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Abstract 12 

Flooding in coastal river reaches is the result of complex interactions between coastal and inland drivers. 13 
Flood hazard assessments need to consider how these drivers interact in space and time, for which a standard 14 
method is currently lacking. A complex hydrodynamic model is required to reproduce the physics of the 15 
combined forcings and, at the same time, to fully explore the combinations of drivers that can occur in order to 16 
determine extreme flood frequencies. In this work, we explore the individual role of astronomical tide, storm 17 
surge and river discharge and their correlations in the extreme flood levels of a coastal river reach. We apply a 18 
computationally efficient surrogate model of a 2D shallow water model based on least squares support vector 19 
machines (LS-SVM) regression to reconstruct 10000 years-long time series of water levels in the reach. As 20 
input to the model, we consider an ensemble of synthetic time series of the flood drivers, which differ in the 21 
number of variables considered and in their correlations. Probabilities of exceedance of water levels are then 22 
computed and compared. The proposed methodology can give a better understanding of the flooding processes 23 
in a multivariable environment, as low-lying coastal urban areas typically are, and can provide guidance on 24 
where to focus modelling efforts when developing flood hazard assessments in such areas. 25 
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1. Introduction 32 

Standard methodology for flood hazard assessment relies on the estimation of floods of different return period, 33 
and the subsequent simulation of such floods with a hydrodynamic model to produce inundation maps (de Moel 34 
et al. 2015). When the inundation depth depends only on the river discharge, a one-to-one relation can be 35 
assumed between both variables for any given return period, i.e. the 100-year discharge will generate the 100-36 
year depth. However, this is not true when several drivers are involved in the flooding process, as it is the case 37 
in coastal urban areas, which are typically exposed to multiple flood drivers such as sea water level, waves, 38 
river discharge, and local precipitation. Flooding may thus arise from a combination of sea-induced and 39 
precipitation-induced inland flooding, in what is sometimes referred to as coincident or compound flooding. In 40 
such a compound flood, the individual contributing variables may not be extreme themselves, but it is their 41 
combination that renders an event exceptional and leads to an extreme water depth. The correlations and 42 
dependencies between flood drivers (e.g., coastal surge and river discharge or rainfall) can be significant along 43 
riverine and estuary areas, as evidenced by Svensson and Jones (2002) in eastern Britain, Petroliagkis et al. 44 
(2016) in Europe, or Wahl et al. (2015) in the USA. Ignoring the dependence among them would result in an 45 
underestimation of risk (Bevacqua et al. 2017), whereas assuming total dependence would be too conservative 46 
and therefore inadequate for flood risk planning. 47 

Compound hazards have gained attention in climate science, and current research is advancing on 48 
frameworks and tools for their characterization (Hawkes 2008; Seneviratne et al. 2012; Leonard et al. 2014; 49 
Zscheischler et al. 2018; Sadegh et al. 2018). One possibility is to use continuous long term simulation methods, 50 
which consist of running a hydrodynamic flood model during a long period of time (several years) driven by 51 
simultaneous time series of the flood drivers. In this way, the statistical dependence between the drivers does 52 
not need to be explicitly analyzed, which represents a clear advantage over multivariate analysis methods such 53 
as copulas or Bayesian methods (Van Den Hurk et al. 2015; Xu et al. 2017, 2019; Sadegh et al. 2018). Methods 54 
that rely on this approach have recently been developed by Falter et al. (2015) for large-scale basins or by 55 
Schumman et al. (2016) for the whole Australian continent. This method has also been successfully applied by 56 
the authors to estimate extreme inundation caused by both high sea levels and river discharges in a coastal town 57 
(Sopelana et al. 2018). 58 

A typical constraint of continuous simulation methods is the lack of availability of simultaneous time 59 
series of the drivers, long enough to be statistically representative. To this regard, in the last years efforts have 60 
been done to improve the availability of long-term instrumental records (Peterson and Manton 2008; Brunet 61 
and Jones 2011; Brunet et al. 2014), as well as new climate data sources such as model simulations, model-62 
based reanalyses and remote sensors (Overpeck et al. 2011). It is also possible to generate synthetic time series 63 
for providing sufficiently large samples or ensembles of different time series of the same process (Keylock 64 
2012; Efstratiadis et al. 2014; Sopelana et al. 2018). 65 

Another drawback of continuous simulation approaches is the high computational time required to perform 66 
long term simulations. In spite of the various High Performance Computing techniques available nowadays, 67 
which have been applied to 2D shallow water codes (Vacondio et al. 2014; Liu et al. 2018; García-Feal et al. 68 
2018), it is still unfeasible to perform detailed 2D inundation simulations spanning hundreds of years with a 69 
time resolution of a few minutes. This is why most studies that apply this method rely on simple approaches to 70 
compute the flood characteristics (e.g., rating curves or 1D hydrodynamic models), rather than performing 2D 71 
hydrodynamic simulations (Falter et al. 2016). Physical processes like complex channel-floodplain interactions, 72 
flow paths through urban areas or superposition of flood waves at river confluences can, however, only be 73 
properly reproduced through spatially-detailed 2D shallow water model simulations (de Almeida et al. 2018; 74 
Bermúdez and Zischg 2018). In cases where such processes are relevant, the development of fast surrogate 75 
models that emulate the original 2D model responses can be a suitable strategy to reduce in a significant manner 76 
the computational time. In this line, artificial intelligence (AI) based methods such as support vector machines 77 
(SVM) or artificial neural networks (ANN) are becoming increasingly popular as function approximation 78 
techniques in water resources modelling (Razavi et al. 2012; Kasiviswanathan and Sudheer 2013; Yaseen et al. 79 
2015). Although applications to flood inundation modelling are still scarce, previous studies applying ANNs 80 
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(Chang et al. 2010; Bermúdez et al. 2018), Radial Basis Function ANNs (Sopelana et al. 2018) and SVMs (Lin 81 
et al. 2013; Liu and Pender 2015; Cea et al. 2016; Jhong et al. 2017; Bermúdez et al. 2019) for this purpose 82 
have obtained comparable predictions to physically-based models, while significantly increasing the simulation 83 
speed.  84 

In this work we apply a continuous long term simulation approach to quantify the individual role of 85 
astronomical tide, storm surge and river discharge and their correlations in the flooding of a coastal river reach. 86 
The continuous simulation approach uses a computationally efficient surrogate model of a 2D shallow water 87 
model based on LS-SVM regression. In this way we reconstruct 10000 years-long time series of water levels 88 
from synthetic time series of the flood drivers, using a limited number of 2D shallow water simulations (250 89 
days) to calibrate the LS-SVM model. To quantify the role of the flood drivers, we consider an ensemble of 90 
time series which differ in the number of flood drivers considered and the correlations between them. 91 
Probabilities of exceedance of water levels are then computed and compared from the resulting long-term water 92 
level series. The ultimate aim of the study is to provide guidance on where to focus modelling efforts when 93 
developing flood hazard assessment approaches in low-lying coastal areas. 94 

2. Materials and Methods  95 

2.1. Study site 96 

The coastal town of Betanzos (Figure 1), located in the NW of Spain, was used as the study site for this 97 
work. Betanzos is located at the confluence of two rivers (Mandeo and Mendo) in the inner part of a macrotidal 98 
estuary with a spring tidal range of roughly 4.5 m. The Mandeo River has a length of about 50 km. Its drainage 99 
basin occupies a total area of 450 km2, of which 100 km2 correspond to its tributary, the Mendo River. The 100 
Mendo river flows across a wide floodplain (approximately 400 meters) dominated by marsh.  101 

Several interventions carried out during the last century have completely changed the natural state of the 102 
area. The river has been artificially channelized downstream the confluence, the floodplains have been 103 
developed for urban use, and a railway embankment has been built just downstream the confluence. These 104 
changes have increased the vulnerability of the area and consequently the flood risk. 105 

A set of 8 representative control points distributed along the Mandeo River were defined for the analysis 106 
of results (Figure 1). The location of the control points was chosen in order to sample regions with a different 107 
exposure to the sea level influence. Point 1 is located in the estuary, point 2 in the middle of the artificial 108 
channel, point 3 at the confluence with the river Mendo, and points 4 to 8 along the Mandeo river. 109 

 110 

 111 

Figure 1. Schematic map of the town of Betanzos, showing land uses and building locations. Location of control 112 
points along the river Mandeo are also shown. 113 
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2.2. Long-term time series of the flood drivers 114 

The lack of observed data during a time period long enough to be statistically representative is one of the 115 
main problems in extreme flood analysis. For this reason, data selection and preparation are probably the most 116 
important elements in extreme value analyses (Hawkes 2008) and thus, the way in which these data are 117 
generated makes an important difference between methodologies. Another important issue related to input data 118 
is its time resolution. In order to define representative time series of the drivers, the time scale of each physical 119 
phenomenon that has an effect on the inundation must be taken into account. 120 

The continuous simulation technique used in this work to evaluate flood hazard is based on the generation 121 
of synthetic long-term time series of the flood drivers (predictors) with a daily resolution. Those series must be 122 
simultaneous, and they must reflect the observed seasonality and mutual correlations between predictors, in 123 
order to correctly account for the probability of simultaneous occurrence of extreme values of the flood drivers. 124 

In the coastal river reach analyzed in this work, inundation depths are affected by the tidal level but not 125 
by ocean waves. In this case, the most relevant flood predictors at a daily scale are: the daily astronomical tidal 126 
range (TR), the daily maximum storm surge (Sd), the daily peak discharge (Qd) and the time lag between peak 127 
discharge and high tide (Tlag). In order to have a statistically representative sample of these four predictors for 128 
the estimation of extreme events, we generated daily time series that span over 10000 years. Such a length is 129 
necessary because in the proposed method, return values are estimated from the long-term reconstructed time 130 
series of water depth using a simple plotting position formula, without fitting any statistical distribution. This 131 
kind of direct estimation is robust for return periods much lower than the length of the reconstructed time series. 132 
The methodology followed to generate the synthetic time series is described in detail in (Sopelana et al. 2018) 133 
and therefore, only a brief overview is given in the following.  134 

The astronomical tide is a deterministic variable and therefore, the TR time series were generated from 135 
the tidal harmonic constituents at the study site, obtained from historical records of sea level measured at a tidal 136 
gauge located in the outer estuary. 137 

The synthetic time series of Qd were obtained from a regression regional hydrological model based on the 138 
following descriptors: mean annual precipitation, catchment area, mean catchment slope and mean SCS curve 139 
number. The model was calibrated using observed discharge data at 18 gauge stations located in the 140 
hydrological region where the study site is located. 141 

Regarding the storm surge, it has a strong seasonal variability (higher in winter and lower in summer), and 142 
at the same time it is somewhat correlated with the river discharge, with a correlation coefficient that varies 143 
from one month to another. Both effects have been considered in the generation of the synthetic time series of 144 
Sd, that take into account the seasonality and the monthly correlation between Qd and Sd. The procedure to 145 
generate Sd is based on the observed mean and standard deviation of the daily surge and its observed correlation 146 
with Qd, computed on a monthly basis from historical time series from 1992 to 2014. The tidal harmonic 147 
constituents and surge were extracted by Pérez-Gómez (2014). For more details, the reader is referred to 148 
(Sopelana et al. 2018).  149 

The largest tidal constituent in this area is the principal lunar semidiurnal (or M2), with a period of 150 
approximately 12.42 hours. The synthetic series of Tlag were generated as a random value between 0 and 12.42 151 
h following a uniform distribution, since the daily tidal range and the river discharge are completely 152 
uncorrelated and have the same probability of occurrence at any time within the day. 153 

The previous procedure produces synthetic time series that reproduce the observed seasonality and 154 
correlations between the Qd, Sd and TR, as shown in (Sopelana et al. 2018).  155 

2.3. Two-dimensional shallow water equation modelling 156 

The 2D inundation model Iber (Bladé et al. 2014; García-Feal et al. 2018) was used to transform the flood 157 
drivers described above in water depths in the study region. The model solves the 2D depth-averaged shallow 158 
water equations using a high resolution unstructured finite volume solver. The numerical mesh used in the 159 
computations has 126,266 elements with an average size of 11 m. The mesh resolution in the river and urban 160 
area is higher, with a mesh size of the order of 5 m. The topography is defined from a Digital Surface Model 161 
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(DSM), obtained by combining the river and estuary bathymetries with Light Detection and Ranging (LiDAR) 162 
terrain data. Bed roughness is defined with a variable Manning coefficient obtained from a land use chart. Six 163 
different land uses were defined, with Manning values ranging from 0.02 s/m1/3 in the main river channels to 164 
0.15 s/m1/3 in the residential areas.  165 

Considering that river discharge and sea level vary significantly within a day, the daily values of the flood 166 
drivers Qd, Sd and TR must be downscaled to a higher time resolution in order to predict flood hazard from the 167 
maximum instantaneous water depths and velocities. The tidal range was downscaled using the tidal harmonic 168 
constituents at the study site. The surge was assumed to be constant over 24 hours and is implemented as an 169 
increase in the mean sea level. The river discharge was downscaled using the Soil Conservation Service (SCS) 170 
unit hydrograph. (Fill and Steiner 2003; Taguas et al. 2008).  171 

The computation of the maximum water depths with the inundation model was done in a daily basis, using 172 
the corresponding downscaled flood drivers as boundary conditions. The downscaled tidal level and surge were 173 
used as the downstream boundary condition, while the river hydrograph was imposed at the upstream inlet 174 
boundary (Figure 2). An appropriate offset was introduced in the time series of the boundary conditions in order 175 
to respect the time lag between peak discharge and high tide. For the purposes of this work, the output of the 176 
model is the daily maximum water depth at the 8 control points defined in Figure 1.  177 

 178 

 179 

Figure 2. Spatial domain of the numerical simulations and location of the open boundaries. 180 

2.4. Least-squares support vector machine regression modelling 181 

In the present study case, the 2D high-resolution inundation model takes about 1 hour of CPU time to 182 
simulate one day of real time. This prevents the use of this model to simulate the water depths during 10000 183 
years, since such a computation would take around 400 years of CPU time. Instead, a limited number of 184 
representative days were simulated with the 2D inundation model, and the water depth results obtained in those 185 
simulations were used to calibrate and validate an efficient surrogate model based on least-squares support 186 
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vector machine (LS-SVM) regression (Vapnik 1998; Suykens et al. 2002). LS-SVMs are a non-parametric 187 
regression technique derived from the original SVM model (Vapnik 1998), which share the small sample 188 
learning and generalization abilities of SVM, but have the additional advantage of transforming a quadratic 189 
programming problem into a linear one. In this work, models were developed with StatLSSVM toolbox in 190 
Matlab software (Brabanter et al. 2013). The LS-SVM technique was used to transform the long-term daily 191 
time series of the flood drivers into long-term daily series of maximum water depths at the control points.  192 

The calibration of the LS-SVM model was done using the numerical results obtained in 250 simulations 193 
performed with the 2D inundation model, with values of the flood drivers selected randomly over their range 194 
of variation. The tidal range is between 4.0 and 0.8 m and the storm surge between -0.53 m and 0.82 m. Daily 195 
peak discharge ranges from 0 to 446 m3/s, and its time lag with high tide takes values from 0 to 12.42 h. To 196 
validate the predictions of the LS-SVM model, a representative sample of 100 characteristic days was selected 197 
from the long-term time series of the drivers, using for that purpose the Maximum Dissimilarity selection 198 
algorithm (Kennard and Stone 1969). This algorithm identifies a subset of cases that represents the diversity of 199 
the data, based on the Euclidean distance from each other in the multi-dimensional space of input data. As 200 
shown by Camus et al. (2011) for wave climate analysis, the subset selected is distributed fairly evenly across 201 
the space with some points selected in the outline of the data space. In this way, not only mean conditions but 202 
also extremes that can result in flood events are represented in the subset. The 100 characteristic days selected 203 
in such a way were simulated with the 2D inundation model, and the maximum water depths computed were 204 
compared with those predicted by the calibrated LS-SVM model. 205 

Once the LS-SVM model was calibrated and validated at each control point, it was applied to reconstruct 206 
the 10000-year time series of daily maximum water depths at reduced computational cost. The calibration 207 
process takes about a second for each point. The calculation time required to reconstruct a time series of 10000 208 
data is in the order of 20 seconds.  209 

3. Results and discussion 210 

3.1. Sensitivity analysis 211 

Before applying the LS-SVM regression model, a sensitivity analysis of the maximum water depth at the 212 
control points to the flood drivers was conducted using the results of a series of characteristic cases modelled 213 
with the 2D inundation model. Sensitivity indices, based on both linear and non-linear non-parametric 214 
regression, were calculated to quantify the effects of each individual flood driver on the maximum water depth 215 
at each control point.  216 

The Standardized Regression Coefficients (SRC) obtained from a multivariable linear regression of 217 
maximum water depths at each control point are shown in Figure 3. The coefficient of determination R2 of the 218 
multiple linear regression for control points P1 to P8 is respectively 0.93, 0.91, 0.94, 0.95, 0.95, 0.96, 0.97, 219 
0.97. These relatively high values of R2 confirm the validity of the SRC sensitivity measures (Storlie et al. 220 
2009). According to the SRC values, the most relevant parameter at all the control points is the river discharge 221 
(Qd), followed by the tidal range (TR) and the surge (Sd). As expected, they all take positive values, meaning 222 
that an increase in the parameter implies an increase in the water depth. The sensitivity to the river discharge 223 
increases significantly as we move upstream the river reach (from control point 1 to 8), while the sensitivity to 224 
the sea level related parameters (TR and Sd) decreases. The maximum water depths show a very low sensitivity 225 
to the time lag (Tlag), regardless of the control point considered. Similar results can be inferred from the first 226 
order and total effects variance-based sensitivity indices obtained from the ANOVA decomposition (Si and ST,i 227 
values in Figure 3 and Table 1). The total effect of a given parameter on model output (ST,i in Table 1) is given 228 
by all the first and second order terms of the ANOVA decomposition in which the parameter appears. The 229 
differences between the first order and total effects reflect non-linear interactions among model parameters. At 230 
all points, the total effect of the time lag is very close to zero, which corroborates the limited influence of this 231 
parameter on the water depth in our study case. 232 
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Table 1. First order effects and total effects for the water depth at control points. 233 

 P1 P2 P3 P4 P5 P6 P7 P8 

 Si ST,i Si ST,i Si ST,i Si ST,i Si ST,i Si ST,i Si ST,i Si ST,i 

Qd  0.301 0.477 0.343 0.534 0.469 0.641 0.602 0.745 0.724 0.819 0.774 0.865 0.793 0.878 0.809 0.887 

TR  0.281 0.310 0.247 0.283 0.171 0.202 0.107 0.129 0.059 0.072 0.041 0.054 0.034 0.046 0.029 0.041 

Sd  0.131 0.129 0.114 0.114 0.079 0.080 0.049 0.052 0.027 0.027 0.019 0.020 0.016 0.016 0.014 0.013 

Tlag  0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 234 
 235 
 236 

Figure 3. Standardized regression coefficient and first order sensitivity index for the water depth at each control point.  237 

 238 
 239 
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3.2. LS-SVM model performance 240 

Based on the results of the sensitivity analysis, a LS-SVM model was calibrated using only Qd, TR and 241 
Sd as predictor variables. Given the little influence of Tlag on the water depth predictions, it was not considered 242 
as an input parameter in the LS-SVM model.  243 

The performance of the LS-SVM model was quantified comparing the daily maximum water surface 244 
elevation (wse) predictions with those obtained with the 2D inundation model in 100 characteristic days (Figure 245 
4). Considering the ensemble of validation runs, the mean absolute error (MAE) is below 10 cm at all points in 246 
validation. The global MAE on the 8 points is 7.2 cm. Thus, the LS-SVM model can be considered as an 247 
efficient surrogate of the 2D inundation model in order to reconstruct time series of water levels in the river 248 
reach from time series of the flood drivers.  249 

 250 

 251 

Figure 4. Scatter plot of water levels computed with the 2D-SWE model and the LS-SVM model in validation, 252 
with the 1:1 line plotted for reference in black. The mean absolute error in each point and the global mean 253 
absolute error, considering the 8 control points, for the 100 validation runs is indicated in the upper left-hand 254 
corner of the corresponding subfigure. 255 

3.3. Annual maximum water depths 256 

In order to analyse the combinations of the flood drivers that are responsible of the maximum water surface 257 
elevations, the values of Qd, TR and Sd associated with the annual maxima at each control point were extracted 258 
from the 10000 year-long time series. The results of this analysis at control point 1 are shown in Figure 5. At 259 
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points of the estuary such as this one, annual maximum water levels are in general associated with high tidal 260 
ranges and positive surges. However, annual maxima also occur during low tidal range conditions, associated 261 
with high river flows. A certain discharge threshold can be established to distinguish between these two types 262 
of maxima. As illustrated in Figure 5 for point 1, the value of the threshold can be set at approximately 210 m3/s 263 
at this point. If this threshold is exceeded, inundation levels are driven mainly by the river discharge, regardless 264 
of the sea level conditions.  265 

The number of annual maxima corresponding primarily to high discharges increases as we move upstream 266 
the river Mandeo (e.g., from control point 2 to point 4 and then 6, as shown in Figure 6). In parallel, the value 267 
of the discharge threshold decreases (it is approximately 200 m3/s at control point 2, 180 m3/s at point 4 and 268 
140 m3/s at point 6), since the river discharge tends to dominate the inundation levels at the upstream locations. 269 

 270 

Figure 5. Annual maximum water surface elevation at control point 1 and associated daily peak discharge (Qd), 271 
astronomical tidal range (TR) and storm surge (Sd) conditions. 272 

3.4. Water depth exceedance probabilities  273 

The probability of exceedance of a given water depth was computed from the annual maxima of the 10000-274 
year time series. Given the length of the series, return period values up to 500-years were obtained without the 275 
need of fitting a statistical distribution. Water level frequencies at four control points along the reach, expressed 276 
as return period, are plotted in Figure 7. It should be noted that the methodology used allows the estimation of 277 
the return period, jointly considering the relevant flood drivers and the combinations of them that can coexist. 278 
It differs from standard univariable approaches for defining return level events, based on a single flood driver, 279 
which have proven insufficient in other coastal river reaches (Serafin et al. 2019). It also moves away from 280 
simplified multivariable approaches in which the return period of the water level is assumed to be the same as 281 
that of its drivers (MARM 2011), or methods that use a relatively arbitrary combination of return periods of the 282 
flood drivers (Hawkes 2006). The reader is referred to (Serinaldi 2015) for discussion about multivariate return 283 
periods. 284 

 285 
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Figure 6. Annual maximum water surface elevation and associated daily peak discharge (Qd) and astronomical 286 
tidal range (TR) conditions at control point 2 (first column), control point 4 (middle column) and control point 287 
6 (right column). 288 

In order to further analyse the influence of the flood drivers on the inundation depths, two additional 289 
synthetic 10000-years long time series of the flood drivers were generated and converted in water depths using 290 
the LS-SVM model. In the first synthetic time series the storm surge was set to zero and therefore, the sea level 291 
only depends on the tidal range. In the second synthetic time series the correlation between the river discharge 292 
and the storm surge was neglected. The existing correlation between these two parameters in the original time 293 
series implies that high storm surges coincide with high river discharges, whereas low storm surges occur during 294 
low flows in the river. In the second synthetic time series, storm surge values are generated independently of 295 
discharge values and, compared to the original time series, are lower during high flows (and higher during low 296 
flows). The water level exceedance curves obtained with these two additional simulations are plotted in Figure 297 
7. 298 

At points close to the sea, neglecting the storm surge contribution results in a significant underestimation 299 
of the inundation level. The underestimation is observed for all return periods, although it is lower for high 300 
return periods. For example, at control point 1 the differences are reduced for return periods above 100 years 301 
(Figure 7). Such high return periods are associated with very high discharges, that not always coincide with 302 
very high sea levels, as mentioned in the sensitivity analysis. Also, as shown in Figure 5, the highest water 303 
levels are always associated to high river discharges, but not necessarily to high sea levels. 304 

The influence of the sea level condition decreases as we move away from the river mouth. At control point 305 
3, located at the confluence with the river Mendo, neglecting the storm surge altogether in the simulation makes 306 
practically no difference in the water levels associated to a return period equal or higher than 50 years. Further 307 
upstream, at control point 5, the underestimation related to the exclusion of the storm surge occurs only for 308 
return periods below 5 years, and its magnitude is negligible compared to points closer to the sea. Upstream of 309 
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point 5, the effect of the storm surge on the water levels is negligible for all return periods. Therefore, this 310 
procedure allows locating the boundary between sea-influenced and river-influenced water levels in a coastal 311 
river reach. 312 

Regarding the correlation between storm surge and river discharge, its influence on the inundation water 313 
levels is much lower. At control point 1 it leads to a very slight underestimation of the water depth (of the order 314 
of 5 cm) or return periods above 100 years. At other control points its effect is negligible (Figure 7). 315 

 316 

Figure 7. Water level frequency distribution obtained at points P1, P3, P5 and P7 with the original simulation 317 
(Reference), the simulation that neglects the storm surge (Sd=0) and the simulation that neglects the correlation 318 
between the storm surge and the river discharge (Corr=0).  319 

The inundation levels obtained with the original and synthetic time series are compared in terms of 320 
associated return periods in Figure 8. This allows us to evaluate the changes in return period (instead of water 321 
levels) obtained with the different input time series. The results shown in Figure 8 confirm the necessity of 322 
taking into account the contribution of storm surge on extreme water levels in the river mouth. For example, 323 
the water level that has a 10-year return period considering the original time series at control point 1 would have 324 
a return period of nearly 100 years if the storm surge was not considered. This gives a better idea of how return 325 
water level estimates can vary if the contribution of certain drivers or correlations between drivers are neglected, 326 
depending on the location within the river reach. 327 

 328 
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Figure 8. Changes in return period between the original simulation (x-axis) and the simulation that neglects the 329 
storm surge (Sd=0), and the simulation that neglects the correlation between the storm surge and the river 330 
discharge (Corr=0) (y-axis). The 1:1 line representing no changes in return period is plotted in blue. 331 

4. Conclusions 332 

We have developed a method to quantify the role and interactions between coastal and inland flood drivers 333 
in a coastal river reach. The methodology relies on the reconstruction of water levels from the flood drivers, by 334 
means of the combination of a 2D inundation model and a LS-SVM regression model. With the proposed 335 
approach it is possible to:  336 

(1) Reconstruct long-term time series of water depth from synthetic time series of the flood drivers using 337 
a calibrated LS-SVM regression model. 338 

(2) Determine return water levels jointly considering the relevant flood drivers and the combinations of 339 
them that can coexist. Since the methodology is computationally very efficient, it could be extended 340 
to generate flood maps for different return periods by simply increasing the number of control points 341 
considered (Bermúdez et al. 2019). 342 

(3) Define the extension of the sea influence in a coastal river reach and, more specifically, the spatial 343 
domain where the estimation of extreme inundation levels requires considering the interaction 344 
between sea-level and river discharge.  345 

(4) Quantify the role of individual flood drivers and their correlations for generating extreme flood events 346 
along the reach. 347 

In the present study case, the most relevant flood predictors are the river discharge, the tidal range and the storm 348 
surge. Although the sensitivity to the river discharge decreases significantly as we move downstream the river 349 
reach, it is the most relevant parameter at all the control points. Discharge thresholds were identified to 350 
distinguish between sea-influenced and river-influenced annual maxima at each point. The analysis confirms 351 
the necessity of taking into account the contribution of storm surge to extreme water levels in the river mouth, 352 
and the possibility of neglecting its correlation with the river discharge. 353 

In other river reaches the relative influence of the flood drivers might differ from our study case, and other 354 
processes as ocean waves or the time lag between high tide and peak discharge might have a significant 355 
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influence on the inundation levels. Nevertheless, the methodology of analysis proposed here would still be valid 356 
in those cases.  357 
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