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Abstract
Designing the rules for the dialog management process is one
of the most resources-consuming tasks when developing a di-
alog system. Although statistical approaches to dialog man-
agement are becoming mainstream in research and industrial
contexts, still many systems are being developed following the
rule-based or hybrid paradigms. For example, when developers
require deterministic system responses to keep total control on
the decisions made by the system, or because the infrastructure
employed is designed for rule-based systems using technolo-
gies currently used in commercial platforms. In this paper, we
propose the use of evolutionary algorithms to automatically ob-
tain the dialog rules that are implicit in a dialog corpus. Our
proposal makes it possible to exploit the benefits of statistical
approaches to build rule-based systems. Our proposal has been
evaluated with a practical spoken dialog system, for which we
have automatically obtained a set of fuzzy rules to successfully
manage the dialog.
Index Terms: Dialog Management, Spoken Dialog Systems,
Dialog Rules, Evolving Classifiers.

1. Introduction
Spoken Dialog Systems (SDSs) are computer programs that re-
ceive speech as input and generate synthesized speech as out-
put, engaging the user in a dialog that aims to be similar to that
between humans [1, 2, 3, 4].

The design practices of conventional commercial dialog
systems are currently well established in industry. In these prac-
tices, voice user interface (VUI) experts [5, 6] handcraft a de-
tailed dialog plan based on their knowledge about the specific
task and the business rules. In addition, designers commonly
define the precise wording for the system prompts according
to the dialog state and context, and also the expected types of
user’s utterances for each turn. As described in [7, 8], this ap-
proach is well-documented [9] and has been used to develop
hundreds of successful commercial dialog systems.

The design of dialog strategies is a challenging task in the
development of spoken dialog systems given two intertwined
challenges: the variety of factors that must be considered to se-
lect the next system response (e.g., user goals and preferences,
dialog history, results provided by the data repositories, external
context, etc.) and the uncertainties derived from ambiguous in-
puts, partially observable environments, recognition errors, etc.

Thus, a great effort is currently employed in commercial
systems to design the described set of rules for dialog manage-
ment and find empirical evidence of their appropriateness. This
design is usually carried out in industry by hand-crafting dia-
log strategies tightly coupled to the application domain in order
to optimize the behavior of the dialog system in that context,
which is a very time-consuming process and has the disadvan-
tage of lack of portability and adaptation to new contexts.

This has motivated the research community to find ways for
automating dialog learning by using statistical models trained
with real conversations [10, 11, 12, 13]. Statistical approaches
can model the variability in user behaviors and allow exploring
a wider range of strategies. Although the construction and pa-
rameterization of the model depends on expert knowledge of the
task, the final objective is to develop dialog systems that have a
more robust behavior, better portability, and are easier to adapt
to different user profiles or tasks.

In this paper, we present a hybrid approach to dialog man-
agement that seeks to combine the benefits of rule-based and
statistical techniques in a single framework. To do this, we
propose a statistical technique to automatically extract the set
of rules for dialog management from a labeled dialog corpus.
Our overall approach is related to the main statistical dialog
management approaches, including those that use clustering to
construct dialog graphs from dialog data [14], optimize dia-
log strategies using reinforcement learning (RL) [11], combine
RL with information state update rules [15], use discriminative
classification models to learn information state updates [16], use
probabilistic rules whose values are estimated from dialog data
using Bayesian inference [17], or uses procedural dialog man-
agement methodologies based on defining dialog trees [18].

However, our proposal differs from the aforementioned ap-
proaches in several main aspects. Our proposal models the di-
alog by means of a classification process, which considers the
complete history of the dialog as input. We model this classifi-
cation process by means of fuzzy-rule-based evolving classifiers
[19]. This allows obtaining a set of fuzzy rules that can be di-
rectly employed to develop a rule-based dialog manager, then
making possible to obtain new generation interfaces without
the need for changing the already existing commercial infras-
tructures. These rules are designed to operate under partially
observable settings.

Our proposal has been evaluated with a practical dialog sys-
tem providing railway information, for which a set of fuzzy
rules has been obtained to manage the dialog. The results of the
evaluation show that the fuzzy-rule-based dialog manager pro-
vides satisfactory results in terms of correct responses selected
and dialog success rate.

2. Our proposal for automatically defining
the dialog rules

As described in the previous section, we propose the use of
fuzzy-rule-based evolving classifiers to discover the set of rules
that are implicit in a dialog corpus. Specifically, we propose the
use of the eClass (evolving Classifier) family. During the train-
ing of these classifiers, a set of fuzzy rules that describes the
most important observed features for the classification of each
class (i.e., system prompt) is formed. These rules can also be
constantly adjusted to the available training data.
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One of the main advantages of eClass is that it does not re-
quire parameter optimization as its only parameter ’scale’ can
be directly inferred from the training data. This technique [19]
is based on partitioning the data space into overlapping local
regions through Recursive Density Estimation (RDE) and asso-
ciating clusters (respectively fuzzy sets) to them. The eClass
family includes two different architectures and on-line learning
methods: i) eClass0 with the classifier consequents represent-
ing class label [19]; ii) eClass1 for regression over the features
using the first order eTS fuzzy classifier.

2.1. Codification of the input of the classifier

Our proposal is not only focused on slot-filling dialog systems,
for which dialog managers use a structure comprised of one slot
per piece of information that the system can gather from the
user, but can also consider additional information pieces related
to the responses provided by the system or the context of the
interaction (e.g., user’s previous interactions with the system,
user’s preferences, users’ emotional state, location, etc.).

We model the complete set of input features by means of a
data structure, which we call Interaction Register (IR). The IR
keeps the information provided by the user (e.g., slots) through-
out the previous history of the dialog and the described addi-
tional information sources. The modeled dialog systems can
capture several data at once and the information can be pro-
vided in any order (more than one slot can be filled per dialog
turn and in any order), thus supporting mixed-initiative dialogs.

To extract the set of dialog rules and employ them to to take
the next system decision, we have assumed that the exact values
of the task-dependent entities are not significant. They are im-
portant for accessing databases and for constructing the output
sentences of the system. However, the only information neces-
sary to predict the next action by the system is the presence or
absence of dialog entities. Therefore, the codification we use
for each dialog act provided by the SLU module is in terms of
three values, {0, 1, 2}, according to the following criteria:

• (0): The value for the slot has not been provided;

• (1) The value is known with a confidence score that is
higher than a given threshold;

• (2): The value of the slot has a confidence score that is
lower than the given threshold.

2.2. Obtaining the set of fuzzy rules

Fuzzy-rule-based evolving classifiers are trained from a labeled
corpus of training dialogs. In this paper, we focus on the
eClass0 classifier, given that it possesses a zero-order Takagi-
Sugeno consequent, so a fuzzy rule in the eClass0 model has
the following structure:

Rulei = IF (Feature1 is P1) AND . . .

. . . AND (Featuren is Pn)

THEN Class = ci (1)

where i represents the number of rule; n is the number of
input features (observations corresponding to the different slots
defined for the semantic representation of the user’s utterances);
the vector Feature stores the observed features, and the vec-
tor P stores the values of the features of one of the prototypes
(coded in terms of three possible values, {0, 1, 2}) of the cor-
responding class ci ∈ {set of different classes}. Each class is
then associated to a specific system action (response).

The eClass0 model consists of several fuzzy rules per class
(the number of rules depends on the heterogeneity of the input
data of the same class). During the training process, a set of
rules is formed from scratch using an evolving clustering ap-
proach to decide when to create new rules. The inference in
eClass0 is produced using the “winner takes all” rule and the
membership functions that describe the degree of association
with a specific prototype are of Gaussian form.

The potential (Cauchy function of the sum of distances be-
tween a certain data sample and all other data samples in the
feature space) is used in the partitioning algorithm. However,
in these classifiers, the potential (P) is calculated recursively,
which makes the algorithm faster and more efficient. The po-
tential of the kth data sample (xk) is calculated by means of
equation 2 [20]. The result of this function represents the den-
sity of the data that surrounds a certain data sample.

P (xk) =
1

1 +
∑k−1

i=1 distance(xk,xi)

k−1

(2)

where the function distance provides the distance between
two samples in the data space.

The potential can be calculated using the euclidean or the
cosine distance. In this case, cosine distance (cosDist) is used
to measure the similarity between two samples; as described in
Equation 3.

cosDist(xk, xp) = 1−
∑n

j=1 xkjxpj√∑n
j=1 x

2
kj

∑n
j=1 x

2
pj

(3)

where xk and xp represent the two samples to measure its
distance and n represents the number of different attributes in
both samples.

The resolution of Equation 2 requires all the accumulated
data sample available to be calculated, which contradicts to the
requirement for real-time and on-line application needed in the
proposed problem. For this reason, a recursive expression for
the cosine distance is proposed in [20]:

Pk(zk) =
1

2− 1

(k−1)
√∑n

j=1(z
j
k
)2
Bk

; k = 2, 3...

where : Bk =

n∑
j=1

zjkb
j
k ; bjk = bj(k−1) +

√
(zjk)

2∑n
l=1(z

l
k)

2

and bj1 =

√
(zj1)

2∑n
l=1(z

l
1)

2
; j = [1, n+ 1]; P1(z1) = 1

(4)
where zk represents the kth data sample (xk) and its cor-

responding label (z = [x, Label]). Using this expression, it is
only necessary to calculate (n+1) values where n is the number
of different subsequences obtained; this value is represented by
b, where bjk, j = [1, n] represents the accumulated value for the
kth data sample.

In this case, a specific system action can be represented by
several rules, depending on the heterogeneity of the samples
that represent the same action. Thus, a class could be repre-
sented by one or several prototypes. The different prototypes
that represent a system action are obtained from the input data
and they are updated constantly. However, an initial rule-based
model can be defined (if necessary) by hand as start point of the
classifier. In this sense, new prototypes are created or existing
prototypes are removed if necessary.

The eClass0 evolving classifier is trained by means of the
set of steps that are described in [21]:
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1. Classify each new sample in a group represented by a
prototype (i.e., data sample that groups several samples
which represent a specific system action). To do this, the
sample is compared with all the prototypes previously
created.

2. Calculate the potential of the new data sample to be a
prototype. Based on the potential of the new data sample
to become a prototype, it could form a new prototype or
replace an existing one.

3. All the existing prototypes are updated considering the
new data sample. A new prototype is created if its value
is higher than any other existing prototype. Existing pro-
totypes could also be removed.

2.3. Practical application: a spoken dialog system provid-
ing railway information

We have applied our proposal to extract the dialog rules for a
mixed-initiative spoken dialog system providing railway infor-
mation system using spontaneous speech in Spanish [13]. As
in many other conversational agents, the semantic representa-
tion chosen for dialog acts of the SLU module is based on the
concept of frame [22]. This way, one or more dialog acts repre-
sent the intention of the utterance, and a sequence of attribute-
value pairs contains the information about the values given by
the user. For the task, we defined four entities related to the
queries users can ask for (Hour, Fares, Train-Type, Trip-Time,
and Services) and eleven entities, which can be divided into two
groups:

1. Task-dependent entities: they represent the information
pieces that are required to complete the previously de-
scribed (Origin, Destination, Departure-Date, Arrival-
Date, Class, Departure-Hour, Arrival-Hour, Train-Type,
Order-Number, and Services).

2. Task-independent entities: they represent typical interac-
tions in a dialog used after a confirmation required by the
system (Acceptance, Rejection, and Not-Understood).

A total of 51 system responses were defined for the task
(classified into confirmations, questions to require data from the
user, and answers obtained after a query to the database).

Using the previously described codification for the entities,
when a dialog starts (in the greeting turn) all the values in the
Interaction Register are initialized to “0”. The information pro-
vided by the users in each dialog turn is employed to update the
previous values and obtain the current ones, as Figure 1 shows.

This figure shows the semantic interpretation and confi-
dence scores (in brackets) for a user’s utterance provided by the
SLU module. In this case, the confidence score assigned to the
entity Date is very low. Thus, a “2” value is added in the cor-
responding position for this entity. The query (Hour) and the
entity Destination are recognized with a high confidence score,
adding a “1” value in the corresponding positions.

The set of features for the classifier includes the codification
of the different queries and task-dependent entities that can be
provided by the user and the task-independent queries provided
in the last user turn (none in this case).

An initial corpus of 900 dialogs (10.8 hours) was acquired
for the task by means of the Wizard of Oz technique with 225
real users, for which an initial dialog strategy was defined by

experts [13]. A set of 20 scenarios was used to carry out the
acquisition. Each scenario defined one or two objectives to be

Figure 1: Excerpt of a dialog for the railway task with its corre-
spondent representation of the task-dependent and active task-
independent information for one of the dialog turns

completed by the user and the set of entities that they must pro-
vide. The corpus consists of 6,280 user turns, with an aver-
age number of 7.7 words per turn. The corpus was split into a
training subset of 4,928 samples (80% of the corpus) and a test
subset of 1,232 samples (20% of the corpus).

A total of 49 rules for the task were obtained with eClass0.
Figure 2 shows the structure of these rules. Using them, the
dialog rule corresponding to the class ′SystemResponse23′

(confirmation of the departure date) would be selected for the
dialog turn described in Figure 1.

FRB − RailwayTask(eClass0) :

IF (Hour is 1) AND (Fares is 0) AND · · · AND (Not −
Understood is 0)
THEN Class =′ Ask − Date′

IF (Hour is 2) AND (Fares is 0) AND · · · AND (Not −
Understood is 1)
THEN Class =′ Confirm − Hour′

IF (Hour is 0) AND (Fares is 1) AND · · · AND (Not −
Understood is 0)
THEN Class =′ Provide − Fares′

IF (Hour is 1) AND (Fares is 2) AND · · · AND (Not −
Understood is 1)
THEN Class =′ Close − Dialog′

· · ·

Figure 2: Set of fuzzy rules obtained with the eClass0 classifier
for the railway task

3. Evaluation
We have completed an evaluation of the practical application of
our proposal covering three main objectives. Firstly, we have
compared the responses selected applying the learned fuzzy
rules with the ones that would be selected using very well-
known alternatives for the definition of the classification func-
tion. Secondly, we have asked several VUI experts whether the
dialog rules automatically obtained were coherent with the cor-
responding dialog situations. Finally, we have evaluated a dia-
log manager applying the set of fuzzy rules with recruited users.
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3.1. Evaluation of the classification function

We have firstly assessed the behavior of our proposal comparing
it with different definitions of the classification function used to
determine the next system response. Three approaches for the
definition of this function were used: a multilayer perceptron
(MLP), a multinomial naive Bayes classifier, and finite-state
classifiers (bigram models, trigram models, and Morphic Gen-
erator Grammatical Inference (MGGI) models [23]). A 5-fold
cross-validation process was used to carry out this evaluation.
The corpus was randomly split into five subsets of 1,232 sam-
ples (20% of the corpus).

We propose three measures to evaluate the obtained set of
rules, which are calculated by comparing the response automat-
ically generated by applying this set for each input in the test
partition with regard to the reference answer annotated in the
corpus (the answer provided by the WOz). This way, the eval-
uation is carried out turn by turn. These three measures are:
i) Matching: percentage of responses selected by means of the
rules that match exactly the initial dialog strategy defined by
the experts; ii) Coherence: percentage of responses that are co-
herent with the current dialog state but do not match the initial
strategy defined to acquire the training corpus; and iii) Error:
percentage of responses that could cause a dialog failure.

Table 1 shows the results obtained. As it can be observed,
the Fuzzy-rule-based classifier provides satisfactory results in
terms of the percentage of correct responses selected (Match-
ing and Coherence measures) and responses that could cause
the failure of the dialog (Error measure). With regard the rest
of classifiers, the MLP classifier is the one providing the clos-
est results to our proposal. The table also shows that among
the finite-state model classifiers, the bigram and trigram clas-
sifiers are worse than the MGGI classifier, this is because they
cannot capture long-term dependencies. The renaming function
defined for the MGGI classifier seems to generate a model with
too many states for the size of the training corpus, therefore, this
classifier could be underestimated.

Dialog manager Matching Coherence Error
Fuzzy-rule-based (FRB) classifier 76.7% 89.2% 5.6%

MLP classifier 76.8% 88.8% 5.8%
Multinomial classifier 63.4% 76.7% 10.6%

Bigram classifier 28.8% 37.3% 42.2%
Trigram classifier 31.7% 42.1% 44.1%
MGGI classifier 46.6% 67.2% 24.8%

Table 1: Results of the evaluation of the classification functions

3.2. Evaluation of the quality of the obtained rules

Secondly, we asked 6 VUI experts from 4 different universities
to develop rule-based dialog models for the task and also eval-
uate the quality and coherence of each one of the automatically
learned fuzzy rules. The following measures were considered:
percentage of rules included in all the developed rule-based di-
alog models (Included), rules that are considered coherent for
the current state of the dialog (Coherent), and rules that could
be removed (Removed). Table 2 shows the results of this eval-
uation. As it can be observed, there was a satisfactory agree-
ment with regard the number of rules included in the manually
defined models and considered coherent with the conditions re-
quired. Only the 5.8% of rules was considered to be covered by
other rules.

Included 83.7%
Coherent 97.2%
Removed 5.8%

Table 2: Results of the comparative evaluation with manually
defined rule-based dialog models

3.3. Evaluation of our proposal in real time operation

Finally, we evaluated our proposal with the acquisition of 150
dialogs by means of 15 recruited users. We considered the fol-
lowing measures: i) Dialog success rate (Success); ii) Average
number of turns per dialog (nT); iii) Confirmation rate (Confir-
mation); and iv) Error correction rate (ECR). The confirmation
rate was computed as the ratio between the number of explicit
confirmation turns and the total number of turns in the dialog.
The ECR was computed as the number of errors detected and
corrected by the dialog manager divided by the total number of
errors.

The results presented in Table 3 show that in most cases the
automatically learned dialog model has the capability of cor-
rectly interacting with the user. The dialog success depends on
whether the system provides the correct data for every objective
user’s query. All of the objectives defined are achieved in 93.5%
of the dialogs. The analysis of the main problem detected in the
acquired dialogs shows that, in some cases, the system did not
detect the introduction of data with a high confidence value due
to errors generated by the ASR that were not detected by the
dialog manager. However, the evaluation confirms a good op-
eration of the approach since the information is correctly given
to the user in the majority of cases. The confirmation and error
correction rates have also a remarkable impact on the described
system performance.

Success nT Confirmation ECR
93.5% 13.8 22% 0.87%

Table 3: Results of the evaluation with recruited users

4. Conclusions and Future Work
In this paper, we have presented a proposal that employs evolv-
ing classifiers to automatically obtain a set of fuzzy rules that
can be directly employed to develop a rule-based dialog man-
ager, thus reducing the considerable effort and time that is re-
quired to manually define the dialog strategy. We have applied
our proposed technique to develop a dialog manager for a sys-
tem that provides railway information. The evaluation results
show that the proposed technique can predict coherent system
answers in most of the cases.

For future work we are interested in applying our proposal
to multi-domain tasks in order to measure the capability of our
methodology to adapt efficiently to contexts that vary dynam-
ically. We also want to combine our proposal to facilitate the
interaction using also additional input and output modalities.
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