This is a post-peer-review, pre-copyedit version of an article published in *Stochastic Environmental Research and Risk Assessment*. The final authenticated version is available online at: <u>https://doi.org/10.1007/s00477-019-01733-8</u>

Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches

3 María Bermúdez^{1,2,*}, Luis Cea² and Javier Sopelana³

- ¹ University of Granada, Environmental Fluid Dynamics Group, Andalusian Institute for Earth System
 Research, Av. del Mediterráneo s/n, 18006, Granada, Spain.
- ² University of A Coruña, Environmental and Water Engineering Group, Department of Civil Engineering, Elviña, 15071, A Coruña, Spain
- 8 ³ Aquática Ingeniería Civil, Vigo, Spain
- 9 * Correspondence: mariabermudez@ugr.es / mbermudez@udc.es
- 10 ORCID iDs: 0000-0003-3189-4791 (M Bermúdez) / 0000-0002-3920-0478 (L Cea)
- 11

12 Abstract

13 Flooding in coastal river reaches is the result of complex interactions between coastal and inland drivers. 14 Flood hazard assessments need to consider how these drivers interact in space and time, for which a standard 15 method is currently lacking. A complex hydrodynamic model is required to reproduce the physics of the 16 combined forcings and, at the same time, to fully explore the combinations of drivers that can occur in order to 17 determine extreme flood frequencies. In this work, we explore the individual role of astronomical tide, storm 18 surge and river discharge and their correlations in the extreme flood levels of a coastal river reach. We apply a 19 computationally efficient surrogate model of a 2D shallow water model based on least squares support vector 20 machines (LS-SVM) regression to reconstruct 10000 years-long time series of water levels in the reach. As 21 input to the model, we consider an ensemble of synthetic time series of the flood drivers, which differ in the 22 number of variables considered and in their correlations. Probabilities of exceedance of water levels are then 23 computed and compared. The proposed methodology can give a better understanding of the flooding processes 24 in a multivariable environment, as low-lying coastal urban areas typically are, and can provide guidance on 25 where to focus modelling efforts when developing flood hazard assessments in such areas.

- 26 Keywords: coastal river reach, compound flooding, extreme floods, flood inundation modelling, LS-SVM
- 27
- 28
- 29 Acknowledgments: María Bermúdez gratefully acknowledges funding from the European Union's Horizon
- 30 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N° 754446 and
- 31 UGR Research and Knowledge Transfer Found Athenea3i

32 1. Introduction

33 Standard methodology for flood hazard assessment relies on the estimation of floods of different return period, 34 and the subsequent simulation of such floods with a hydrodynamic model to produce inundation maps (de Moel 35 et al. 2015). When the inundation depth depends only on the river discharge, a one-to-one relation can be 36 assumed between both variables for any given return period, i.e. the 100-year discharge will generate the 100-37 year depth. However, this is not true when several drivers are involved in the flooding process, as it is the case 38 in coastal urban areas, which are typically exposed to multiple flood drivers such as sea water level, waves, 39 river discharge, and local precipitation. Flooding may thus arise from a combination of sea-induced and 40 precipitation-induced inland flooding, in what is sometimes referred to as coincident or compound flooding. In 41 such a compound flood, the individual contributing variables may not be extreme themselves, but it is their 42 combination that renders an event exceptional and leads to an extreme water depth. The correlations and 43 dependencies between flood drivers (e.g., coastal surge and river discharge or rainfall) can be significant along 44 riverine and estuary areas, as evidenced by Svensson and Jones (2002) in eastern Britain, Petroliagkis et al. 45 (2016) in Europe, or Wahl et al. (2015) in the USA. Ignoring the dependence among them would result in an 46 underestimation of risk (Bevacqua et al. 2017), whereas assuming total dependence would be too conservative 47 and therefore inadequate for flood risk planning.

48 Compound hazards have gained attention in climate science, and current research is advancing on 49 frameworks and tools for their characterization (Hawkes 2008; Seneviratne et al. 2012; Leonard et al. 2014; 50 Zscheischler et al. 2018; Sadegh et al. 2018). One possibility is to use continuous long term simulation methods, 51 which consist of running a hydrodynamic flood model during a long period of time (several years) driven by 52 simultaneous time series of the flood drivers. In this way, the statistical dependence between the drivers does 53 not need to be explicitly analyzed, which represents a clear advantage over multivariate analysis methods such 54 as copulas or Bayesian methods (Van Den Hurk et al. 2015; Xu et al. 2017, 2019; Sadegh et al. 2018). Methods 55 that rely on this approach have recently been developed by Falter et al. (2015) for large-scale basins or by 56 Schumman et al. (2016) for the whole Australian continent. This method has also been successfully applied by 57 the authors to estimate extreme inundation caused by both high sea levels and river discharges in a coastal town 58 (Sopelana et al. 2018).

A typical constraint of continuous simulation methods is the lack of availability of simultaneous time series of the drivers, long enough to be statistically representative. To this regard, in the last years efforts have been done to improve the availability of long-term instrumental records (Peterson and Manton 2008; Brunet and Jones 2011; Brunet et al. 2014), as well as new climate data sources such as model simulations, modelbased reanalyses and remote sensors (Overpeck et al. 2011). It is also possible to generate synthetic time series for providing sufficiently large samples or ensembles of different time series of the same process (Keylock 2012; Efstratiadis et al. 2014; Sopelana et al. 2018).

66 Another drawback of continuous simulation approaches is the high computational time required to perform 67 long term simulations. In spite of the various High Performance Computing techniques available nowadays, 68 which have been applied to 2D shallow water codes (Vacondio et al. 2014; Liu et al. 2018; García-Feal et al. 69 2018), it is still unfeasible to perform detailed 2D inundation simulations spanning hundreds of years with a 70 time resolution of a few minutes. This is why most studies that apply this method rely on simple approaches to 71 compute the flood characteristics (e.g., rating curves or 1D hydrodynamic models), rather than performing 2D 72 hydrodynamic simulations (Falter et al. 2016). Physical processes like complex channel-floodplain interactions, 73 flow paths through urban areas or superposition of flood waves at river confluences can, however, only be 74 properly reproduced through spatially-detailed 2D shallow water model simulations (de Almeida et al. 2018; 75 Bermúdez and Zischg 2018). In cases where such processes are relevant, the development of fast surrogate 76 models that emulate the original 2D model responses can be a suitable strategy to reduce in a significant manner 77 the computational time. In this line, artificial intelligence (AI) based methods such as support vector machines 78 (SVM) or artificial neural networks (ANN) are becoming increasingly popular as function approximation 79 techniques in water resources modelling (Razavi et al. 2012; Kasiviswanathan and Sudheer 2013; Yaseen et al. 80 2015). Although applications to flood inundation modelling are still scarce, previous studies applying ANNs 81 (Chang et al. 2010; Bermúdez et al. 2018), Radial Basis Function ANNs (Sopelana et al. 2018) and SVMs (Lin

- et al. 2013; Liu and Pender 2015; Cea et al. 2016; Jhong et al. 2017; Bermúdez et al. 2019) for this purpose
 have obtained comparable predictions to physically-based models, while significantly increasing the simulation
- 84 speed.
- 85 In this work we apply a continuous long term simulation approach to quantify the individual role of 86 astronomical tide, storm surge and river discharge and their correlations in the flooding of a coastal river reach. 87 The continuous simulation approach uses a computationally efficient surrogate model of a 2D shallow water 88 model based on LS-SVM regression. In this way we reconstruct 10000 years-long time series of water levels 89 from synthetic time series of the flood drivers, using a limited number of 2D shallow water simulations (250 90 days) to calibrate the LS-SVM model. To quantify the role of the flood drivers, we consider an ensemble of 91 time series which differ in the number of flood drivers considered and the correlations between them. 92 Probabilities of exceedance of water levels are then computed and compared from the resulting long-term water 93 level series. The ultimate aim of the study is to provide guidance on where to focus modelling efforts when
- 94 developing flood hazard assessment approaches in low-lying coastal areas.

95 2. Materials and Methods

96 2.1. Study site

97 The coastal town of Betanzos (Figure 1), located in the NW of Spain, was used as the study site for this 98 work. Betanzos is located at the confluence of two rivers (Mandeo and Mendo) in the inner part of a macrotidal 99 estuary with a spring tidal range of roughly 4.5 m. The Mandeo River has a length of about 50 km. Its drainage 100 basin occupies a total area of 450 km², of which 100 km² correspond to its tributary, the Mendo River. The 101 Mendo river flows across a wide floodplain (approximately 400 meters) dominated by marsh.

102 Several interventions carried out during the last century have completely changed the natural state of the 103 area. The river has been artificially channelized downstream the confluence, the floodplains have been 104 developed for urban use, and a railway embankment has been built just downstream the confluence. These 105 changes have increased the vulnerability of the area and consequently the flood risk.

A set of 8 representative control points distributed along the Mandeo River were defined for the analysis of results (Figure 1). The location of the control points was chosen in order to sample regions with a different exposure to the sea level influence. Point 1 is located in the estuary, point 2 in the middle of the artificial channel, point 3 at the confluence with the river Mendo, and points 4 to 8 along the Mandeo river.

110

Figure 1. Schematic map of the town of Betanzos, showing land uses and building locations. Location of control

114 2.2. Long-term time series of the flood drivers

The lack of observed data during a time period long enough to be statistically representative is one of the main problems in extreme flood analysis. For this reason, data selection and preparation are probably the most important elements in extreme value analyses (Hawkes 2008) and thus, the way in which these data are generated makes an important difference between methodologies. Another important issue related to input data is its time resolution. In order to define representative time series of the drivers, the time scale of each physical phenomenon that has an effect on the inundation must be taken into account.

121 The continuous simulation technique used in this work to evaluate flood hazard is based on the generation 122 of synthetic long-term time series of the flood drivers (predictors) with a daily resolution. Those series must be 123 simultaneous, and they must reflect the observed seasonality and mutual correlations between predictors, in 124 order to correctly account for the probability of simultaneous occurrence of extreme values of the flood drivers.

125 In the coastal river reach analyzed in this work, inundation depths are affected by the tidal level but not 126 by ocean waves. In this case, the most relevant flood predictors at a daily scale are: the daily astronomical tidal 127 range (TR), the daily maximum storm surge (Sd), the daily peak discharge (Qd) and the time lag between peak 128 discharge and high tide (Tlag). In order to have a statistically representative sample of these four predictors for 129 the estimation of extreme events, we generated daily time series that span over 10000 years. Such a length is 130 necessary because in the proposed method, return values are estimated from the long-term reconstructed time 131 series of water depth using a simple plotting position formula, without fitting any statistical distribution. This 132 kind of direct estimation is robust for return periods much lower than the length of the reconstructed time series. 133 The methodology followed to generate the synthetic time series is described in detail in (Sopelana et al. 2018) 134 and therefore, only a brief overview is given in the following.

135 The astronomical tide is a deterministic variable and therefore, the TR time series were generated from 136 the tidal harmonic constituents at the study site, obtained from historical records of sea level measured at a tidal 137 gauge located in the outer estuary.

138 The synthetic time series of Qd were obtained from a regression regional hydrological model based on the 139 following descriptors: mean annual precipitation, catchment area, mean catchment slope and mean SCS curve 140 number. The model was calibrated using observed discharge data at 18 gauge stations located in the 141 hydrological region where the study site is located.

142 Regarding the storm surge, it has a strong seasonal variability (higher in winter and lower in summer), and 143 at the same time it is somewhat correlated with the river discharge, with a correlation coefficient that varies 144 from one month to another. Both effects have been considered in the generation of the synthetic time series of 145 Sd, that take into account the seasonality and the monthly correlation between Qd and Sd. The procedure to 146 generate Sd is based on the observed mean and standard deviation of the daily surge and its observed correlation 147 with Qd, computed on a monthly basis from historical time series from 1992 to 2014. The tidal harmonic 148 constituents and surge were extracted by Pérez-Gómez (2014). For more details, the reader is referred to 149 (Sopelana et al. 2018).

The largest tidal constituent in this area is the principal lunar semidiurnal (or M2), with a period of approximately 12.42 hours. The synthetic series of Tlag were generated as a random value between 0 and 12.42 h following a uniform distribution, since the daily tidal range and the river discharge are completely uncorrelated and have the same probability of occurrence at any time within the day.

154 The previous procedure produces synthetic time series that reproduce the observed seasonality and 155 correlations between the Qd, Sd and TR, as shown in (Sopelana et al. 2018).

156 2.3. Two-dimensional shallow water equation modelling

157 The 2D inundation model Iber (Bladé et al. 2014; García-Feal et al. 2018) was used to transform the flood 158 drivers described above in water depths in the study region. The model solves the 2D depth-averaged shallow 159 water equations using a high resolution unstructured finite volume solver. The numerical mesh used in the 160 computations has 126,266 elements with an average size of 11 m. The mesh resolution in the river and urban

area is higher, with a mesh size of the order of 5 m. The topography is defined from a Digital Surface Model

162 (DSM), obtained by combining the river and estuary bathymetries with Light Detection and Ranging (LiDAR)

- 163 terrain data. Bed roughness is defined with a variable Manning coefficient obtained from a land use chart. Six
- 164 different land uses were defined, with Manning values ranging from 0.02 s/m^{1/3} in the main river channels to 165 $0.15 \text{ s/m}^{1/3}$ in the residential areas.
- 166
- Considering that river discharge and sea level vary significantly within a day, the daily values of the flood 167 drivers Qd, Sd and TR must be downscaled to a higher time resolution in order to predict flood hazard from the 168 maximum instantaneous water depths and velocities. The tidal range was downscaled using the tidal harmonic 169 constituents at the study site. The surge was assumed to be constant over 24 hours and is implemented as an 170 increase in the mean sea level. The river discharge was downscaled using the Soil Conservation Service (SCS) 171 unit hydrograph. (Fill and Steiner 2003; Taguas et al. 2008).
- 172 The computation of the maximum water depths with the inundation model was done in a daily basis, using 173 the corresponding downscaled flood drivers as boundary conditions. The downscaled tidal level and surge were 174 used as the downstream boundary condition, while the river hydrograph was imposed at the upstream inlet 175 boundary (Figure 2). An appropriate offset was introduced in the time series of the boundary conditions in order 176 to respect the time lag between peak discharge and high tide. For the purposes of this work, the output of the 177 model is the daily maximum water depth at the 8 control points defined in Figure 1.
- 178

- 179
- 180 Figure 2. Spatial domain of the numerical simulations and location of the open boundaries.
- 181 2.4. Least-squares support vector machine regression modelling

182 In the present study case, the 2D high-resolution inundation model takes about 1 hour of CPU time to 183 simulate one day of real time. This prevents the use of this model to simulate the water depths during 10000 184 years, since such a computation would take around 400 years of CPU time. Instead, a limited number of 185 representative days were simulated with the 2D inundation model, and the water depth results obtained in those 186 simulations were used to calibrate and validate an efficient surrogate model based on least-squares support vector machine (LS-SVM) regression (Vapnik 1998; Suykens et al. 2002). LS-SVMs are a non-parametric regression technique derived from the original SVM model (Vapnik 1998), which share the small sample learning and generalization abilities of SVM, but have the additional advantage of transforming a quadratic programming problem into a linear one. In this work, models were developed with StatLSSVM toolbox in Matlab software (Brabanter et al. 2013). The LS-SVM technique was used to transform the long-term daily time series of the flood drivers into long-term daily series of maximum water depths at the control points.

193 The calibration of the LS-SVM model was done using the numerical results obtained in 250 simulations 194 performed with the 2D inundation model, with values of the flood drivers selected randomly over their range 195 of variation. The tidal range is between 4.0 and 0.8 m and the storm surge between -0.53 m and 0.82 m. Daily 196 peak discharge ranges from 0 to 446 m^3/s , and its time lag with high tide takes values from 0 to 12.42 h. To 197 validate the predictions of the LS-SVM model, a representative sample of 100 characteristic days was selected 198 from the long-term time series of the drivers, using for that purpose the Maximum Dissimilarity selection 199 algorithm (Kennard and Stone 1969). This algorithm identifies a subset of cases that represents the diversity of 200 the data, based on the Euclidean distance from each other in the multi-dimensional space of input data. As 201 shown by Camus et al. (2011) for wave climate analysis, the subset selected is distributed fairly evenly across 202 the space with some points selected in the outline of the data space. In this way, not only mean conditions but 203 also extremes that can result in flood events are represented in the subset. The 100 characteristic days selected 204 in such a way were simulated with the 2D inundation model, and the maximum water depths computed were 205 compared with those predicted by the calibrated LS-SVM model.

206 Once the LS-SVM model was calibrated and validated at each control point, it was applied to reconstruct 207 the 10000-year time series of daily maximum water depths at reduced computational cost. The calibration 208 process takes about a second for each point. The calculation time required to reconstruct a time series of 10000 209 data is in the order of 20 seconds.

210 3. Results and discussion

211 *3.1. Sensitivity analysis*

Before applying the LS-SVM regression model, a sensitivity analysis of the maximum water depth at the control points to the flood drivers was conducted using the results of a series of characteristic cases modelled with the 2D inundation model. Sensitivity indices, based on both linear and non-linear non-parametric regression, were calculated to quantify the effects of each individual flood driver on the maximum water depth at each control point.

217 The Standardized Regression Coefficients (SRC) obtained from a multivariable linear regression of 218 maximum water depths at each control point are shown in Figure 3. The coefficient of determination R^2 of the 219 multiple linear regression for control points P1 to P8 is respectively 0.93, 0.91, 0.94, 0.95, 0.95, 0.96, 0.97, 220 0.97. These relatively high values of R2 confirm the validity of the SRC sensitivity measures (Storlie et al. 221 2009). According to the SRC values, the most relevant parameter at all the control points is the river discharge 222 (Qd), followed by the tidal range (TR) and the surge (Sd). As expected, they all take positive values, meaning 223 that an increase in the parameter implies an increase in the water depth. The sensitivity to the river discharge 224 increases significantly as we move upstream the river reach (from control point 1 to 8), while the sensitivity to 225 the sea level related parameters (TR and Sd) decreases. The maximum water depths show a very low sensitivity 226 to the time lag (Tlag), regardless of the control point considered. Similar results can be inferred from the first 227 order and total effects variance-based sensitivity indices obtained from the ANOVA decomposition (Si and S_{T,i} 228 values in Figure 3 and Table 1). The total effect of a given parameter on model output ($S_{T,i}$ in Table 1) is given 229 by all the first and second order terms of the ANOVA decomposition in which the parameter appears. The 230 differences between the first order and total effects reflect non-linear interactions among model parameters. At 231 all points, the total effect of the time lag is very close to zero, which corroborates the limited influence of this 232 parameter on the water depth in our study case.

	P1		P2		P3		P4		P5		P6		P7	
	Si	S _{T,i}	Si	S _{T,i}	Si	St,i	Si	S _{T,i}	Si	S _{T,i}	Si	S _{T,i}	Si	St,i
Qd	0.301	0.477	0.343	0.534	0.469	0.641	0.602	0.745	0.724	0.819	0.774	0.865	0.793	0.878
TR	0.281	0.310	0.247	0.283	0.171	0.202	0.107	0.129	0.059	0.072	0.041	0.054	0.034	0.046
Sd	0.131	0.129	0.114	0.114	0.079	0.080	0.049	0.052	0.027	0.027	0.019	0.020	0.016	0.016
Tlag	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
1 0.8 0.6 0.4 0.2 0	1 2	3 4 5	6 7	8	0.8 0.6 0.4 0.2 0	1 2 3	3 4 5	6 7		Qd TR Sd Tlag				

Table 1. First order effects and total effects for the water depth at control points.

7

P8

St,i

0.887

0.041

0.013

0.000

Si

0.809

0.029

0.014

0.000

238

233

240 3.2. LS-SVM model performance

Based on the results of the sensitivity analysis, a LS-SVM model was calibrated using only Qd, TR and Sd as predictor variables. Given the little influence of Tlag on the water depth predictions, it was not considered as an input parameter in the LS-SVM model.

The performance of the LS-SVM model was quantified comparing the daily maximum water surface elevation (wse) predictions with those obtained with the 2D inundation model in 100 characteristic days (Figure 4). Considering the ensemble of validation runs, the mean absolute error (MAE) is below 10 cm at all points in validation. The global MAE on the 8 points is 7.2 cm. Thus, the LS-SVM model can be considered as an efficient surrogate of the 2D inundation model in order to reconstruct time series of water levels in the river reach from time series of the flood drivers.

250

251 252

255

253 254

Figure 4. Scatter plot of water levels computed with the 2D-SWE model and the LS-SVM model in validation, with the 1:1 line plotted for reference in black. The mean absolute error in each point and the global mean absolute error, considering the 8 control points, for the 100 validation runs is indicated in the upper left-hand corner of the corresponding subfigure.

256 3.3. Annual maximum water depths

In order to analyse the combinations of the flood drivers that are responsible of the maximum water surface elevations, the values of Qd, TR and Sd associated with the annual maxima at each control point were extracted from the 10000 year-long time series. The results of this analysis at control point 1 are shown in Figure 5. At points of the estuary such as this one, annual maximum water levels are in general associated with high tidal ranges and positive surges. However, annual maxima also occur during low tidal range conditions, associated with high river flows. A certain discharge threshold can be established to distinguish between these two types of maxima. As illustrated in Figure 5 for point 1, the value of the threshold can be set at approximately 210 m³/s at this point. If this threshold is exceeded, inundation levels are driven mainly by the river discharge, regardless of the sea level conditions.

The number of annual maxima corresponding primarily to high discharges increases as we move upstream the river Mandeo (e.g., from control point 2 to point 4 and then 6, as shown in Figure 6). In parallel, the value of the discharge threshold decreases (it is approximately 200 m³/s at control point 2, 180 m³/s at point 4 and 140 m³/s at point 6), since the river discharge tends to dominate the inundation levels at the upstream locations.

270

Figure 5. Annual maximum water surface elevation at control point 1 and associated daily peak discharge (Qd),
astronomical tidal range (TR) and storm surge (Sd) conditions.

273 *3.4. Water depth exceedance probabilities*

274 The probability of exceedance of a given water depth was computed from the annual maxima of the 10000-275 year time series. Given the length of the series, return period values up to 500-years were obtained without the 276 need of fitting a statistical distribution. Water level frequencies at four control points along the reach, expressed 277 as return period, are plotted in Figure 7. It should be noted that the methodology used allows the estimation of 278 the return period, jointly considering the relevant flood drivers and the combinations of them that can coexist. 279 It differs from standard univariable approaches for defining return level events, based on a single flood driver, 280 which have proven insufficient in other coastal river reaches (Serafin et al. 2019). It also moves away from 281 simplified multivariable approaches in which the return period of the water level is assumed to be the same as 282 that of its drivers (MARM 2011), or methods that use a relatively arbitrary combination of return periods of the 283 flood drivers (Hawkes 2006). The reader is referred to (Serinaldi 2015) for discussion about multivariate return 284 periods.

Figure 6. Annual maximum water surface elevation and associated daily peak discharge (Qd) and astronomical
 tidal range (TR) conditions at control point 2 (first column), control point 4 (middle column) and control point
 6 (right column).

289 In order to further analyse the influence of the flood drivers on the inundation depths, two additional 290 synthetic 10000-years long time series of the flood drivers were generated and converted in water depths using 291 the LS-SVM model. In the first synthetic time series the storm surge was set to zero and therefore, the sea level 292 only depends on the tidal range. In the second synthetic time series the correlation between the river discharge 293 and the storm surge was neglected. The existing correlation between these two parameters in the original time 294 series implies that high storm surges coincide with high river discharges, whereas low storm surges occur during 295 low flows in the river. In the second synthetic time series, storm surge values are generated independently of 296 discharge values and, compared to the original time series, are lower during high flows (and higher during low 297 flows). The water level exceedance curves obtained with these two additional simulations are plotted in Figure 298 7.

At points close to the sea, neglecting the storm surge contribution results in a significant underestimation of the inundation level. The underestimation is observed for all return periods, although it is lower for high return periods. For example, at control point 1 the differences are reduced for return periods above 100 years (Figure 7). Such high return periods are associated with very high discharges, that not always coincide with very high sea levels, as mentioned in the sensitivity analysis. Also, as shown in Figure 5, the highest water levels are always associated to high river discharges, but not necessarily to high sea levels.

The influence of the sea level condition decreases as we move away from the river mouth. At control point 306 3, located at the confluence with the river Mendo, neglecting the storm surge altogether in the simulation makes 307 practically no difference in the water levels associated to a return period equal or higher than 50 years. Further 308 upstream, at control point 5, the underestimation related to the exclusion of the storm surge occurs only for 309 return periods below 5 years, and its magnitude is negligible compared to points closer to the sea. Upstream of 310 point 5, the effect of the storm surge on the water levels is negligible for all return periods. Therefore, this

311 procedure allows locating the boundary between sea-influenced and river-influenced water levels in a coastal

312 river reach.

316

- Regarding the correlation between storm surge and river discharge, its influence on the inundation water levels is much lower. At control point 1 it leads to a very slight underestimation of the water depth (of the order of 5 cm) or return periods above 100 years. At other control points its effect is negligible (Figure 7).
 - **P1 P**3 3.2 4 Reference Reference Sd=0 Sd=0 3 3.5 Corr=0 Corr=0 wse (m) wse (m) 2.8 3 2.6 2.5 2.4 2 2 5 10 50 100 500 2 5 10 50 100 500 T (years) T (years) P5 **P7** 6 6 Reference Reference Sd=0 Sd=0 5 5 Corr=0 Corr=0 wse (m) wse (m) 4 4 3 3 2 2 2 5 10 2 50 100 500 5 10 50 100 500 T (years) T (years)

317Figure 7. Water level frequency distribution obtained at points P1, P3, P5 and P7 with the original simulation318(Reference), the simulation that neglects the storm surge (Sd=0) and the simulation that neglects the correlation319between the storm surge and the river discharge (Corr=0).

320 The inundation levels obtained with the original and synthetic time series are compared in terms of 321 associated return periods in Figure 8. This allows us to evaluate the changes in return period (instead of water 322 levels) obtained with the different input time series. The results shown in Figure 8 confirm the necessity of 323 taking into account the contribution of storm surge on extreme water levels in the river mouth. For example, 324 the water level that has a 10-year return period considering the original time series at control point 1 would have 325 a return period of nearly 100 years if the storm surge was not considered. This gives a better idea of how return 326 water level estimates can vary if the contribution of certain drivers or correlations between drivers are neglected, 327 depending on the location within the river reach.

329Figure 8. Changes in return period between the original simulation (x-axis) and the simulation that neglects the330storm surge (Sd=0), and the simulation that neglects the correlation between the storm surge and the river331discharge (Corr=0) (y-axis). The 1:1 line representing no changes in return period is plotted in blue.

332 4. Conclusions

We have developed a method to quantify the role and interactions between coastal and inland flood drivers in a coastal river reach. The methodology relies on the reconstruction of water levels from the flood drivers, by means of the combination of a 2D inundation model and a LS-SVM regression model. With the proposed approach it is possible to:

- 337 (1) Reconstruct long-term time series of water depth from synthetic time series of the flood drivers using
 338 a calibrated LS-SVM regression model.
- 339 (2) Determine return water levels jointly considering the relevant flood drivers and the combinations of
 340 them that can coexist. Since the methodology is computationally very efficient, it could be extended
 341 to generate flood maps for different return periods by simply increasing the number of control points
 342 considered (Bermúdez et al. 2019).
- 343 (3) Define the extension of the sea influence in a coastal river reach and, more specifically, the spatial
 344 domain where the estimation of extreme inundation levels requires considering the interaction
 345 between sea-level and river discharge.
- 346 (4) Quantify the role of individual flood drivers and their correlations for generating extreme flood events347 along the reach.

In the present study case, the most relevant flood predictors are the river discharge, the tidal range and the storm surge. Although the sensitivity to the river discharge decreases significantly as we move downstream the river reach, it is the most relevant parameter at all the control points. Discharge thresholds were identified to distinguish between sea-influenced and river-influenced annual maxima at each point. The analysis confirms the necessity of taking into account the contribution of storm surge to extreme water levels in the river mouth,

- and the possibility of neglecting its correlation with the river discharge.
- In other river reaches the relative influence of the flood drivers might differ from our study case, and other processes as ocean waves or the time lag between high tide and peak discharge might have a significant

356 influence on the inundation levels. Nevertheless, the methodology of analysis proposed here would still be valid 357 in those cases.

358 References

- Bermúdez M, Cea L, Puertas J (2019) A rapid flood inundation model for hazard mapping based on least squares support
 vector machine regression. J Flood Risk Manag e12522. doi: 10.1111/jfr3.12522
- Bermúdez M, Ntegeka V, Wolfs V, Willems P (2018) Development and Comparison of Two Fast Surrogate Models for
 Urban Pluvial Flood Simulations. Water Resour Manag 32:2801–2815. doi: 10.1007/s11269-018-1959-8
- Bermúdez M, Zischg AP (2018) Sensitivity of flood loss estimates to building representation and flow depth attribution
 methods in micro-scale flood modelling. Nat Hazards 92:1633–1648. doi: 10.1007/s11069-018-3270-7
- Bevacqua E, Maraun D, Hobæk Haff I, et al (2017) Multivariate statistical modelling of compound events via pair-copula
 constructions: analysis of floods in Ravenna (Italy). Hydrol Earth Syst Sci 21:2701–2723. doi: 10.5194/hess-21 2701-2017
- Bladé E, Cea L, Corestein G, et al (2014) Iber: herramienta de simulación numérica del flujo en ríos. Rev Int Métodos
 Numéricos para Cálculo y Diseño en Ing 30:1–10. doi: 10.1016/j.rimni.2012.07.004
- Brabanter K De, Suykens JAK, Moor B De (2013) Nonparametric Regression via StatLSSVM. J Stat Softw 55:1–21. doi:
 10.18637/jss.v055.i02
- Brunet M, Jones P (2011) Data rescue initiatives: bringing historical climate data into the 21st century. Clim Res 47:29-40.
 doi: 10.3354/cr00960
- Brunet M, Jones PD, Jourdain S, et al (2014) Data sources for rescuing the rich heritage of Mediterranean historical surface
 climate data. Geosci Data J 1:61–73. doi: 10.1002/gdj3.4
- Camus P, Mendez FJ, Medina R, Cofiño AS (2011) Analysis of clustering and selection algorithms for the study of
 multivariate wave climate. Coast Eng 58:453–462. doi: 10.1016/j.coastaleng.2011.02.003
- 378 Cea L, Bermúdez M, Puertas J, et al (2016) Rapid flood inundation modelling in a coastal urban area using a surrogate
 379 model of the 2D shallow water equations. In: Proceedings of the 4th European Congress of the International
 380 Association of Hydroenvironment engineering and Research, IAHR 2016. pp 850–855
- Chang L-C, Shen H-Y, Wang Y-F, et al (2010) Clustering-based hybrid inundation model for forecasting flood inundation
 depths. J Hydrol 385:257–268. doi: 10.1016/j.jhydrol.2010.02.028
- de Almeida GAM, Bates P, Ozdemir H (2018) Modelling urban floods at submetre resolution: challenges or opportunities
 for flood risk management? J Flood Risk Manag 11:S855–S865. doi: 10.1111/jfr3.12276
- de Moel H, Jongman B, Kreibich H, et al (2015) Flood risk assessments at different spatial scales. Mitig Adapt Strateg Glob
 Chang 20:865–890. doi: 10.1007/s11027-015-9654-z
- Efstratiadis A, Dialynas YG, Kozanis S, Koutsoyiannis D (2014) A multivariate stochastic model for the generation of
 synthetic time series at multiple time scales reproducing long-term persistence. Environ Model Softw 62:139–152.
 doi: 10.1016/J.ENVSOFT.2014.08.017
- Falter D, Dung NV, Vorogushyn S, et al (2016) Continuous, large-scale simulation model for flood risk assessments: proof of-concept. J Flood Risk Manag 9:3–21. doi: 10.1111/jfr3.12105
- Falter D, Schröter K, Dung NV, et al (2015) Spatially coherent flood risk assessment based on long-term continuous
 simulation with a coupled model chain. J Hydrol 524:182–193. doi: 10.1016/J.JHYDROL.2015.02.021
- Fill HD, Steiner AA (2003) Estimating Instantaneous Peak Flow from Mean Daily Flow Data. J Hydrol Eng 8:365–369.
 doi: 10.1061/(ASCE)1084-0699(2003)8:6(365)
- García-Feal O, González-Cao J, Gómez-Gesteira M, et al (2018) An Accelerated Tool for Flood Modelling Based on Iber.
 Water 10:1459. doi: 10.3390/w10101459

- Hawkes PJ. SC (2006) Use of Joint Probability Methods in Flood Management: A guide to best practice. T02-06-17
- Hawkes PJ (2008) Joint probability analysis for estimation of extremes. J Hydraul Res 46:246–256. doi:
 10.1080/00221686.2008.9521958
- Jhong B-C, Wang J-H, Lin G-F (2017) An integrated two-stage support vector machine approach to forecast inundation
 maps during typhoons. J Hydrol 547:236–252. doi: 10.1016/j.jhydrol.2017.01.057
- Kasiviswanathan KS, Sudheer KP (2013) Quantification of the predictive uncertainty of artificial neural network based river
 flow forecast models. Stoch Environ Res Risk Assess 27:137–146. doi: 10.1007/s00477-012-0600-2
- 405 Kennard RW, Stone LA (1969) Computer Aided Design of Experiments. Technometrics 11:137. doi: 10.2307/1266770
- Keylock CJ (2012) A resampling method for generating synthetic hydrological time series with preservation of cross correlative structure and higher-order properties. Water Resour Res 48:. doi: 10.1029/2012WR011923
- 408 Leonard M, Westra S, Phatak A, et al (2014) A compound event framework for understanding extreme impacts. Wiley
 409 Interdiscip Rev Clim Chang 5:113–128. doi: 10.1002/wcc.252
- Lin G-F, Lin H-Y, Chou Y-C (2013) Development of a real-time regional-inundation forecasting model for the inundation
 warning system. J Hydroinformatics 15:1391–1407. doi: 10.2166/hydro.2013.202
- Liu Q, Qin Y, Li G, et al (2018) Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing. Water 10:589.
 doi: 10.3390/w10050589
- Liu Y, Pender G (2015) A flood inundation modelling using v-support vector machine regression model. Eng Appl Artif
 Intell 46:223–231. doi: 10.1016/j.engappai.2015.09.014
- 416 MARM (2011) Guía Metodológica para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. Ministerio
 417 de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones
- 418 Overpeck JT, Meehl GA, Bony S, Easterling DR (2011) Climate data challenges in the 21st century. Science 331:700–2.
 419 doi: 10.1126/science.1197869
- 420 Pérez Gómez B, Begoña (2014) Design and implementation of an operational sea level monitoring and forecasting system
 421 for the Spanish coast. University of Cantabria
- 422 Peterson TC, Manton MJ (2008) MONITORING CHANGES IN CLIMATE EXTREMES: A Tale of International
 423 Collaboration. Bull. Am. Meteorol. Soc. 89:1266–1271
- 424 Petroliagkis TI, Voukouvalas E, Disperati J, Bidlot J (2016) Joint probabilities of storm surge, significant wave height and
 425 river discharge components of coastal flooding events utilising statistical dependence methodologies & techniques.
 426 European Commission. Joint Research Centre. Publications Office of the European Union
- 427 Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48:W07401.
 428 doi: 10.1029/2011WR011527
- 429 Sadegh M, Moftakhari H, Gupta H V., et al (2018) Multihazard Scenarios for Analysis of Compound Extreme Events.
 430 Geophys Res Lett 45:5470–5480. doi: 10.1029/2018GL077317
- 431 Schumann GJ-P, Stampoulis D, Smith AM, et al (2016) Rethinking flood hazard at the global scale. Geophys Res Lett
 432 43:10,249-10,256. doi: 10.1002/2016GL070260
- Seneviratne SI, Nicholls N, Easterling D, et al (2012) Changes in climate extremes and their impacts on the natural physical
 environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme
 Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, UK, New
 York, NY, USA
- 437 Serafin KA, Ruggiero P, Parker KA, Hill DF (2019) What's streamflow got to do with it? A probabilistic simulation of the
 438 competing oceanographic and fluvial processes driving extreme along-river water levels. Nat Hazards Earth Syst Sci
 439 Discuss 1–30. doi: 10.5194/nhess-2018-347
- 440 Serinaldi F (2015) Dismissing return periods! Stoch Environ Res Risk Assess 29:1179–1189. doi: 10.1007/s00477-014-

- 441 0916-1
- Sopelana J, Cea L, Ruano S (2018) A continuous simulation approach for the estimation of extreme flood inundation in
 coastal river reaches affected by meso- and macrotides. Nat Hazards 93:1337–1358. doi: 10.1007/s11069-018-33606
- Storlie CB, Swiler LP, Helton JC, Sallaberry CJ (2009) Implementation and evaluation of nonparametric regression
 procedures for sensitivity analysis of computationally demanding models. Reliab Eng Syst Saf 94:1735–1763. doi:
 DOI: 10.1016/j.ress.2009.05.007
- Suykens JAK, Van Gestel T, De Brabanter J, et al (2002) Least Squares Support Vector Machines. World Scientific,
 Singapore
- 450 Svensson C, Jones DA (2002) Dependence between extreme sea surge, river flow and precipitation in eastern Britain. Int J
 451 Climatol 22:1149–1168. doi: 10.1002/joc.794
- Taguas EV, Ayuso JL, Pena A, et al (2008) Testing the relationship between instantaneous peak flow and mean daily flow
 in a Mediterranean Area Southeast Spain. CATENA 75:129–137. doi: 10.1016/J.CATENA.2008.04.015
- Vacondio R, Dal Palù A, Mignosa P (2014) GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations.
 Environ Model Softw 57:60–75. doi: 10.1016/J.ENVSOFT.2014.02.003
- Van Den Hurk B, Van Meijgaard E, De Valk P, et al (2015) Analysis of a compounding surge and precipitation event in the
 Netherlands. Environ Res Lett 10:. doi: 10.1088/1748-9326/10/3/035001
- 458 Vapnik VN (1998) Statistical learning theory. Wiley
- Wahl T, Jain S, Bender J, et al (2015) Increasing risk of compound flooding from storm surge and rainfall for major US
 cities. Nat Clim Chang 5:1093–1097. doi: 10.1038/nclimate2736
- Xu H, Xu K, Lian J, Ma C (2019) Compound effects of rainfall and storm tides on coastal flooding risk. Stoch Environ Res
 Risk Assess 1–13. doi: 10.1007/s00477-019-01695-x
- Xu Y, Huang G, Fan Y (2017) Multivariate flood risk analysis for Wei River. Stoch Environ Res Risk Assess 31:225–242.
 doi: 10.1007/s00477-015-1196-0
- Yaseen ZM, El-shafie A, Jaafar O, et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015.
 J Hydrol 530:829–844
- Zscheischler J, Westra S, van den Hurk BJJM, et al (2018) Future climate risk from compound events. Nat Clim Chang
 8:469–477. doi: 10.1038/s41558-018-0156-3