- 1 Study of the planetary boundary layer height in an urban
- 2 environment using a combination of microwave
- **3** radiometer and ceilometer
- 4
- 5 Gregori de Arruda Moreira, Juan Luis Guerrero-
- 6 Rascado, Juan Antonio Bravo-Aranda, Inmaculada Foyo-
- 7 Moreno, Alberto Cazorla, Inmaculada Alados, Hassan
- 8 Lyamani, Eduardo Landulfo, Lucas Alados-Arboledas
- 9
- 10 Atmospheric Research
- ¹¹ Volume 240, August 2020, 104932
- 12 https://doi.org/10.1016/j.atmosres.2020.104932

1 Study of the Planetary Boundary Layer Height in an urban

2 environment using a combination of microwave radiometer

- 3 and ceilometer
- 4 Gregori de Arruda Moreira^{1,2,3}, Juan Luis Guerrero-Rascado^{1,2}, Juan Antonio Bravo-
- 5 Aranda^{1,2}, Inmaculada Foyo-Moreno^{1,2}, Alberto Cazorla^{1,2}, Inmaculada Alados^{1,4}, Hassan
- 6 Lyamani^{1,2}, Eduardo Landulfo³ and Lucas Alados-Arboledas^{1,2}
- 7 ¹Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, Spain
- 8 ²Dpt. Applied Physics, University of Granada, Granada, Spain
- 9 ³Institute of Research and Nuclear Energy (IPEN), São Paulo, Brazil
- 10 ⁴Dpt. Applied Physics II, University of Malaga, Spain
- 11 Correspondence to: Gregori de Arruda Moreira (gregori.moreira@usp.br)

12 Keywords Planetary Boundary Layer, Ceilometer, Microwave Radiometer, Remote Sensing

13 Abstract

14 The Planetary Boundary Layer (PBL) is an important part of the atmosphere that is relevant in different atmospheric fields like pollutant dispersion, and weather forecasting. In this study, we analyze four and 15 16 five-year datasets of measurements gathered with a ceilometer and a microwave radiometer to study the 17 PBL structure respectively, in the mid-latitude urban area of Granada (Spain). The methodologies applied 18 for the PBL Height (PBLH) detection (gradient method for ceilometer and the combination of parcel 19 method and temperature gradient method for microwave radiometer) provided a description in agreement 20 with the literature about the PBL structure under simple scenarios. Then, the PBLH behavior is 21 characterized by a statistical study of the convective and stable situations, so that the PBLH was obtained 22 from microwave radiometer measurements. The analysis of the PBLH statistical study shows some 23 agreement with other PBLH studies such as daily pattern and yearly cycle, and the discrepancies were 24 explained in terms of distinct latitudes, topography and climate conditions. Finally, it was performed a joint 25 long-term analysis of the residual layer (RL) provided by ceilometer and the stable and convective layer 26 heights determined by microwave radiometer, offering a complete picture of the PBL evolution by synergetic combination of remote sensing techniques. The PBL behavior has been used for explaining the 27 28 daily cycle of Black Carbon (BC) concentration, used as tracer of the pollutants emissions associated to 29 traffic.

30 1 Introduction

- 31 The planetary boundary layer (*PBL*) is traditionally defined as the "*part of the troposphere that is directly*
- 32 influenced by the presence of the Earth's surface, and responds to surface forcings with a time scale of
- 33 *about an hour or less*" (Stull, 1988). Under an ideal scenario, shortly after sunrise the positive net radiative
- 34 flux (R_n) causes the rising of ground surface temperature. Consequently, air masses located at low heights
- 35 get warmer and favor convective processes, which lead to air lifting and consequent heating of atmospheric
- 36 layers at a certain altitude over the surface inside the troposphere. The new layer generated by this
- 37 mechanism is known as convective boundary layer (*CBL*) or mixing layer ($M_{ing}L$). After sometime this

1 layer might get completely well-mixed and it is known as mixed layer $(M_{ed}L)$. Close to sunset, the CBL is 2 converted in a stably stratified boundary layer called residual layer (RL) that contains features from the 3 $M_{ing}L$ (or $M_{ed}L$) of the previous day. Simultaneously, a thermal inversion appears close to surface and the 4 stable region extending from surface to the thermal inversion is usually named stable boundary layer (SBL). 5 The height of PBL (PBLH) is an important parameter that characterizes the PBL structure and provides 6 information on the vertical extent of mixing within this layer as well as the vertical dispersion and 7 convective transport. The PBLH is a key factor for a wide set of studies, such as air quality, pollutant 8 dispersion, weather forecasting and meteorological modeling (e.g. Chen et. al., 2011). However, it is not 9 possible to obtain this variable in a straightforward way, being necessary to infer it from radiosonde data, 10 remote sensing systems or meteorological models. In this sense, in the last decades a great effort has been 11 made to develop other methods for inferring PBLH with high temporal and spatial resolution from remote 12 sensing systems such as lidar and ceilometer (e.g. Bianco et al., 2005; Eresma et al., 2006; He et al., 2006; 13 Münkel et al., 2007; Di Giuseppe et al., 2012; Granados-Muñoz et al., 2012; Di Giuseppe et al., 2012; Haman 14 et al., 2012; Pal et al., 2013; Coen et al., 2014; Korhonen et al., 2014; Ketterer et al., 2014; Lotteraner et 15 al.,2016; Zhu et al.,2016; Uzan et al.,2016; Avolio et al., 2017; Caicedo et al., 2017; de Arruda Moreira et 16 al., 2018; Zhu et al., 2018a; Zhu et al., 2018b; de Arruda Moreira et al., 2019), because their high temporal 17 and spatial resolution enable a better comprehension on the daily cycle of PBL.

18 Ceilometers provide the *PBLH* from vertical aerosol profiles based on the Deadorff's definition of M_{ingL}

19 (or $M_{ed}L$), which is the "height where there are equal areas of clear air above and particulates below"

20 (Deadorff et al., 1980). Therefore, the PBLH "is taken to be the midpoint of the transition region between

- 21 the areas of higher and lower backscattering", i.e. the top of aerosol layer. Thus, when PBL is fully
- 22 developed the height of CBL ($CBLH_{Ceilometer}$) is detected; otherwise the RL height ($RL_{Ceilometer}$) is
- 23 observed. Although ceilometers and aerosol lidars have similar operating principles, ceilometers have some
- 24 advantages, such as relatively continuous operations and low-maintenance, eye-safe and comparatively low
- 25 price, which compensates the disadvantages of lower maximum range and relatively low signal-to-noise
- ratio (SNR). These facts justify their increasing use in studies related to PBLH(e.g. Eresma et al., 2006;
- 27 Münkel et al.,2007; Di Giuseppe et al.,2012; Ketterer et al., 2014; Lotteraner et al.,2016; Zhu et al.,2016;

28 Uzan et al., 2016; Avolio et al., 2017; Caicedo et al., 2017; Zhu et al., 2018a; Zhu et al., 2018b).

29 While most of remote sensing systems have their data acquisition affected by rain and cloud covers, the 30 Microwave Radiometers (MWR) measurements are not influenced by these factors (Kim et al., 2015). This 31 behavior allows continuous (24/7) and autonomous operation with a high data recovery rate, making the 32 MWR as an important tool for PBL characterization by determining liquid water path (Van Baelen et al., 33 2005), brightness temperature (Cimini et al., 2013), atmospheric stability (Arend et al., 2016), and 34 nowcasting convective weather (Cimini et al., 2015). Bedoya-Velázquez et al. (2019) performed a 35 validation of MWR data comparing them with 5 years of radiosonde data at Granada-Spain. Such analysis 36 demonstrated as MWR profiles of temperature and humidity are reliable. Zhao et al. (2019) also confirmed 37 the reliability of MWR data, mainly at the lower troposphere (< 2000 m), comparing them with radiosonde 38 data. MWR also have been used in synergy with other remote sensing instruments (e.g. Bianco et al., 2005; 39 Navas-Guzmán et al., 2014), and their estimates of PBLH (PBLH_{MWR}) daily pattern have been compared with those provided by other remote sensing systems, such as elastic (e.g. Muñoz-Granados et al., 2012;
 Bravo-Aranda et al., 2017) and Doppler lidar (de Arruda Moreira et al., 2018), so that, in convective
 situations, a high concordance can be observed among them. In addition, *MWR* has null overlap and it does
 not use aerosols as tracer, what enables to detect the *SBL*. On the other hand, *MWR* has as disadvantage a

5 lower vertical resolution in comparison with lidar systems and ceilometers.

6 Remote sensing systems have been mainly applied to study the PBL in periods between several months and 7 one year (e.g. He et al., 2006; Granados-Muñoz et al., 2012; Di Giuseppe et al., 2012; Haman et al., 2012; 8 Pal et al., 2013; Korhonen et al., 2014; Schween et al., 2014). Only few of them use multi-year data (Coen 9 et al., 2014; Pal et al., 2015; Zhu et al., 2018a; Zhu et al., 2018b), allowing a better comprehension about 10 seasonality, interannual variability and how some variables can influence the PBLH. However, due to 11 technical limitations of each instrument (ceilometer incomplete overlap, signal to noise ratio and spatial 12 resolution, among others), some phenomena such as the evolution from CBL towards the combination of 13 the SBL and RL close to sunset or, for example, or the rising of the CBL until breaking the RL along the 14 morning, cannot be properly detected. In contrast, the synergistic use of remote sensing systems can provide 15 complementary information and enable a more detailed observation of PBL.

In this regard, this work presents a statistical analysis of the *PBL* obtained from 4 and 5 year database of ceilometer and *MWR* measurements, respectively, performed at Granada (Spain). Our synergic analyses have in mind that the *PBLH* retrievals by these two different instruments are based on the use of different observed quantities (aerosol backscatter and temperature vertical profiles) which offer complementary picture of the *PBL* structure, due to distinct *PBLH* definition applied to each one.

21 The PBL structure affect the concentrations of the different air pollutants at surface level. Among different 22 atmospheric pollutants, Black Carbon (BC) has become a matter of concern during the past years due to its 23 adverse human health effects, being a primary product of incomplete combustion of carbonaceous fuels, 24 normally originated from diesel engines in urban areas (e.g. Hamilton and Mansfield, 1991; Pakkanen et 25 al., 2000; Titos et al., 2017). BC is a more consistent tracer than ultrafine particles (UFP) to analyse the 26 links between PBL and air pollution at an urban site, since BC is a passive atmospheric component that 27 undergoes less transformation in the atmosphere. Recently, Petäjäet al. (2016) and Ding et al., (2016) 28 showed that high BC concentrations result in low boundary layer height which lead to elevated aerosol 29 concentrations and significantly degraded air quality. However, the relationship between BC concentration 30 and PBL is still ambiguous and more studies in different areas are needed to better understand the links 31 between BC and PBL. Thus, in this study we also analyzed the BC concentration and its link to PBL 32 behavior at Granada.

33 This paper is organized as follows. Description of the experimental site and the equipment setup are

34 presented in Section 2. The methodologies applied are introduced in Section 3. A long-term analysis is

35 carried out in Section 4. Conclusions are given in Section 5.

1 2 Experimental site and instrumentation

2 The measurement campaign was carried out at the Andalusian Institute of Earth System Research (IISTA-3 CEAMA). This station is part of European Aerosol Research Lidar Network - EARLINET (Pappalardo et 4 al., 2014) since 2004 and at present is an active station of ACTRIS (http://actris2.nilu.no/). This station is 5 located at Granada, a medium sized (population of around 238 000 inhabitants over an area of 88 km²) non-6 industrialized city in the Southeastern Spain at about 50 km away from the Mediterranean coast (Granada, 7 37.16°N, 3.61°W, 680 m a.s.l.) (INE, 2017). Granada is surrounded by mountains and dominated by 8 Mediterranean-continental conditions, which are responsible for large seasonal temperature differences, 9 providing cool winters and hot summers. The most humid period goes from late autumn to early spring. 10 The rest of the year is characterized by rain scarcity. It is worthy to note that the Southeastern Spain is 11 usually affected by mineral dust outbreaks from the Saharan Desert (North Africa) (e.g. Lyamani et al., 12 2006a, b; Guerrero-Rascado et al., 2008a, 2009; Granados-Muñoz et al., 2010; Córdoba-Jabonero et al., 13 2011; Titos et al., 2012; Navas-Guzmán et al., 2013; Valenzuela et al., 2014; Bravo-Aranda et al., 2017), 14 which may affect the PBL detection. Main local sources of aerosol particles are road traffic, domestic-15 heating and biomass burning (mostly in winter time) (Titos et al., 2017, Patrón et al., 2017). Transported 16 smoke principally from North America, North Africa and the Iberian Peninsula can also affect the study 17 area (Alados-Arboledas et al., 2011; Pereira et al., 2013; Navas-Guzmán et al., 2013; Preißler et al., 2013; 18 Pereira et al., 2014; Ortiz-Amezcua et al., 2014, 2017).

19 The measurements were performed from two kind of remote sensing systems, namely passive and active 20 ones. The passive remote sensing systems measures the energy naturally available, e.g. passive microwave 21 radiometer, which measures the sky brightness temperature. Active remote sensing systems emits radiation 22 toward the target to be investigated. Such radiation is reflected from the target and detected back by the 23 remote system sensors, e. g. ceilometer emits a laser beam what is backscattered by atmospheric molecules, 24 aerosols and/or clouds, and posteriorly detected by the system.

25 The ground-based passive microwave radiometer (RPG-HATPRO G2, Radiometer Physics GmbH) is 26 situated at IISTA-CEAMA and it is part of the MWRnet [http://cetemps.aquila.infn.it/mwrnet/] (Rose et 27 al., 2005; Caumont et al., 2016). It has been operating in the scanning mode in automatic and continuous 28 mode since November 2011. The MWR measures the sky brightness temperature with a radiometric 29 resolution between 0.3 and 0.4 K root mean square error at 1 s integration time and uses direct detection 30 receivers within two bands: 22-31 GHz (water vapor - K band) and 51-58 GHz (oxygen - V band), which 31 are used for deriving relative humidity and temperature profiles, respectively. Relative humidity (RH) and 32 temperature profiles from brightness temperature are obtained by inversion algorithms described in Rose 33 et al. (2005). Due to the weighting functions of MWR exponentially decrease with height (Spänkuch et al., 34 1996), both profiles (temperature and relative humidity) have a range resolution varying between 10 and 35 200 m in the first 2 km and varying between 200 and 1000 m up to 10 km (Navas-Guzmán et al., 2014). Its 36 performance has been evaluated against a dataset of collocated radiosoundings (Bedoya-Velásquez et al., 37 2019).

3 University of Granada that coordinates a network combining ceilometers and Sun-photometers for the 4 characterization of atmospheric aerosol with the objective of obtaining reliable vertically resolved aerosol 5 optical properties in near real-time (Cazorla et al., 2017). It operates with a pulsed Nd:YAG laser emitting 6 at 1064 nm and a telescope with a field of view of 0.45 mrad. The energy per pulse is $8.4 \,\mu$ J with a repetition 7 frequency in the range of 5-7 kHz. The laser beam divergence is less than 0.3 mrad. The spatial and 8 temporal resolution used are 15 m and 15 s, respectively (Cazorla et al., 2017). The complete overlap of 9 the instrument is found around 1500 m above agl. The overlap is 90% complete at 555 m agl in accordance 10 with overlap function provided by the manufacturer. This equipment has been operating continuously since

The ceilometer Jenoptik model CHM15k also was operated at the IISTA-CEAMA station. The system is

part of the Iberian Ceilometer Network (ICENET), an initiative of the Atmospheric Physics Group of the

11 December 2012.

1

2

12 BC mass concentration was measured with a Multi-Angle Absorption Photometer (MAAP) (Thermo ESM

13 Andersen Instruments, Erlangen, Germany) operating by single-wavelength (637 nm) using a mass

14 absorption of 6.6 m^2g^{-1} (Müller et al., 2011) with a time resolution of 1 minute (del Águila et al., 2018).

15 Meteorological variables, including ambient temperature (T_{air}) , RH, horizontal wind speed (v) and rainfall,

16 were measured by an automatic weather station (HMP60, Vaisala) at IISTA-CEAMA. Data collected as 1

17 min averages were processed to calculate hourly means. T_{air} is acquired with an accuracy and precision of

18 0.6° C and 0.01° C, respectively. RH is detected with an accuracy of \pm 3%. The ground-based station is

equipped with a CM-11 pyranometer manufactured by Kipp & Zonen (Delft, The Netherlands) measuring

the SW solar irradiance data (310–3200 nm). The CM-11 pyranometer complies with the specifications for

21 the first-class WMO classification of this instrument (resolution better than \pm 5 W/m²), and the calibration

- 22 factor stability has been periodically checked against a reference CM-11 pyranometer (Alados-Arboledas
- et al., 1999).

24 All instruments described above are located on the IISTA-CEAMA terrace at approximately 12 m above

the surface. The IISTA-CEAMA is surrounded by buildings with similar heights, so that the urban canopyinfluence on measurements (such as shades) is negligible.

27 3 Methodology

The *PBLH* detection by ceilometer (*PBLH*_{ceilometer}) and *MWR* (*PBLH*_{MWR}) are based on profiles of two different observed quantities, namely attenuated backscatter and temperature, respectively. The algorithms

30 applied to each instrument are described below.

31 3.1 MWR Method

- 32 The algorithm applied to the MWR combines two methodologies that are the parcel method (PM) and
- temperature gradient method (*TGM*), in order to detect the $PBLH_{MWR}$ in convective (*CBLH_{MWR}*) and stable
- 34 (SBLH_{MWR}) situations, respectively. Firstly, the potential temperature profile $\theta(z)$ is derived from the
- temperature T(z) profile provided by the *MWR*, using the following equation:

$\theta(z) = T(z) + 0.0098 * z$ (1) (Stull, 2011)

where z is the altitude above the sea level, and 0.0098 K/m is the dry adiabatic lapse rate. The surface potential temperature $\theta(z_0)$, with z_0 the altitude where all systems are located, is obtained from the meteorological station co-located with the *MWR*. Although the equation 1 is applied only in dry process, due to conditions of low *RH* prevailing in Granada through the year (Bedoya-Velásquez et al., 2019), it was used in all cases.

The $\theta(z)$ profile is analyzed in order to label the situation as stable or unstable. Such analysis is made by comparing the surface potential temperature $\theta(z_0)$ with all points in $\theta(z)$ profile below 5 km. If all points are larger than $\theta(z_0)$ the situation is considered stable and *TGM* is applied, otherwise the situation is

assumed as unstable and *PM* is used instead (Fig. 1).

11 The *PM* only can be applied under unstable situations (i.e. for detecting *CBL*), as shown in Fig. 2. This 12 method determines $CBLH_{MWR}$ as the altitude where an air parcel with an ambient temperature *T* can rise 13 adiabatically from the ground by convection (Holzworth, 1964; Coen et al., 2014). This is equivalent to 14 affirm that $CBLH_{MWR}$ is the altitude (*z*) where the potential temperature $\theta(z)$ is equal to surface potential

15 temperature $\theta(z_0)$. Due to the variable vertical resolution of MWR, in some situations the *CBLH_{MWR}* is 16 obtained from linear interpolation.

17 TGM (Stull, 1988; Coen et al., 2014) detects the $PBLH_{MWR}$ under stable situations based on two definitions; 18 The first one relies on surface-based temperature inversion (*SBI*), and identifies the first height where *T* 19 decrease as a function of altitude (Fig. 3). The second one, based on the top of Stable Boundary Layer 20 (*TSBL*), determines the *PBLH* as the first height where θ does not change with z, in other words, $\frac{d\theta}{dz} =$ 21 0 (Fig. 3). In principle, this method detects the height where the *SBI* is situated in the *T* profile. Then, from 22 this height is identified the *TSBL* (*SBLH*_{MWR}) in the $\theta(z)$. Otherwise, *SBLH*_{MWR} is labelled as "not 23 identified".

24 3.2 Ceilometer gradient method

25 As mentioned before, ceilometers detect the PBLH using aerosol as tracer and aerosol backscatter as 26 observed quantity, similarly to lidar systems (Steyn et al., 1999), applying the same algorithms to both 27 instruments. However, the relatively low SNR of ceilometers represents a challenge for accurate PBLH 28 detection, mainly under complex scenarios, such as in the presence of several decoupled aerosol layers 29 (Steyn et al., 1999). Some widely applied algorithms based on significant changes in the ceilometer signal 30 profile are: Threshold Method [TM] (Boers and Eloranta, 1986), Variance Method [VM] (Haij et al., 2007), 31 Ideal Fit [IF] (Steyn et al., 1999; Eresmaa et al., 2006; Avolio et al., 2017), Wavelet Covariance Transform 32 [WCT] (Haij et al., 2007; Münkel et al., 2007; Uzan et al., 2016; Caicedo et al., 2017), Gradient Method 33 [GM] (Tsaknakis et al., 2011; Haman et al., 2012; Helmis et al., 2012; Stachlewskaet al., 2012; Wagner and 34 Schäfer, 2017) and Bl-View (combination between GM and IF) (Vaisala Oyj, 2011; Caicedo et al., 2017). 35 In addition, there is some algorithms, which are composed by several detection methods, like: Structure of 36 the Atmosphere [STRAT] (Morille et al., 2007) and PathfinderT URB (Poltera, 2017). Nonetheless, it is

- 1 necessary to note that all methods have advantages and disadvantages. A more detailed comparison among
- 2 the most applied methods can be found in Eresmaa et al. (2012) and Haeffelin et al. (2012).
- 3 In this work the GM is used to PBLH_{ceilometer} detection, because it does not need a complex selection of 4 specific parameters like as TM, IF or WCT, allowing the analysis of the 4-year time series in an automated 5 way and being able to provide results with good reliability (Tsaknakis et al., 2011), although it has 6 limitations mainly in complex atmospheric conditions (rainy and/or cloudy days) (Paul et al., 2010). GM 7 consists in detecting the minimum of gradient in the range corrected signal profile (RCS(z), defined as the8 ceilometer signal corrected by background radiation and the square of distance). Due to a typical reduction 9 of aerosol concentration in the free troposphere (FT) compared to PBL, this transition region 10 (corresponding to $PBLH_{ceilometer}$) is characterized by an abrupt reduction in RCS(z) signal.

11
$$PBLH_{ceilometer} = \min\left(\frac{d\overline{RCS}(z)}{dz}\right)$$
(2)

12 where the $\overline{RCS(z)}$ is the 10-min average of the RCS(z) profiles, in order to reduce the effect of noise in the 13 analyzed profiles. GM has some limitations in complex atmospheric conditions. Such situations generate ambiguities in the results, where PBLH_{ceilometer} might be over or underestimated (Caicedo et al., 2017). 14 Rainy, foggy, and cloudy days typically saturated the RCS above $200 \times 10^{-5} \text{ sr}^{-1} \text{ km}^{-1}$. Therefore, in the long-15 16 term study a threshold analysis is performed over the whole ceilometer data series, cases with attenuated 17 backscatter coefficients above the mentioned threshold are flagged and their profiles removed, as performed 18 by Kamp et al. (2010) and Caicedo et al. (2017). Since Saharan dust outbreaks are frequent in Granada, 19 Bravo-Aranda et al., 2017 used depolarization technique to distinguish between different layers (local 20 aerosol and Saharan dust) and to detect he PBLH. However, the ceilometer used in this work does not have 21 this capability and, therefore, cases of decoupled Saharan dust layers were manually identified using an 22 ancillary multi-wavelength lidar (MULHACEN) and, then, these cases were manually removed. Saharan 23 dust outbreak cases are more frequent in summer, representing around 30% of removed cases. Table 1 24 shows the percentage of removed profiles due to our quality control.

25 3.3 Variables for long term analysis

- 26 The statistical analysis of the *CBLH* includes the seasonal mean and the variables described below:
- Maximum of CBLH_{MWR} (CBLH^{Max}_{MWR}): The CBLH^{Max}_{MWR} represents the maximum daily value of
 CBLH_{MWR}.
- CBLH_{MWR} growth rate (CBLH^{GRate}_{MWR}): The CBLH^{GRate}_{MWR} measures the intensity of CBLH_{MWR}
 growth. It is obtained from a slope of a linear fit of the first CBLH detected after sunrise and the
 last point to reach 90% of daily CBLH_{MWR} maximum value, like as performed by Baars et al.
 (2008), Korhonen et al. (2014), Schween et al. (2014) and Pal et al. (2015).
- CBLH_{MWR} growth speed (CBLH^{GSpeed}_{MWR}): The CBLH^{GSpeed}_{MWR} represents the variation of CBLH_{MWR}
 during a determined time interval:

$$CBLH_{MWR}^{GSpeed} = CBLH_{MWR}(t_n) - CBLH_{MWR}(t_{n-1})$$
(3)

2 In this work, the $CBLH_{MWR}^{GSpeed}$ is calculated from the hourly mean difference of $CBLH_{MWR}$ in two 3 consecutive hours.

CBLH_{MWR} growth duration (*CBLH^{GDur}_{MWR}*): The *CBLH^{GDur}_{MWR}* represents the number of hours after sunrise where *CBLH^{GSpeed}_{MWR}* is larger than zero. In other words, it represents the interval time between the time of beginning of *CBLH_{MWR}* growth and when the *CBLH^{Max}_{MWR}* is reached (Pal et al., 2015).

```
8
```

1

9 4 PBL long term analysis

10 4.1 Study of the *PBL* based on *MWR*

MWR operates continuously, even under rainy and cloudy scenarios, with low interruption periods (which are associated with maintenance, calibration and power outage). With the exception of summer 2015, the maintenance and failures did not affect more than 27% of data and thus, the *MWR* measurement covers more than 70% of the period 2012-2016. Table 2 shows the distribution of data recovery rate per season and per year, and the percentage of measurement days.

16 The long-term study performed with MWR data at Granada is compared with same kind of study performed 17 at other locations, such as eastern part of the Highveld region (a large plateau in South Africa composed by 18 rural area with agriculture, mining and industrial activities) (Korhonen et al., 2017), Palaiseau (on the 19 Saclay plateau in a suburban environment surrounded by villages, agricultural fields and some roads) (Pal 20 et al., 2015), Jülich (situated in a flat region and surrounded by some hills at east and west, and it is district 21 of the fourth most populated city in Germany) (Schween et al., 2014), and Leipzig (a very populous city 22 situated in a rather flat terrain with some forest parks within its limits and surrounded by a relatively 23 unforested region) (Baars et al., 2008). Table 3 presents some characteristics of each campaign, e.g., 24 localization, instrument and algorithm.

- Figure 4 we show the average daily evolution of $PBLH_{MWR}$ since 2012 until 2016. The $PBLH_{MWR}$ has low values in winter, maximum values in summer, spring and autumn with intermediate values which is the
- 27 expected pattern being in agreement with the results showed by Pal et al. (2015) Palaiseau and Korhonenet
- 28 al. (2014) at Highveld. However, the difference in site latitudes, ground cover and city size result in distinct
- 29 average values. For example, the average maximum *PBLH* value in winter is larger in Highveld (1480 m)
- 30 than in Granada and Palaiseau (1000 m). In summer, Granada and Palaiseau have practically the same
- 31 average maximum values (around 2000 ± 700 m in Granada and 1900 ± 400 m in Palaiseau).
- Figure 5 shows daily $PBLH_{MWR}$ variation for each season for the whole period 2012-2016. As can be seen, in all seasons $PBLH_{MWR}$ shows a very clear diurnal cycle with low values in night and high ones in the early afternoon. Also, in all seasons, $PBLH_{MWR}$ has a similar behavior with low variability during the night

1 stable period, except in the summer, where the whiskers show larger range of values. Similar daily behavior

- 2 was observed by Pal et al. (2015) in Palaiseau, where, outside of summer, the average *PBLH* variation in
- 3 stable situations is around 200 m. During convective period (day time) the differences among the seasons
- 4 are more evident. This is in good agreement with other studies (e.g. Stull, 1988; van der Kamp and
- 5 McKendry, 2010; Seidel et al., 2012; Pal et al., 2015; Chen et al., 2016), showing that the average value of
- 6 *PBLH* is low in winter and reaches its apex in summer. The $PBLH_{MWR}$ in spring is similar to autumn, but
- 7 with slightly higher average and larger spread of values, as can be seen in the whisker boxes.
- The CBLH^{GSpeed}_{MWR} offers an interesting insight on the CBL behavior. Figure 6 presents average value of this 8 9 variable for all seasons in the period 2012-2016, from the first point where CBL begins to grow until the moment where it does not increase ($CBLH_{MWR}^{GSpeed} = 0$). All seasons have the same pattern, a continuous 10 growth of $CBLH_{MWR}^{GSpeed}$ in the first hours after sunrise due to increase of convective process. Then, around 11 10 UTC, the growth rate of CBLH^{GSpeed} begins to increase more slowly (in summer around 11 UTC) until 12 the moment where the $CBLH_{MWR}^{GSpeed}$ reach a stationary value (winter: 2.8 m/min, spring: 3.6 m/min, summer: 13 4.1 m/min and autumn: 3.1 m/min). After some moments, CBLH^{GSpeed} begins to decrease until zero, it is 14 15 the moment where the CBL is fully-developed and its height practically does not vary with the time.
- 16 Maximum values of $CBLH_{MWR}^{GSpeed}$ occur in summer when the diurnal cycle is wider (Fig. 6). This behavior 17 is due to the high incidence of solar radiation on summer which favors the surface heating, generating 18 stronger convective processes, as well as, higher period of variations in $CBLH_{MWR}$. Oppositely, winter with 19 less solar radiation (low incident angle and few hours of Sun) is characterized by smaller absolute values 20 of $CBLH_{MWR}^{GSpeed}$ and lower time of alterations in $CBLH_{MWR}$. Spring and autumn present similar intermediate 21 behaviors, with spring having a higher time of $CBLH_{MWR}$ growth.
- 22 Figure 7 shows the $CBLH_{MWR}^{Max}$ histograms for the four seasons, including the skewness (S_k) , the normalized 23 kurtosis (K_t) and the average (A_v) values. Winter and autumn histograms of $CBLH_{MWR}^{Max}$ have an asymmetric shape ($S_k^{winter} = 0.8$ and $S_k^{autumn} = 0.6$) biased toward small values, with A_v of 1000 ± 350 and 1300 ± 600 24 m, respectively. However, winter histogram present a higher K_t value ($K_t^{winter} = 0.2$) with respect to 25 autumn which presents a flatter distribution ($K_t^{autumn} = -0.5$). Spring has an almost symmetric and flat 26 distribution ($S_k^{spring} = 0.1$ and $K_t^{spring} = -0.6$) with average value of 1600 ± 500 m. Finally, summer has a 27 flattest distribution ($K_t^{summer} = -0.7$) with low asymmetry ($S_k^{summer} = 0.3$) and high number of cases 28 29 localized in higher bins and an average value of 1900 ± 700 m. We found similar seasonal pattern as those 30 determined in other cities like Leipzig (Baars et al., 2008), Jülich (Schween et al., 2014) and Palaiseau (Pal 31 et al., 2015). Nevertheless, the different cities present differences in the average and the range of the 32 variables used in PBL description, thus larger values are obtained at Granada while the lowest ones 33 correspond to Jülich.
- 34 The $CBLH_{MWR}^{GRate}$ is directly related with $CBLH_{MWR}^{GSpeed}$ and, consequently in the same way that $CBLH_{MWR}^{GSpeed}$
- 35 (Fig. 6), *CBLH*^{GRate} presents a large seasonal variability (Fig. 8). The colder seasons have the lower average
- 36 values as well as peaked distributions (higher values of K_t in winter K_t = 16.2) with cases concentrated in

1 left side of distribution, in other words, small values and vice versa in warmer season. Such behavior was expected due to the values of $CBLH_{MWR}^{GSpeed}$ observed in Figure 6 (lower in colder seasons and higher in 2 3 warmer one), which implies directly in the seasonality observed in Figure 8. Similar seasonal pattern in 4 CBLH_{MWR}^{GRate} was observed in Jülich (Schween et al., 2014) and Palaiseau (Pal et al., 2015), however CBLH_{MWR}^{GRate} at Granada presents greater variability among seasons. Thus, while the difference between 5 6 average values registered in summer and winter are around 80 and 100 m/h in Jülich and Palaiseau, 7 respectively, the difference in Granada was 180 m/h. This is associated to the large differences in 8 meteorological conditions between the winter and summer in Granada, as reflected for example in the 9 analysis of the temperature range and explained in Section 4.2.

10 The CBLH_{MWR}^{GDur} at Granada presents a clear seasonal pattern (Fig. 9). The average value in summer ($6.2 \pm$ 2.0 h) is larger than the average value in winter $(5.4 \pm 1.6 \text{ h})$. This is consequence of earlier sunrise and 11 later sunset in summer, enabling CBL grows during larger time. In winter and autumn, the CBLH^{GDur}_{MWR} 12 frequency distributions are more centered on low values, whereas in summer and spring they present a large 13 spread with negative skewness ($S_k^{spring} = -0.1$, $K_t^{spring} = -0.6$, $S_k^{summer} = -0.2$ and $K_t^{summer} = -0.8$). 14 15 Granada, Jülich and Palaiseau present similar seasonal patterns of CBLH^{GDur}, being the difference between 16 summer and winter around 0.9 h at Granada and 3.6 h at Paris, with Jülich in between. Such differences 17 evidence the influence of latitude in the variables describing *PBL* structure used in this statistical analysis.

Table 4 summarized the comparison among the values of CBLH^{Max}, CBLH^{GRate} and CBLH^{GDur} obtained at 18 Leipizig (Baars et al. 2008), Jülich (Schween et al. 2014), Palaiseau (Pal et al., 2015) and Granada. It is 19 20 evident the seasonal pattern of the different variables at all the stations. CBLH^{Max} presents similar values 21 and ranges at Granada and Palaiseau that are larger than those determined at the other stations with high 22 latitude. Concerning CBLH^{GRate}, it is clear that Granada presents larger values associated to the larger solar 23 irradiance all around the year. Furthermore, the values of Granada also present a larger seasonal range than 24 the other sites, thus suggesting really dry conditions in summer that favor strong convective processes shortly after sunrise. As mentioned previously, Granada presents values of CBLH^{Max} higher than Jülich 25 and similar to Palaiseau. This characteristic combined with the larger values of CBLHGRate results in the 26 CBLH^{GDur} smaller than that observed in the others two sites. 27

28 4.2 Links between PBL, BC surface concentrations and meteorological variables

Figure 10 shows the average daily pattern for T_{air} , RH and net radiation (R_n) together with the PBLH_{MWR}

30 for all seasons in the period 2012-2016. We have estimated R_n from the global solar irradiance using the

- seasonal model described in Alados et al. (2003) (Fig. 10). As expected, due to the different levels of
- 32 incidence of solar radiation, the higher values of R_n are registered in summer and they continuously
- 33 decrease until the winter. In all seasons, the higher values are observed in central region of day around
- 34 13:00 UTC, close to moment when $CBLH_{MWR}$ is fully developed. There is a clear link between the start of
- positive R_n and the starting time of $CBLH_{MWR}$ growth (Fig. 6), as well as, with $CBLH_{MWR}^{GRate}$ (Fig. 8) and
- 36 $CBLH_{MWR}^{GDur}$ (Fig. 9) in all seasons. The offset between $PBLH_{MWR}$ and R_n may be explained based on the

1 thermal and mechanical inertia of the atmosphere which requires some time to dissipate the convection

2 cells. The low variation of the $SBLH_{MWR}$ average is also associated with negative and practically constant

3 values of R_n .

4 During summer and spring, the T_{air} rising (triangles) occurs at approximately 06:00 UTC whereas this 5 increase is approximately at 07:30 UTC in winter and autumn. This delay between spring/summer and 6 autumn/winter is due to the changes in the insolation period (dotted yellow and red lines represent the 7 average hours of sunrise and sunset, respectively – Fig.10), R_n values, the influence of heat conductive 8 fluxes from/to the ground and the dry land with reduced vegetation typical of summer conditions.

- 9 Studies performed in other regions such as Palaiseau and Highveld (Pal et al., 2015; Kornohen et al., 2014) 10 reveal similar seasonal patterns for the T_{air} , although both the average air temperature and its interseasonal 11 range are different from site to site. For example, the average difference between maximum of Tair in 12 summer and winter is 20 K in Palaiseau, while in Highveld and Granada are 7 K and 26 K, respectively. 13 Such differences occur mainly due to latitude of each region, which influence the R_n and consequently the T_{air} . This justifies the small difference of CBLH^{Max} observed between summer and winter (around 500 m) 14 15 in Highveld, when compared to Palaiseau and Granada, where this variability is approximately 900 and 16 1000 m, respectively.
- 17 The surface thermal amplitude (STA - the difference between the average minimum value of T_{air} [$\overline{T_{air}^{min}}$] and average maximum value of the same variable $[\overline{T_{amax}}]$ at Granada is 9, 12, 9, and 8 K for spring, 18 19 summer, autumn, and winter, respectively. This seasonal change of STA justifies the pattern of CBLHGRate 20 exhibited in Table 4. As it can be seen, the warmest and coldest seasons have the largest and lowest STA, respectively. The STA and CBLH^{GRate} are directly related and such behavior is based on the intensification 21 22 of convective process caused by the increase of T_{air} , which is directly related with R_n and the latitude of each region, as aforementioned. A similar correlation occurs in Highveld, where low values of STA are 23 observed (STA_{summer} <9 K) and consequently small values of CBLH^{GRate} (median value of approximately 24 25 0.2 km/h) as compared to Granada.
- The *RH* at Granada presents its maximum in winter and its minimum summer (Fig. 10). At all seasons, the averages daily values of *RH* are anti-correlated with R_n , T_{air} and $PBLH_{MWR}$. Similar results also were observed by Pal et al. (2015), although values of *RH* in Palaiseau are higher than the values in Granada for all seasons, due to higher evapotranspiration and Atlantic air masses influence at Palaiseau. However, our analysis does not allow us to establish a direct relationship between the level of interference of *RH* in the behavior of *PBL*.
- Concentration of the pollutants at any given location is governed, among other factors, by boundary layer dynamics and wind strength. The *PBLH* and *v* represent the vertical and horizontal diffusion capabilities of pollutants, respectively. So, the combination of these two variables can play a major role in the dispersion of the pollutants. In this sense, the so-called ventilation coefficient (*VC*) is generally used to measure the capability of atmospheric vertical and horizontal dispersion of air pollutant (Nair et al., 2007; Gaur et al.,
- 37 2014; Tang et al., 2015; Zhu et al., 2018b). This VC ($m^2 s^{-1}$) is the product of the PBLH and v. Figure 11

1 shows the seasonal diurnal variability of BC concentration and VC for 2012-2016. The highest values of 2 BC were found in winter and the lowest values in summer. The highest BC concentration in winter is 3 associated with lower PBLH and increased anthropogenic emissions from domestic heating in season 4 (Lyamani et a., 2001; Titos et al., 2017). In all seasons, BC shows a very clear daily pattern with two peaks 5 coinciding with traffic rush hours and two minima at night and afternoon hours. Similar seasonal and diurnal 6 BC cycles were observed in the same study area by Lyamani et al. (2011) and Patron et al., (2016), which 7 were attributed to the variation in both PBL dynamics and anthropogenic activities. The first daily BC 8 maximum reaches values up to 7.5 μ g m⁻³ in winter and 4 μ g m⁻³ in summer, while the second BC maximum 9 presents values of 5 and 2 µg m⁻³, respectively. The minimum BC concentration observed at night and 10 early morning in all season is associated with a drastic reduction in anthropogenic activities (traffic). 11 However, the lower concentrations of BC observed around 15:00 UTC in all seasons are mainly linked to 12 the increase in VC. Nevertheless, the PBL dynamic alone cannot explain the daily and seasonal behaviors 13 of BC and other factors such as change in traffic emissions must be taken into account in order to better 14 understand BC behavior. This fact is clearly illustrated in Figure 12, which shows BC concentration versus 15 VC. As can be seen in this figure there is no clear relation between BC and VC. However, in all season and for $BC > 5 \ \mu g \ m^{-3}$, the increase in BC concentration is associated to the decrease in VC and $PBLH_{MWR}$ (Fig. 16 17 5). This was also observed by other authors in other urban areas (e.g. Petäjäet al., 2016 and Ding et al., 18 2016). Thus, the reduction in atmospheric ventilation leads to increased BC concentration that leads to air 19 quality deterioration. Using model simulations and various field observations, Ding et al., (2016) 20 demonstrated that BC induces heating in the PBL which results in decreased surface heat flux and 21 substantially depresses the development of PBL and consequently enhances surface BC concentration. 22 Therefore, reduction of BC emissions is an efficient way to improve air quality.

23 4.3 Study of the PBL based on ceilometer: Searching the Residual Layer

The ceilometer located at IISTA-CEAMA measured without failures during 96% of the days from January 25 2013 until December 2016. However, the number of successful *PBLH* retrievals with the ceilometer (Table 26 5) are lower than those retrieved with the *MWR* due to influence of atmospheric conditions in aerosol 27 backscatter profiles (Eresma et al., 2006), preventing *PBLH_{Ceilometer}* detection under complex situations 28 (rainy, clouds, Saharan dust layers). These cases were flagged and removed as explained in section 3.1.2. 29 The lowest retrieval rate is registered in autumn, due to the rain and still the occurrence of Saharan mineral 20 dust outbreaks.

- 31 Figure 13 shows the average daily *PBLH_{Ceilometer}* variation from 2013 until 2016. As mentioned before,
- 32 the ceilometer detects the height of Residual Layer (*RLH_{ceilometer}*) between sunset and sunrise. Similarly
- 33 to $SBLH_{MWR}$, $RLH_{Ceilometer}$ is influenced by the low values of R_n and presents low variability (often
- 34 remaining around 1000 m agl), which is a common characteristic for all seasons. GM allows the
- 35 *CBLH_{ceilometer}* detection when the *CBL* is fully developed, reaching the previous-day *RL* height. Thus, the
- 36 variation observed in this period is large, mainly in summer, when STA and R_n reaches the largest values.
- 37 In addition, the values of $CBLH_{Ceilometer}$ between 13 and 16 UTC are close of the values of $CBLH_{MWR}$ in

this same period (Fig. 4), as expected. Tang et al. (2016) observed that windy days can influence the
ceilometers detection, causing an overestimation of *PBLH* detection. These events can have influenced the *CBLH* estimation from ceilometer data resulting in the average values higher that one obtained from MWR
data.

5 The average values of $PBLH_{Ceilometer}$ and $PBLH_{MWR}$ are shown in Figure 14. Only days with these two 6 instruments simultaneously operating are considered. This combination allow for observing the seasonal 7 behavior of the complex PBL structure based on the complementary information provided by 8 RLH_{Ceilometer}, CBLH_{Ceilometer}, CBLH_{MWR} and SBLH_{MWR}, since the presence of these variables is related 9 with the PBL daily cycle presented in previous sections. The same daily pattern described in section 4.1 is 10 observed, as well as the seasonality demonstrated in Figures 4 and 13 for PBLH_{MWR} and PBLH_{Ceilometer}, 11 respectively. In addition, from the Figure 14 is possible to observe the average RL depth 12 $(\Delta PBLH = PBLH_{Ceilometer} - PBLH_{MWR})$ for all seasons from 2013 until 2016. During period of SBL, 13 the RL depth is between 700 and 800 m for all seasons, however in the course of CBL growth, RL depth 14 decreases until the moment where it is broken by the CBL (around 10 UTC).

15 5 Summary and conclusions

16 This paper has shown a study about PBLH obtained from the combination of ceilometer and MWR

17 measurements. CBLH_{ceilometer} was obtained by the gradient method, which detects the top of aerosol layer,

18 which corresponds to the top of the convective boundary layer if *PBL* is fully developed and to the top of

19 the residual layer otherwise and, $PBLH_{MWR}$ was obtained by means of an algorithm that combines the

20 parcel method and temperature gradient method, allowing to differentiate between stable boundary layer

21 and convective boundary layer cases.

22 The long-term analyses allowed for providing a statistical study of the PBLH at a middle-latitude urban site 23 in Granada, which contributes to increase the general knowledge on the PBL pattern in Europe at different 24 latitudes reported in previous studies, such as Palaiseau, Highveld, and Jülich. We concluded the following 25 features for the *PBL* of Granada: daily maximum convective boundary layer height $(1600 \pm 500 \text{ m in})$ 26 Spring, 2000 ± 700 m in Summer, 1300 ± 600 m in Autumn, 1000 ± 350 m in Winter), convective boundary 27 layer height growth rate $(300 \pm 160 \text{ m/h in Spring}, 400 \pm 300 \text{ m/h in Summer}, 230 \pm 140 \text{ m/h in Autumn},$ 28 220 ± 140 m/h in Winter) and convective boundary layer height growth duration (6.1 ± 1.8 h in Spring, 6.2 29 \pm 1.9 h in Summer, 5.4 \pm 1.7 h in Autumn, 5.3 \pm 1.5 h in Winter), which demonstrates the PBL seasonality 30 in this region and as the surface meteorological variables, involved in the thermodynamic processes, 31 correlated with the PBLH, mainly net radiation and surface thermal amplitude.

Since the *PBL* dynamics is an important meteorological factor that affects the vertical diffusion of atmospheric pollutants influencing the air quality, we have also analyzed back carbon concentration as a tracer of the traffic emissions to characterize the air pollution at our urban site, along with the conventional meteorological variables. We have used the ventilation coefficient to take into account the capability of the atmosphere for the pollutant diffusion. We concluded that the lowest concentrations of black carbon found in all seasons during central hours of the day coincide with the highest values of *VC* (4000 m²·s⁻¹ in summer and 1600 m² s⁻¹ in winter). However, due to weak v and low values for *PBL*, a low vertical (convective) and horizontal mixing of aerosol particles are generated at surface level, with the highest values of black carbon in winter coinciding to the rush traffic hours (values up to 7-5 µg m⁻³ in the morning and 5 µg m⁻³ in the evening). This combination of variables allows for concluding the variation of black carbon concentration during the different seasons is directly related with the seasonal behavior of the *PBLH* and, consequently, the ventilation coefficient.

7 We also concluded that only the residual layer height is not affected by the seasonality of meteorological 8 variables, being its value practically constant (around 1000 m agl) through the year. In this regard, we have 9 shown how the combination of the $PBLH_{MWR}$ and $PBLH_{Ceilometer}$ during stable conditions, and until around 10 UTC in convective situations, allowed the retrieval of the residual layer depth, opening the door to 11 further investigations about the air quality due to the potential entrainment of the residual layer aerosol load 12 in the next convective boundary layer.

This study has demonstrated the feasibility of long-term *PBLH* analysis using ceilometer and *MWR*, enabling the characterization of this variable and a better comprehension about its behavior, complex structure and how seasonality, geographical differences and surface variables can influence it, along with the relevance of the role of PBL dynamics in the ability to diffuse atmospheric pollutants. In the future we will intend to extend this study to other regions and synergistically aggregate other remote sensing systems.

18 Acknowledgements

19 This work was supported by the Spanish Ministry of Economy and Competitiveness through projects 20 CGL2015-73250-JIN, CGL2016-81092-R, CGL2017-83538-C3-1-R and CGL2017-90884-REDT, and by 21 the University of Granada through "Plan Propio. Programa 9 Convocatoria 2013. The financial support for 22 EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 23 research and innovation program through project ACTRIS-2 (grant agreement No 654109). The authors 24 thankfully acknowledge the FEDER program for the instrumentation used in this work and the University 25 of Granada that supported this study through the Excellence Units Program. COST Action TOPROF 26 (ES1303), supported by COST (European Cooperation in Science and Technology), is also acknowledged.

27 References

- Alados, I., Foyo-Moreno, I., Olmo, F. J., Alados-Arboledas, L, 2003. Relationship between net radiation
 and solar radiation for semi-arid shrub-land. Agr. Forest Meteorol., 116, 221-227.
- Alados-Arboledas, L., Olmo, F. J., Alados, I., Perez, M., 1999. Parametric models to estimate
 photosynthetically active radiation in Spain. Agric. For. Meteorol., 101, pp. 187-201
- 32 Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J., Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo,
- 33 F., 2011.Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar,
- and star-and sun-photometry, Geophys. Res.Lett. 38, L01807, doi: 10.1029/2010GL045999.

- 1 Avolio, E., Federico, S., Miglietta, M. M., Feudo, T. Lo, Calidonna, C. R., Sempreviva, A. M., 2017.
- 2 Sensitivity analysis of WRF model PBL schemes in simulating boundary- layer variables in southern Italy :
- 3 An experimental campaign. Atmos. Res., 192, 58–71.
- 4 Baars, H., Ansmann, a., Engelmann, R., Althausen, D., 2008. Continuous monitoring of the boundary-
- 5 layer top with lidar. Atmos. Chem. Phys., 8(3), 10749–10790. http://doi.org/10.5194/acpd-8-10749-2008.
- 6 Bedoya-Velásquez, A.E., Navas-Guzmán, F., de Arruda Moreira, G., Román, R., Cazorla, A., Ortiz-
- 7 Amezcua, P., Benavent-Oltra, J.A., Alados-Arboledas, L., Olmo-Reyes, F.J., Foyo-Moreno, I., Montilla-
- 8 Rosero, E., Hoyos, C.D., Guerrero-Rascado, J.L., 2019. Seasonal analysis of the atmosphere during five
- 9 years by using microwave radiometry over a mid-latitude site, Atmos. Res., 218, pp. 78-89,
- 10 https://doi.org/10.1016/j.atmosres.2018.11.014.
- 11 Bianco, L., Cimini, D., Marzano, F. S., Ware, R., 2005. Combiningmicrowave radiometer and wind profiler
- 12 radar measurements for high-resolution atmospheric humidity profiling. J. Atmos. Ocean. Tech., 22, 949–
- **13** 965.
- Boers, R., Eloranta, E. W., 1986. Lidar Measurements of the Atmospheric Entrainment Zone and the
 Potential Temperature Jump Across the Top of the Mixed Layer. Bound-Lay. Meteorol., 34, 357-37.
- 16 Bravo-aranda, J. A., Moreira, G. de A., Navas-Guzmán, F., Granados-Muñoz, M. J., Guerrero-Rascado, J.
- 17 L., Pozo-Vázquez, D., Arbizu-Barrena, C., 2017. A new methodology for PBL height estimations based on
- 18 lidar depolarization measurements : analysis and comparison against MWR and WRF model-based results.
- 19 Atmos. Chem. Phys., 17, 6839–6851. https://doi.org/10.5194/acp-17-6839-201.
- Caicedo, V., Rappenglück, B., Lefer, B., Morris, G., Toledo, D., Delgado, R., 2017. Comparison of aerosol
 lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data.
 Atmos. Chem. Phys., 10, 1609–1622. https://doi.org/10.5194/amt-10-1609-2017.
- 23 Caumont, O., Cimini, D., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Buffa, F., Ferrario, M.E., Haefele,
- A., Huet, T., Madonna, F., Pace, G., 2016. Assimilation of humidity and temperature observations retrieved
 from ground-based microwave radiometers into a convective-scale NWP model. Q. J. Roy. Meteor. Soc.,
- **26** 142 (700), 2692-2704.
- 27 Cazorla, A., Casquero-Vera, J. A., Román, R., Guerrero-Rascado, J. L., Toledano, C., Cachorro, V. E.,
- 28 Orza, J. A. G., Cancillo, M. L., Serrano, A., Titos, G., Pandolfi, M., Alastuey, A., Hanrieder, N., Alados-
- 29 Arboledas, L., 2017. Near-real-time processing of a ceilometer network assisted with sun-photometer data:
- 30 monitoring a dust outbreak over the Iberian Peninsula, Atmos. Chem. Phys., 17, 11861-11876,
- 31 https://doi.org/10.5194/acp-17-11861-2017.
- 32 Cimini, D., Angelis, F. de, Dupont, J.-C., Pal, S., Haeffelin, M., 2013. Mixing layer height retrievals by
- 33 multichannel microwave radiometer observations. Atmos. Meas. Tech., 6, 2941–2951.
 34 http://doi.org/10.5194/amt-6-2941-2013.

- Cimini, D., Nelson, M., Güldner, J., Ware, R., 2015.Forecast indices from ground-based microwave
 radiometer for operational meteorology. Atmos. Meas. Tech., 8,315 333.
- 3 Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmon, C. S. B., Grossman-Clarke, S., Loridan, T.,

4 Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X.,

5 Wyszogrodzki, A. A., Zhang, C., 2011. The integrated WRF/urban modelling system: development,

6 evaluation, and applications to urban environmental problems. Int. J.Climatol., 31, 2, 273-288.

7 Chen, X., Skerlak, B., Rotach, M. W., Añel, J. A., Su, Z., Ma, Y., Li, M., 2016. Reasons for the extremely

8 high-ranging planetary boundary layer over the western tibetan plateau in winter. J. Atmos. Sci., 73, 2021

- 9 2038DOI: 10.1175/JAS-D-15-0148.1.
- 10 Coen, M. C., Praz, C., Haefele, A., Ruffieux, D., Kaufmann, P., Calpini, B., 2014. Determination and

11 climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing

12 measurements as well as by the COSMO-2 model. Atmos. Chem. Phys., 14, 13205-13221.

- 13 https://doi.org/10.5194/acp-14-13205-2014.
- 14 Córdoba-Jabonero, C., Sorribas, M., Guerrero-Rascado, J. L., Adame, J. A., Hernández, Y., Lyamani,
- 15 H., Cachorro, V., Gil, M., Alados-Arboledas, L., Cuevas, E., de la Morena, B., 2011. Synergetic monitoring
- 16 of Saharan dust plumes and potential impact on surface: A case study of dust transport from Canary Islands
- to Iberian Peninsula. Atmos. Chem. Phys., 11, 7, 3067-3091.
- 18 de Arruda Moreira, G., Guerrero-Rascado, J. L., Bravo-Aranda, J. A., Benavent-Oltra, J. A., Ortiz-

19 Amezcua, P., Róman, R., Bedoya-Velásquez, A. E., Landulfo, E., Alados-Arboledas, L. , 2018. Study of

20 the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in

- 21 Southern Iberian Peninsula. Atmos.Res., 213, 185-195.
- 22 de Arruda Moreira, G., Guerrero-Rascado, J. L., Benavent-Oltra, J. A., Ortiz-Amezcua, P., Román, R., E.
- 23 Bedoya-Velásquez, A., Bravo-Aranda, J. A., Olmo Reyes, F. J., Landulfo, E., and Alados-Arboledas, L.,
- 24 2019: Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar,
- aerosol elastic lidar and microwave radiometer, Atmos. Chem. Phys., 19, 1263-1280,
 https://doi.org/10.5194/acp-19-1263-2019.
- 27 del Águila, A., Sorribas, M., Lyamani, H., Titos, G., Olmo, F., Arruda-Moreira, G., Yela, M., Alados-
- 28 Arboledas, L., 2018. Sources and physicochemical characteristics of submicron aerosols during three

29 intensive campaigns in Granada (Spain), Atmos. Res., 213, 398-410,

- 30 https://doi.org/10.1016/j.atmosres.2018.06.004.
- Deardorff, J. W., Willis, G. E., Stockton, B. H., 1980. Laboratory studies of the entrainment zone of a
 convectively mixed layer. J. Fluid. Mech., 100, 41-64.
- 33 Di Giuseppe, F., Riccio, A., Caporaso, L., Bonafé, G., Gobbi, G. P., Angelini, F., 2012. Automatic detection
- 34 of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model.
- 35 Q. J. Roy. Meteor. Soc., 138, 649–663. https://doi.org/10.1002/qj.964.

- 1 Ding, A.J., Huang, X., Nie, W., Sun, J.N., Kerminen, V.M., Petäjä, T., Chi, X.G., 2016. Enhanced haze
- 2 pollution by black carbon in megacities in China. Geophys. Res. Lett. 43 (6), 2873–2879.
- 3 Eresmaa, N., Karppinen, A., Jofre, S. M., Räsänen, J. V., Talvitie, H., 2006. Mixing height determination
- 4 by ceilometer. Atmos. Chem. Phys., 6, 1485-1493, https://doi.org/10.5194/acp-6-1485-2006.
- 5 Eresmaa, N., Härkönen, J., Joffre, S. M., Schultz, D. M., Karppinen, A., Kukkonen, J.A., 2012. three-step
- 6 method for estimating the mixing height using ceilometer data from the Helsinki testbed. J. Appl. Meteorol.
- 7 Clim., 51, 2172–2187.
- 8 Foyo-Moreno, I., Alados, I., Antón, M., Fernández-Gálvez, J., Cazorla, A. and Alados-Arboledas, L, 2014.
- 9 Estimating aerosol characteristics from solar irradiance measurements at an urban location in southeastern
 10 Spain. J. Geophys, Res-Atmos., 119 (4), 1845-1859.
- 11 Gaur, A., Tripathi, S.N., Kanawade, V.P., Tare, V., Shukla, S.P., 2014. Four-year measurements of trace
- 12 gases (SO2, NOx, CO, andO3) at an urban location, Kanpur, in Northern India. J. Atmos. Chem. 71, 283–
- **13** 301.
- 14 Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H.,
- 15 Fernández-Gálvez, J., Alados-Arboledas, L., 2012. Automatic determination of the planetary boundary
- 16 layer height using lidar: One-year analysis over southeastern Spain. J. Geophys. Res-Atmos., 117, D18208,
- 17 https://doi.org/10.1029/2012JD017524.
- 18 Granados-Muñoz M.J, Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H.,
- 19 Valenzuela, A., Titos, G., Fernández-Gálvez, J., Alados-Arboledas, L., 2015. Hygroscopic growth of
- 20 atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected
- 21 cases in southeastern Spain. Atmos. Meas. Tech., 8, 705–718.
- 22 Granados-Muñoz, M.J., Bravo-Aranda, J.A., Baumgardner, D., Guerrero-Rascado, J.L., Pérez-Ramírez,
- 23 D., Navas-Guzmán, F., Veselovskii, I., Lyamani, H., Valenzuela, A., Olmo, F.J., Titos, G., Andrey,
- 24 J., Chaikovsky, A., Dubovik, O., Gil-Ojeda, M., Alados-Arboledas, L., 2016. A comparative study of aerosol
- 25 microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements
- 26 during a Saharan dust event. Atmos. Meas. Tech., 9, 3, 1113-1133.
- Guerrero-Rascado, J.L., Ruiz, B., Alados-Arboledas, L., 2008a. Multi-spectral Lidar characterization of the
 vertical structure of Saharan dust aerosol over southern Spain. Atmos. Environ., 42, 11, 2668-268.
- 29 Guerrero-Rascado, J.L., Ruiz, B., Chourdakis, G., Georgoussis, G., Alados-Arboledas, L., 2008b.One year
- 30 of water vapour Raman lidar measurements at the Andalusian Centre for Environmental Studies (CEAMA),
- 31 Int. J. Remote Sens., 29, 5437–5453.
- 32 Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G. P., Lolli, S., O'Dowd, C. D.,
- 33 Sauvage, L., Xueref- Rémy, L., Wastine, B., and Feist, D. G., 2012. Evaluation, of mixing- height retrievals
- 34 from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.
- **35** Lay. Meteorol., 143, 49–75.

- 1 Haij M, Wauben W, Klein Baltink H., 2007. Continuous mixing layer height determination using the LD-
- 2 40 ceilometer: a feasibility study. KNMI scientific report, Royal Netherlands Meteorological Institute.
- 3 Hennemuth.
- 4 Haman, C. L., Lefer, B., Morris, G. A., 2012. Seasonal variability in the diurnal evolution of the boundary
- 5 layer in a Near-Coastal: Urban environment. J. Atmos. Ocean. Tech., 29(5), 697–710.
 6 https://doi.org/10.1175/JTECH-D-11-00114.1.
- Hamilton, R.S., Mansfield, T.A., 1991. Airborne particulate elemental carbon-Its sources, transport and
 contribution to dark smoke and soiling. Atmos. Environ., 25A, 715–723.
- 9 He, Q. S., Mao, J. T., Chen, J. Y., Hu, Y. Y., 2006. Observational and modeling studies of urban
- 10 atmospheric boundary-layer height and its evolution mechanisms. Atmos. Environ., 40(6), 1064–1077.
- 11 https://doi.org/10.1016/j.atmosenv.2005.11.016.
- 12 Helmis C. G., Sgouros, G., Tombrou, M., Schäfer, K., Münkel, C., Bossioli E., Dandou, A. A.,
- 13 2012.Comparative study and evaluation of mixing-height estimation based on sodar-RASS, ceilometer data
- 14 and numerical model simulations. Bound. Lay. Meteorol, 145:507–526.
- Holzworth, C. G., 1964. Estimates of mean maximum mixing depths in the contiguous United States.
 Monthly Weather Review, 92, 235–242.
- 17 INE Instituto Nacional de Estadística, 2018. Demography and population. Available at
 18 http://www.ine.es/dynt3/inebase/en/index.htm?padre=522. Accessed 13 Jun. 2018.
- Kamp, D. van der, McKendry, I., 2010. Diurnal and Seasonal Trends in Convective Mixed-Layer Heights
 Estimated from Two Years of Continuous Ceilometer Observations in Vancouver, BC. Bound. Lay.
 Meteorol., 137(3), 459–475. https://doi.org/10.1007/s10546-010-9535-7.
- Kim, D.-K., Lee, D.-I., 2015. Atmospheric thickness and vertical structure properties in wintertime
 precipitation events from microwave radiometer, radiosonde and wind profiler observations. Meteorol.
 Appl., 22(3), 599–609. https://doi.org/10.1002/met.1494.
- 25 Ketterer, C., Zieger, P., Bukowiecki, N., Collaud Coen, M., Maier, O., Ruffieux, D., & Weingartner, E.,
- 26 2014. Investigation of the Planetary Boundary Layer in the Swiss Alps Using Remote Sensing and In Situ
- 27 Measurements. Bound. Lay. Meteorol., 151(2), 317–334. https://doi.org/10.1007/s10546-013-9897-8.
- 28 Korhonen, K., Giannakaki, E., Mielonen, T., Pfüller, A., Laakso, L., Vakkari, V., Baars, H., Engelmann,
- 29 R., Beukes, J. P., Van Zyl, P. G., Ramandh, A., Ntsangwane, L., Josipovic, M., Tiitta, P., Fourie, G.,
- 30 Ngwana, I., Chiloane, K., Komppula, M., 2014. Atmospheric boundary layer top height in South Africa:
- 31 measurements with lidar and radiosonde compared to three atmospheric models. Atmos. Chem. Phys.,
- 32 14(8), 4263–4278. https://doi.org/10.5194/acp-14-4263-2014.
- 33 Lyamani, H., Olmo, F. J., Alcántara, A., Alados-Arboledas, L., 2006a. Atmospheric aerosols during the
- 34 2003 heat wave in southeastern Spain I: Spectral optical depth. Atmos. Environ., 40, 6453–6464.

- 1 Lyamani, H., Olmo, F. J., Alcántara, A., Alados-Arboledas, L., 2006b. Atmospheric aerosols during the
- 2 2003 heat wave in southeastern Spain II: microphysical columnar properties and radiative forcing, Atmos.
- **3** Environ., 40, 6465–6476.
- 4 Lyamani, H., F.J. Olmo, I. Foyo, L. Alados-Arboledas. Black carbon aerosols over an urban area in south-
- 5 eastern Spain: Changes detected after the 2008 economic crisis. Atmospheric Environment, Volume 45,
- 6 Issue 35, Pages 6423-6432, 2011. http://dx.doi.org/10.1016/j.atmosenv.2011.07.063.
- 7 Lyamani, H., Olmo, F. J., Alados-Arboledas, L., 2010. Physical and optical properties of aerosols over an
 8 urban location in Spain: seasonal and diurnal variability. Atmos. Chem. Phys., 10, 239–254,
 9 doi:10.5194/acp-10-239-2010.
- 10 Lyamani, H., Fernández-Gálvez, J. Pérez-Ramírez, D., Valenzuela, A., Antón, M., Alados, I., Titos, G.,

11 Olmo, F.J., Alados-Arboledas., L., 2012. Aerosol properties over two urban sites in South Spain during an

- 12 extended stagnation episode in winter season. Atmos. Environ., 62, 424-432.
- 13 Morille, Y., Haeffelin, M., Drobinski, P., Pelon, J., 2007. STRAT: An Automated Algorithm to Retrieve
- 14 the Vertical Structure of the Atmosphere from Single-Channel Lidar Data. J. Atmos. Ocean. Tech., 24(5),
- 15 761–775. http://doi.org/10.1175/JTECH2008.1.
- Münkel, C., Eresmaa, N., Räsänen, J., Karppinen, A., 2007. Retrieval of mixing height and dust
 concentration with lidar ceilometer. Bound. Lay. Meteorol., 124, 117-128, doi:10.1007/s10546-006-91033.
- 19 Nair, V.S., Moorthy, K.K., Alappattu, D.P., Kunhikrishnan, P.K., George, S., Prabha, R., Nair, P.R., Babu,
- 20 S.S., Abish, B., Satheesh, S.K., Tripathi, S.C., Niranjan, K., Madhavan, B.L., Srikant, V., Dutt, C.B.S.,
- 21 Badarinath, K.V.S., Reddy, R.R., 2007.Wintertime aerosol characteristics over the Indo-Gangetic Plain
- 22 (IGP): impacts of local boundary layer processes and long-range transport. J. Geophys. Res. 112, D13205.
- Navas-Guzmán, F., Bravo-Aranda, J.A., Guerrero-Rascado, J.L, Granados-Muñoz, M.J, and AladosArboledas, L., 2013. Statistical analysis of aerosol optical properties retrieved by Raman lidar over
- 25 Southeastern Spain. Tellus B, 65, 21234.
- 26 Navas-Guzmán, F., Fernández-Gálvez, J., Granados-Muñoz, M.J, Guerrero-Rascado, J.L., Bravo-Aranda,
- 27 J.A., and Alados-Arboledas, L., 2014. Tropospheric water vapor and relative humidity profiles from lidar
- and microwave radiometry. Atmos. Meas. Tech., 7, 1201-1211.
- 29 Ortiz-Amezcua, P., Guerrero-Rascado, J.L., Granados-Muñoz, M.J., Bravo-Aranda, J.A., Alados-
- 30 Arboledas, L., 2014. Characterization of atmospheric aerosols for a long range transport of biomass burning
- 31 particles from canadian forest fires over the southern iberian peninsula in july 2013, Optica Pura y Aplicada,
- **32** 47(1), 43-49.
- 33 Ortiz-Amezcua, P., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Benavent-Oltra, J. A., Böckmann,
- 34 C., Samaras, S., Stachlewska, I. S., Janicka, Ł., Baars, H., Bohlmann, S., and Alados-Arboledas, L., 2017.
- 35 Microphysical characterization of long-range transported biomass burning particles from North America at
- 36 three EARLINET stations, Atmos. Chem. Phys., 17, 5931-5946, doi:10.5194/acp-17-5931-2017.

- Pakkanen, T.A., Kerminen, V.M., Ojanena, C.H., Hillamo, R.E., Aarnio, P.,Koskentalo, T., 2000.
 Atmospheric black carbon in Helsinki. Atmos. Environ. 34, 1497-1506.
- 3 Pal, S., Behrendt, A. and Wulfmeyer, V., 2010. Elastic-backscatter-lidar-based characterization of the
- 4 convective boundary layer and investigation of related statistics. Ann Geophys., 28, 825-847.

Pal, S., Haeffelin, M., and Batchvarova, E., 2013. Exploring a geophysical process-based attribution
technique for the determination of the atmospheric boundary layer depth using aerosol lidar and nearsurface meteorological measurements. J. Geophys. Res-Atmos., 118(16), 9277–9295.
https://doi.org/10.1002/jgrd.50710.

- 9 Pal, S., and Haeffelin, M., 2015. Forcing mechanisms governing diurnal, seasonal, and interannual
- 10 variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site
- 11 near Paris. J. Geophys. Res-Atmos., 120, 11,936–11,956, doi:10.1002/2015JD023268.
- 12 Papalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A.,
- 13 Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L.,
- 14 Nicolae, D., Wiegner, M., 2014. EARLINET: towards an advanced sustainable European aerosol lidar
- 15 network. Atmos. Meas. Tech., 7, 2389-2409, doi:10.5194/amt-7-2389-2014.
- 16 Patrón, D., Lyamani, H., Titos, G., Casquero-Vera, J.A., Cardell, C., Močnik, G., Alados-Arboledas, L.,
- 17 Olmo, F. J., 2017. Monumental heritage exposure to urban black carbon pollution. Atmos. Environ., 170,
- 18 22-32, doi: 10.1016/j.atmosenv.
- Petäjä, T., Järvi, L., Kerminen, V.M., Ding, A.J., Sun, J.N., Nie, W., Zilitinkevich, S., 2016. Enhanced air
 pollution via aerosol-boundary layer feedback in China. Sci. Rep. 6.
- 21 Poltera, Y., Martucci, G., Coen, M. C., Hervo, M., Emmenegger, L., Henne, S., Brunner, D., Haefele, A.,
- 22 2017. PatjfinderTURB: an automatic boundary layer algorithm. Development, validation and application
- to study the impact on in situ measurements at the Jungfraujoch. Atmos. Chem. Phys., 17, 10051-10070,
- 24 https://doi.org/10.5194/acp-17-10051-2017.
- Rose, T., Creewll, S., Löhnert, U., Simmer, C., 2005 A network suitable microwave radiometer for
 operational monitoring of cloudy atmosphere. Atmos. Res., 75, 3, 183 200.
- 27 Schween, J. H., Hirsikko, A., Löhnert, U., Crewell, S., 2014. Mixing-layer height retrieval with ceilometer
- and Doppler lidar: from case studies to long-term assessment. Atmos. Meas. Tech., 7, 11, p. 3685–3704.
- Seidel, D. J., Ao, C. O., Li, K., 2010. Estimating climatological planeratry boundary layer heights from
 radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113,
 doi:10.1029/2009JD013680.
- 32 Spänkuch, D., W. Döhler, J. Güldner, and A. Keens, 1996: Ground-based passive atmospheric
- 33 remote sounding by FTIR emission spectroscopy—First results with EISAR. Contrib. Atmos.
- 34 Phys., 69, 97–111.

- 1 Steyn, D.G., Baldi, M., Hoff, R.M., 1999. The detection of mixed layer depth and entrainment zone
- 2 thickness from lidar backscatter profiles. J. Atmos. Ocean. Tech., 16, 953–959.
- 3 Stachlewska, I. S., Piądłowski, M., Migacz, S., Szkop, A., Zielińska, A. J., Swaczyna, P. L., 2012
- 4 Ceilometer Observations of the Boundary Layer over Warsaw, Poland. Acta Geophys., Vol. 60, No. 5,
- 5 1386-1412.
- 6 Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology, vol. 13, Kluwer Academic Publishers,
- 7 the Netherlands, Dordrecht/Boston/London.
- 8 Stull, R. B., 2011. Meteorology for Scientists and Engineers, 3rd Edition, Uni. Of British Columbia.
- 9 T. Müller, J.S. Henzing, G. De Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud
- 10 Coen, J.E. Engström, C. Gruening, R. Hillamo, A. Hoffer, K. Imre, P. Ivanow, G. Jennings, J.Y. Sun, N.
- 11 Kalivitis, H. Karlsson, M. Komppula, P. Laj, S.-M. Li, C. Lunder, A. Marinoni, S. Martins Dos Santos, M.
- 12 Moerman, A. Nowak, J.A. Ogren, A. Petzold, J.M. Pichon, S. Rodriquez, S. Sharma, P.J. Sheridan, K.
- 13 Teinilä, T. Tuch, M. Viana, A. Virkkula, E. Weingartner, R. Wilhelm, and Y.Q. Wang. "Characterization
- 14 and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops". In:
- 15 Atmospheric Measurement Techniques 4.2 (2011), pp. 245–268. DOI: 10.5194/amt-4-245-2011.
- 16 Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin,
- 17 J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China,
- 18 Atmos. Chem. Phys., 16, 2459-2475, 2016.
- 19 Titos, G., Foyo-Moreno, I., Lyamani, H., Querol, X., Alastuey, A., Alados-Arboledas, L., 2012. Optical
- 20 properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol
- 21 mass scattering and absorption efficiencies. J. Geophys. Res-Atmos., 117, D04206,
- **22** doi:10.1029/2011JD016671.
- 23 Titos, G., Jefferson, A., Sheridan, P. J., Andrews, E., Lyamani, H., Alados-Arboledas, L., Ogren, J. A.,
- 24 2014. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmos. Chem.
- 25 Phys., 14, 7031–7043, doi:10.5194/acp-14-7031-7043.
- 26 Titos, G., Lyamani, H., Drinovec, L., Olmo, F.J., Mocnik, G., Alados-Arboledas, L., 2015. Evaluation of
- the impact of transportation changes on air quality. Atmos. Environ. 114,19–31.
- 28 Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados- Muñoz, M.J., Olmo, F.j and
- 29 Alados-Arboledas, L., 2016. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A
- 30 review of measurements, techniques and error sources. Atmos. Environ., 141, 494-507.
- 31 Titos, G., del Águila A., Cazorla, A., Lyamani, H., Casquero-Vera, J.A., Colombi, C., Cuccia, E., Gianelle,
- 32 V., Alastuey, A., Alasdos-Arboledas, L., 2017. Spatial and temporal variability of carbonaceous aerosols:
- assessing the impact of biomass burning in the urban environment. Sci. Total Environ., 578, 613-625.
- 34 Tsaknakis, G., Papayannis, A., Kokkalis, P., Amiridis, V., Kam- bezidis, H. D., Mamouri, R. E.,
- 35 Georgoussis, G., Avdikos, G., 2011. Inter-comparison of lidar and ceilometer retrievals for aerosol and

- Planetary Boundary Layer profiling over Athens, Greece. Atmos. Meas. Tech., 4, 1261–1273,
 doi:10.5194/amt-4-1261-2011.
- 3 Uzan, L., Egert, S., Alpert, P., 2016. Ceilometer evaluation of the eastern Mediterranean summer boundary
- 4 layer height first study of two Israeli site., Atmos. Meas. Tech., 9, 4387–4398, doi:10.5194/amt-9-4387-
- 5 2016.
- 6 Vaisala Oyj: BL-Matlab User's Guide v0.98. Vaisala Oyj, Helsinki, Finland, 2011.
- 7 van Baelen, J., Aubagnac J. P., Dabas, A., 2005.Comparison of near-real time estimates of integrated water
- 8 vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Ocean. Tech., 22, 201–210.
- 9 van der Kamp, D., and I. McKendry, 2010. Diurnal and seasonal trends in convective mixed-layer heights
- 10 estimated from two years of continuous ceilometer observations in Vancouver, BC. Bound. Lay. Meteorol.,
- 11 137, 459–475.
- 12 Valenzuela, A., Olmo, F. J., Lyamani, H., Granados-Muñoz, M. J., Antón, M., Guerrero-Rascado, J. L.,
- 13 Quirantes, A., Toledano, C., Perez-Ramírez, D., Alados-Arboledas, L., 2014. Aerosol transport over the

14 western Mediterranean basin: Evidence of the contribution of fine particles to desert dust plumes over

- 15 alborán island. J. Geophys. Res., 119, 24, 14,028-14,044.
- 16 Wagner, P., Schäfer, K., 2017. Influence of mixing layer height on air pollutant concentrations in an urban
- 17 street canyon. Urban Climate, 22, 64-79 doi: 10.1016/j.uclim.2015.11.001.
- Zhao, D., Xin, J., Gong, C., Quan, J., Liu, G., Zhao, W., Wang, Y., Liu, Z., Song, T., 2019. The formation
 mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol
 radiative forcing and the atmospheric boundary layer stability. Sci. Total Environ., 692, pp. 371381, doi:10.1016/j.scitotenv.2019.07.255.
- Zhu, X., Tang, G., Hu, B., Wang, L., Xin, J., Zhang, J., Liu, Z., Munkel, C., Wang, Y., 2016. Regional
 pollution and its formation mechanism over North China Plain: A case study with ceilometer observation
 and model simulations. *J. Geophys. Res. Atmos.*, 121, 14,574–14,588, doi:10.1002/2016JD025730.
- 25 Zhu, X., Tang, G., Guo, J., Hu, B., Song, T., Wang, L., Xin, J., Gao, W., Münkel, C., Schäfer, K., Li, X.,
- 26 Wang, Y., 2018a. Mixing layer height on the North China Plain and meteorological evidence of serious air
- 27 pollution in southern Hebei, Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-
- **28** 2018.
- 29 Zhu, X., Tang, G., Lv, F., Hu, B., Cheng, M., Munkel, C., Schafer, K., Xin, J., An, X., Wang, G., Li, X.,
- Wang, Y., 2018b. The spatial representativeness of mixing layer height observations in the North China
 Plain. Atmos Res 209:204–211.
- 32
- 33
- 34

- .-

Year Season	2013	2014	2015	2016
Winter	3.3%	10.0%	6.3%	8.3%
Spring	6.7%	11.0%	12.0%	5.6%
Summer	8.8%	6.7%	12.0%	12.3%
Autumn	13.1%	14.0%	13.0%	16.0%

- Table 1 Percentage of removed profiles due to quality control

- C

Year Season (*)	2012 (100%)	2013 (87%)	2014 (77%)	2015 (70%)	2016 (70%)
Winter	94%	83%	86%	86%	90%
Spring	83%	85%	84%	88%	83%
Summer	82%	76%	77%	64%	73%
Autumn	81%	81%	77%	88%	73%

*Measurement Days

Table 2 – MWR Recovery rate

- 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

Measurement Site	Granada	Highveld (Korhonen et al. 2014)	Paris (Pal et al., 2015)	Jülich (Schween et al., 2014)	Leipzig (Baars et al., 2008)
Localization	37.16°N, 3.61°W	26°15' S, 29°26' E	48.713°N, 2.208°E	50°54' N, 6°24' E	51.3° N, 12.4° E
Altitude (m a.s.l.)	680	1745	160	111	113
Instrument	MWR	Polly ^{XT}	Aerosol lidar and meteorological station	Doppler lidar	Polly
Algorithm	PM and TGM	Wavelet Covariance Transform	STRAT+	Variance of vertical wind speed	Wavelet Covariance Transform

Table 3 - Localization of the different sites and instrumentations as well as methods used for PBL characteristics determination.

тэ

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			

C			$CBLH^{Max}(m)$		
Season	Granada	Palaiseau (Pal et al., 2015)	Jülich (Schween et al.,2014)	Leipzig (Baars et al.,2008)	
Spring	1600 ± 500	1600 ± 500	1400	1400	
Summer	2000 ± 700	1900 ± 400	1600	1800	
Autumn	1300 ± 600	1400 ± 600	1000	1200	
Winter	1000 ± 350	1000 ± 400	1100	800	
Season			CBLH ^{GRate} (m/h)		
Spring	300 ± 160	220 ± 140	110		
Summer	400 ± 300	250 ± 140	130		
Autumn	230 ± 140	200 ± 140	110		
Winter	220 ± 140	150 ± 120	50		
Season	CBLH ^{GDuration} (h)				
Spring	6.1 ± 1.8	7.2 ± 2.3	6.6		
Summer	6.2 ± 1.9	8.1 ± 2.3	7.0		
Autumn	5.4 ± 1.7	5.7 ± 2.3	5.8		
Winter	5.3 ± 1.5	4.5 ± 2.1	4.9		

Table 4 – Seasonal mean values (\pm standard deviation) of Maximum of convective boundary layer height(*CBLH^{Max}*), convective boundary layer height growth rate (*CBLH^{GRate}*) and convective boundary layer growth duration

(CBLH^{GDuration}) obtained at Granada, Palaiseau, Jülich and Leipzig.

Year Season (*)	2013 (99.7%)	2014 (100.0%)	2015 (100.0%)	2016 (96.2%)
Winter	96.7%	51.1%	84.4%	67.8%
Spring	46.7%	50.0%	50.0%	45.6%
Summer	34.4%	56.7%	50.0%	32.2%
Autumn	27.8%	42.2%	56.7%	21.1%

Table 5 - Ceilometer recovery rate

* *Measurement days*

- ,

Figure 1 – Combination of two methods to detect PBLH based on Temperature Profile.

- 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Figure 2 – Determination of PBLH by Parcel Method. Potential Temperature (left) and Temperature (right)

Figure 3– Detection of *PBLH* by Temperature Gradient Method from *SBI* and *TSL* height. Temperature (left), Potential Temperature (center) and Gradient of Potential Temperature (right).

Figure 4 – Average daily $PBLH_{MWR}$ since 2012 until 2016.

Figure 5 – Daily $PBLH_{MWR}$ cycle for winter (DJF), spring (MAM), summer (JJA) and autumn (SON) since 2012 until 2016. Whiskers and boxes indicate 10, 25, 75 and 90% percentiles. The red lines represent the median and the blue stars indicate the mean.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

Figure 6 – CBLH Growth Speed (*CBLH^{GSpeed}*) for winter (DJF-blue line), spring (MAM – orange line), summer (JJA – red line) and autumn (SON – light blue line).

- 1

Figure 7 – $CBLH_{MWR}^{Max}$ frequency for winter (DJF), spring (MAM), summer (JJA) and autumn (SON) since 2012 until 2016. Each bin size is equivalent to 100 m. The red line indicates a lognormal distribution. A_v , S_k and K_t represent the average, skewness and kurtosis values, respectively.

Figure 8 –*CBLH*^{*GRate*}_{*MWR*} frequency for winter (DJF), spring (MAM), summer (JJA) and autumn (SON) since 2012 until 2016. Each bin size is equivalent to 100 m. The red line indicates a lognormal distribution. A_v , S_k and K_t represent the average, skewness and kurtosis values, respectively.

Figure 9 –*CBLH*^{GDur}_{MWR} frequency for winter (DJF), spring (MAM), summer (JJA) and autumn (SON) since 2012 until 2016. Each bin size is equivalent to 100 m. The red line indicates a lognormal distribution. A_v , S_k and K_t represent the average, skewness and kurtosis values, respectively.

Figure 10 – Comparison among average seasonal daily cycle of $PBLH_{MWR}$ (blue line), R_n (orange line), surface air temperature (green line) and surface relative humidity (purple line) for all meteorological seasons from 2012 until 2016. The dotted yellow and red lines represent the average hour of sunrise and sunset, respectively, of each season.

10 15 Time (UTC) 10 15 Time (UTC) Ó Figure 11 – Seasonal daily cycle of Ventilation Coefficient [VC] (blue line), and Black Carbon [BC] concentration (red line) for 2012-2016.

Figure 12 – *BC* concentration versus Ventilation Coefficient for winter (DJF), spring (MAM), summer (JJA) and autumn (SON) for 2012-2016.

Figure 13 – Average daily *PBLH_{ceilometer}* since 2013 until 2016.

Figure 14 – Comparison between $PBLH_{MWR}$ (red dots) and $PBLH_{Ceilometer}$ (blue dots) since 2013 until 2016. The yellow region represents the *RL* thickness.