Evolutionary Computation, Honolulu, Hawaii, USA. 1671–1676.

Liang JJ, Qin AK, Suganthan PN, Baskar S. 2006. Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary
Computation 10(3):281–294 DOI 10.1109/tevc.2005.857610.

Liu C, Du W-B, Wang W-X. 2014. Particle swarm optimization with scale-free interactions.
PLOS ONE 9(5):e97822 DOI 10.1371/journal.pone.0097822.

Løvbjerg M, Krink T. 2002. Extending particle swarm optimizers with self-organized criticality.
In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, Honolulu, Hawaii,
USA. Vol. 2. IEEE Computer Society. 1588–1593.

Lynn N, Suganthan PN. 2015. Heterogeneous comprehensive learning particle swarm
optimization with enhanced exploration and exploitation. Swarm and Evolutionary
Computation 24:11–24 DOI 10.1016/j.swevo.2015.05.002.

Majercik S. 2013. GREEN-PSO: conserving function evaluations in particle swarm optimization.
In: Proceedings of the IJCCI 2013, Vilamoura, Portugal. 160–167.

McNabb A. 2014. Serial PSO results are irrelevant in a multi-core parallel world. In: Proceedings of
the 2014 IEEE Congress on Evolutionary Computation, Beijing, China. 3143–3150.

Rada-Vilela J, Zhang M, Seah W. 2013. A performance study on synchronous and asynchrounous
updates in particle swarm. Soft Computing 17(6):1019–1030 DOI 10.1145/2001576.2001581.

Ratnaweera A, Halgamuge S, Watson H. 2004. Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary
Computation 8(3):240–255 DOI 10.1109/tevc.2004.826071.

Shi Y, Eberhart RC. 1999. Empirical study of particle swarm optimization. In: Proceedings of
IEEE International Congress on Evolutionary Computation, Washington, DC, USA. Vol. 3,
101–106 DOI 10.1109/CEC.1999.785511.

Vora M, Mirlanalinee TT. 2017. Dynamic small world particle swarm optimizer for function
Optimization. Natural Computing 17(4):901–917 DOI 10.1007/s11047-017-9639-9.

Whitley D, Kauth J. 1988. GENITOR: a different Genetic Algorithm. In: Proceedings of the 1988
Rocky Mountain Conference on Artificial Intelligence, Denver, CO, USA. 118–130.

Fernandes et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.202 30/30

http://dx.doi.org/10.5220/0005087900860094
http://dx.doi.org/10.4401/ag-5590
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/tevc.2005.857610
http://dx.doi.org/10.1371/journal.pone.0097822
http://dx.doi.org/10.1016/j.swevo.2015.05.002
http://dx.doi.org/10.1145/2001576.2001581
http://dx.doi.org/10.1109/tevc.2004.826071
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1007/s11047-017-9639-9
http://dx.doi.org/10.7717/peerj-cs.202
https://peerj.com/computer-science/

	Steady state particle swarm
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

