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A B S T R A C T

Physical activity and sedentary behaviors have been linked to a variety of general health benefits and problems.
However, few studies have examined how physical activity during childhood is related to brain development,
with the majority of work to date focusing on cardio-metabolic health. This study examines the association be-
tween physical activity and screen time with white matter microstructure in the general pediatric population. In a
sample of 2532 children (10.12� 0.58 years; 50.04% boys) from the Generation R Study, a population-based
cohort in Rotterdam, the Netherlands, we assessed physical activity and screen time using parent-reported
questionnaires. Magnetic resonance imaging of white matter microstructure was conducted using diffusion
tensor imaging. Total physical activity was positively associated with global fractional anisotropy (β¼ 0.057, 95%
CI¼ 0.016, 0.098, p¼ 0.007) and negatively associated with global mean diffusivity (β¼�0.079, 95%
CI¼�0.120, �0.038, p< 0.001), two commonly derived scalar measures of white matter microstructure. Two
components of total physical activity, outdoor play and sport participation, were positively associated with global
fractional anisotropy (β¼ 0.041, 95% CI¼(0.000, 0.083), p¼ 0.047; β¼ 0.053, 95% CI¼(0.010, 0.096),
p¼ 0.015, respectively) and inversely associated with global mean diffusivity (β¼�0.074, 95% CI¼ (�0.114,
�0.033), p< 0.001; β¼�0.043, 95% CI¼(-0.086, 0.000), p¼ 0.049, respectively). No associations were observed
between screen time and white matter microstructure (p> 0.05). This study provides new evidence that physical
activity is modestly associated with white matter microstructure in children. In contrast, complementing other
recent evidence on cognition, screen time was not associated with white matter microstructure. Causal inferences
from these modest associations must be interpreted cautiously in the absence of longitudinal data. However, these
data still offer a promising avenue for future work to explore to what extent physical activity may promote healthy
white matter development.
; METs, metabolic equivalents; DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; RCT,
imaging; AD, axial diffusivity; RD, radial diffusivity; BMI, body mass index; IQ, Non-verbal intelligence quotient;
entie Test- Revisie; CBCL/6–18, Child Behavior Checklist school-age version; FDR, false discovery rate; ZonMw,
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1. Introduction

Despite compelling evidence suggesting physical activity plays an
important role in general health (Lee et al., 2012), a substantial pro-
portion of youth do not meet the recommended levels of physical activity
(Hallal et al., 2012). During childhood and adolescence, the brain un-
dergoes a variety of developmental changes in white and gray matter
structure (Lenroot and Giedd, 2006; Schmithorst and Yuan, 2010), which
also coincide with changes in behavior and cognition. During this sen-
sitive period of maturation, a number of environmental factors have been
shown to be related to the brain’s white matter macrostructure and
microstructure (Frodl et al., 2012; Hanson et al., 2013; Bick and Nelson,
2016), yet little work has explored to what extent physical activity and
sedentary behavior, associate with white matter in children.

Physical activity and sedentary behavior are the two independent
behaviors that occupy all waking hours of a day. Physical activity,
defined as any body movement that increases energy expenditure (e.g.
active commuting, outdoor play, or sport participation) (Caspersen et al.,
1985), has been consistently linked to mental health benefits across a
person’s lifespan (Biddle et al., 2018; Chekroud et al., 2018). On the
other hand, sedentary behavior, defined as any waking behavior char-
acterized by an energy expenditure �1.5 metabolic equivalents (METs),
while in a sitting, reclining or lying posture (Tremblay et al., 2017), has
become a central component of the daily lives of children. Therefore, the
debate about whether sedentary behavior, specifically recreational
screen time, negatively impacts children mental health is becoming
increasingly important. Recent work has suggested that while negative
associations are observed between screen time (i.e., technology use and
playing videogames) and mental health and cognition in young people,
they are likely too small in magnitude to warrant policy change (Fergu-
son, 2017; Orben and Przybylski, 2019). Though previous work has
studied the association of these two behaviors with indicators of mental
health in childhood, little work has examined any neural correlates.

Magnetic resonance imaging (MRI) offers an in vivo view into the
developing brain. White matter neuronal tissue consists of axons wrap-
ped in the lipid-rich myelin sheath and is responsible for providing fast
and efficient connections throughout cortex and subcortex. Diffusion
tensor imaging (DTI) is able to sample features of the microstructural
architecture of white matter. Fractional anisotropy (FA) and mean
diffusivity (MD) are two commonly derived scalar metrics from DTI. FA
represents the degree to which water diffuses preferentially along one
axis (i.e., the diffusion is hindered by structures such as myelin and
tightly packed axons), and has shown to increase with age during child
and adolescent brain development (Giorgio et al., 2010; Schmithorst and
Yuan, 2010; Tamnes et al., 2018) and in many cases to be lower in the
context of various neurological and psychiatric diseases (Hulvershorn
et al., 2011; Ayling et al., 2012; Aoki et al., 2018). MD is the simple
average diffusion, with higher levels indicating relatively unimpeded
diffusion (i.e., it is negatively correlated with FA). Numerous studies
have demonstrated that developmental changes in white matter micro-
structure occur throughout childhood (Schmithorst and Yuan, 2010;
Stiles and Jernigan, 2010), and the technique has been shown to be
sensitive to subtle features of psychopathology (Muetzel et al., 2017).
However, little work has explored whether physical activity or screen
time are associated with white matter microstructure.

In one randomized control trial (RCT) of overweight 8–11 year-old
children, the effect of an 8-month exercise intervention on white mat-
ter microstructure was examined (Krafft et al., 2014; Schaeffer et al.,
2014). This study showed that FA increased in the uncinate and superior
longitudinal fasciculus in the intervention group. Similarly, another RCT
examined the effects of an after-school exercise program on the micro-
structure of white matter tracts in 7- to 9-year-old children. This study
found that children who participated in the exercise program showed
increased white matter microstructure in the genu of the corpus callosum
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(Chaddock-Heyman et al., 2018). In addition, a cross-sectional study
demonstrated that, in 9-to-10 year-old children, higher levels of cardio-
respiratory fitness were associated with greater FA in sections of the
corpus callosum, corona radiata, and superior longitudinal fasciculus
(Chaddock-Heyman et al., 2014). However, greater cardiorespiratory
fitness was also associated with lower FA in the corticospinal tract
(Herting et al., 2014). Collectively, it is difficult to draw conclusions from
this limited literature, which largely focuses on the relation between
cardiorespiratory fitness, exercise and white matter microstructure,
omitting the constructs of physical activity (e.g., outdoor play, active
commuting, and sport participation). Further, to our knowledge, no other
studies have examined whether screen time is associated with white
matter microstructure in children.

The present study examined the associations of physical activity and
screen time with white matter microstructure in 10-year old children
from the general population. Based on previous literature, we hypothe-
sized higher levels of physical activity would be related to higher FA and
lower MD. We hypothesized increased screen time would be related to
lower FA and higher MD, however, in line with previous literature
(Ferguson, 2015, 2017; Orben and Przybylski, 2019), we expect these
relationships to be relatively small.

2. Materials and methods

2.1. Study design and participants

The study was part of the Generation R Study, a prenatal population-
based cohort. A detailed description of the study design and methods has
been published elsewhere (Kooijman et al., 2016). In total, 3992 children
visited our study-dedicated imaging facility for an MRI scan at the mean
age of 10 (White et al., 2018). Of the 3992 children, a total of 942 were
excluded due to missing a complete DTI scan (n¼ 285), image artifacts
(n¼ 37), poor image quality (n¼ 406), an incidental finding (n¼ 13) or
their data were collected using different parameters on the MRI system
(n¼ 201), leaving 3050 participants for analysis. After excluding chil-
dren with missing information on physical activity (n¼ 518), the study
sample included 2532 children (mean age 10.12� 0.58 years; 50.04%
boys). Supplemental Table S1 shows the sample characteristics of chil-
dren included in analyses of screen time (N¼ 2346), which is highly
similar to those included in analyses of physical activity. A flow chart
illustrating the exclusion of data is depicted in Fig. 1. The Medical Ethics
Committee of the ErasmusMedical Center approved the study procedures
and participants provided written informed consent.
2.2. Physical activity and screen time assessments

Information on the level of physical activity and screen time were
obtained through a parent-reported questionnaire administered when
children were 10 years old. The questionnaires were intended for the
primary caregiver who was most often the mother (97%). To assess the
level of physical activity, respondents indicated both the number of days
per week and duration per day their child engages in: (i) walking or
cycling to/from school, (ii) outdoor play, and (iii) sports. Time per week
spent on each activity was calculated by using the following formula:
weekly time spent on the activity ¼ (days per week) * (hours per day). A
total physical activity score was calculated by adding the hours of active
commuting, outdoor play, and sport participation per week.

Respondents were also asked to indicate the number of days and
hours per day their child: (i) watches television (including videos/DVDs)
and (ii) uses a computer or similar device (including video games).
Screen times were assessed separately for weekdays and weekend days
but were combined to estimate the total hours per week spent in each
activity. A total weekly screen time score was calculated by adding the
hours of playing video games and watching television.
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2.3. MRI

2.3.1. Image acquisition
MRI data were acquired with a 3 Tesla GE MR-750W system (General

Electric, Milwaukee, WI). The DTI sequence consisted of a 35 direction
echo planar imaging (EPI) sequence using the following sequence pa-
rameters: TR¼ 12,500m s, TE¼ 72m s, flip angle¼ 90, ma-
trix¼ 120� 120, FOV¼ 240mm� 240mm, slice thickness¼ 2mm,
number of slices¼ 65 and voxel resolution¼ 2� 2� 2mm3 (Muetzel
et al., 2017).

2.3.2. Image preprocessing
Image preprocessing was conducted using the Functional MRI of the

Brain’s Software Library (Jenkinson et al., 2012) and the CAMINO toolkit
(Cook et al., 2006) through python interfaces (https://fsl.fmrib.ox.ac.uk)
(Gorgolewski et al., 2011). Images were first adjusted for minor head
motion and eddy-current induced artifacts (Haselgrove andMoore, 1996;
Jenkinson and Smith, 2001). In order to account for rotations applied to
the image data (Leemans and Jones, 2009; Jones and Cercignani, 2010),
the resulting transformation matrices were used to rotate the diffusion
gradient direction table. Non-brain was removed using the FSL Brain
Extraction Tool (Smith, 2002). The diffusion tensor was fit using the
RESTORE method (Chang et al., 2005; Cook et al., 2006), and common
scalar maps (i.e., FA, MD, Axial diffusivity (AD), radial diffusivity (RD))
Fig. 1. Flow chart indication data inclusion/exclusion. Note: Box with dotted lines ind
of finding, PA¼ physical activity, ST¼ screen time, MRI¼magnetic resonance imag
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were subsequently computed. Fully automated probabilistic tractog-
raphy was run using a predefined series of seed- and target-masks from
the FSL AutoPtx plugin (De Groot et al., 2015; Muetzel et al., 2017).
Briefly, following a nonlinear registration of the FA map to standard
space (FMRIB58 1mm), a predefined library of seed, target, and exclu-
sion masks were warped to each individual’s native space FA map. FSL’s
Bayesian Estimation of Diffusion Parameters using Sampling Techniques
(BEDPOSTx) and Probtrackx were used to conduct probabilistic fiber
tractography, accounting for two fiber orientations (Behrens et al.,
2003). Resulting connectivity distributions were normalized based on
the total number of successful seed-to-target attempts, and were thresh-
olded based on established values to remove voxels with a low proba-
bility (Muetzel et al., 2017). Average DTI scalar metrics were extracted
for each tract (see Supplemental Material), with each voxel being
weighted by the normalized connectivity value from probabilistic trac-
tography. Global, whole brain estimates of DTI metrics (i.e., FA, MD, RD,
AD) were calculated using a confirmatory factor analysis across multiple
tracts described in detail elsewhere (Muetzel et al., 2017).

2.3.3. Image quality assurance
Raw image quality was assessed with both an automated software and

with a visual inspection (Muetzel et al., 2017). Briefly, slice-wise varia-
tions in signal intensity were examined using the DTIprep package (htt
ps://www.nitrc.org/projects/dtiprep). The sum-of-squares error (SSE)
icate the sample used in the current studys. QC¼ quality control, IF¼ incidental
ing, DTI¼ diffusion tensor imaging.

https://fsl.fmrib.ox.ac.uk
https://www.nitrc.org/projects/dtiprep
https://www.nitrc.org/projects/dtiprep


Table 1
Sample characteristics.

N Mean/% SD

Sex
Boys,% 1267 50.04

Age at MRI assessment,years 2532 10.12 0.58
Age at CBCL assessment, years 2495 9.71 0.28
Ethnicity, %
Dutch 1671 66.63
Other Western 213 8.49
Non-Western 624 24.88

BMI, kg/m2 2526 17.36 2.50
Behavior problems, sum score CBCL 2475 16.76 14.63
Non-verbal IQ, sum score SON-R 2218 104.32 14.59
Maternal education,%
Low 187 8.06
Medium 618 26.65
High 1514 65.29

Exposures characteristics
Total physical activity, h/w 2532 9.06 5.10
Total screen time, h/w 2346 17.10 11.63

*Note: 86 participants had no data on physical activity but they were included in
analyses of screen time. MRI ¼ magnetic resonance imaging, CBCL¼ Child
Behavior Checklist school-age, BMI¼ Body mass index, IQ ¼ intelligence quo-
tient, SON-R¼ the Snijders-Oomen Niet-verbale intelligentie Test- Revisie, h/w
¼ hours per week. Total physical activity ¼ hours of active commuting, outdoor
play, and sport participation per week. Total screen time ¼ hours of computer
time, playing video games, and watching television. Maternal education level
was defined by the highest completed education and divided into three cate-
gories ranging from low (from no education to primary school), middle (high
school or vocational training) to high education level (from higher vocational
education to university).
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maps from the tensor estimation were also calculated and visually
inspected for structured noise. Lastly, nonlinear registration to standard
space was inspected for accuracy to ensure seed and target masks were
properly aligned to native space. Datasets determined to be of insufficient
quality for statistical analyses were excluded (n¼ 285 from automated
quality control of slice-wise variation in signal and n¼ 121 from an
additional visual inspection of SSE maps and registration quality).
Example images of FA maps from children representative of the sample
are presented in the Supplementary Material (see Fig. S1).

2.4. Covariates

Age at MRI scanning and sex were included as covariates. Further,
maternal education level and ethnicity were assessed by questionnaires.
Ethnicity was based on the country of birth of the mother and mother’s
parents. Maternal education level was defined by the highest completed
education and divided into 3 categories ranging from low (from no ed-
ucation to primary school), middle (high school or vocational training) to
high education level (from higher vocational education to university).
Height and weight were measured at the age of 10 years at the research
center and body mass index (BMI) was calculated using standardized
scores according to the Dutch reference growth curves (https://growtha
nalyser.org) (Fredriks et al., 2000). A non-verbal intelligence quotient
(IQ) was assessed at approximately 6 years of age using the
Snijders-Oomen Niet-verbale intelligentie Test- Revisie (SON-R 2.5–7)
(Tellegen et al., 2005). Emotional and behavioral problems were assessed
at age of 10 years by parent-report using the validated Child Behavior
Checklist school-age version (CBCL/6–18) (Achenbach and Rescorla,
2003). Apart from non-verbal IQ (12%), the percentage of missing values
did not exceed 10%.

2.5. Statistical analysis

All analyses were performed using the Statistical Package for Social
Sciences (IBM SPSS Statistics for Windows, version 22.0, Armonk, NY, p
set at< 0.05). Multiple imputation was used to impute missing data of
covariates. In total, 10 imputed datasets were created and pooled results
are presented. Multiple linear regression analyses were performed with
physical activity or screen time measures as independent variables and
DTI scalar metrics (i.e., FA, and MD) as dependent variables. Indepen-
dently, as they provide added information in the interpretation of the
underlying white matter microstructure, we also tested the association of
physical activity and screen time variables with global RD and global AD.
Linear regression analyses were hierarchically adjusted for covariates by
creating two models. Model 1 included age at the time of scanning, sex,
ethnicity, maternal education, and BMI. Model 2 was additionally
adjusted for behavior problems and non-verbal IQ. In order to determine
whether the association with white matter microstructure was indeed
only global or restricted to a particular set of white matter bundles, as-
sociations with FA and MD within individual tracts were also tested if
exposures showed an association with global DTI metrics. For tract-
specific analyses, false discovery rate (FDR) correction was applied to
account for the number of tests performed.

Additionally, a number of sensitivity analyses were run. First, total
physical activity and total screen time were entered into the model
simultaneously to adjust estimates for one another. Second, we divided
the total sample in four subgroups of participants according to their
physical activity and screen time levels to compare global FA and MD
amongst the groups. Physical activity and screen time groups were
defined according to the sample median (high/low physical activity/
screen time). Third, different interaction terms were tested to ascertain
whether associations were different across sub-groups of subjects (i.e.,
sex, parental educational level, ancestral background). Lastly, we tested
quadratic and cubic age terms, as well as an age-by-sex interaction term
(using a quadratic age term). We also tested quadratic screen time and
physical activity term, as well as the interactions between quadratic total
4

physical activity variable and quadratic total screen time variable in as-
sociation with white matter microstructure.

3. Results

Table 1 presents participant demographic characteristics. Differences
between physical activity and screen time levels between boys and girls
are shown in Table S2. Characteristics of included and excluded partic-
ipants are shown in Table S3.

3.1. Association of physical activity and screen time with global white
matter microstructure

Total physical activity was positively associated with global FA
(β¼ 0.051, 95% CI¼ (0.010, 0.092), p¼ 0.016) when the model was
adjusted for sociodemographic factors. Further, the positive association
between physical and global FA remained after additional adjustment for
behavior problems and non-verbal IQ (β¼ 0.057, 95% CI¼ (0.016,
0.098), p¼ 0.007). Results from analyses of global FA and MD are pre-
sented in Table 2, and follow-up analyses with global RD and AD to better
describe the diffusion profile are presented in Table S4. To determine
whether a particular type of physical activity (i.e. active commuting,
outdoor play and sport participation) was responsible for the total PA
association with global FA, each type of physical activity was examined
separately. In the fully adjusted model (model 2), positive associations
between outdoor play and global FA (β¼ 0.041, 95% CI¼ (0.000, 0.083),
p¼ 0.047) and between sport participation and global FA were observed
(β¼ 0.053, 95% CI¼ (0.010, 0.096), p¼ 0.015).

Total physical activity was inversely associated with global MD
(β¼�0.079, 95% CI¼ (�0.119, �0.038), p< 0.001) when the model
was adjusted for sociodemographic covariates (model 1). After, addi-
tional adjustment for behavioral problems and non-verbal IQ the asso-
ciation remained similar (model 2) (β¼�0.079, 95% CI¼ (�0.120,
�0.038), p< 0.001). Each type of physical activity was examined sepa-
rately to determine whether all or a subset of activities were responsible
for the associations with total physical activity. In the fully adjusted

https://growthanalyser.org
https://growthanalyser.org


Table 2
Association between physical activity and screen time with global fractional anisotropy and mean diffusivity.

Fractional anisotropy

Model 1 Model 2

β 95% CI p β CI p

Physical activity (n¼ 2532)
Total physical activity, h/w 0.051 (0.010, 0.092) 0.016 0.057 (0.016, 0.098) 0.007

Active commuting, h/w 0.021 (-0.020, 0.062) 0.325 0.023 (-0.018, 0.064) 0.272
Outdoor play, h/w 0.035 (-0.006, 0.076) 0.093 0.041 (0.000, 0.083) 0.047
Sport participation, h/w 0.052 (0.009, 0.094) 0.017 0.053 (0.010, 0.096) 0.015

Screen time (n¼ 2346)
Total screen time, h/w �0.021 (-0.065, 0.023) 0.347 �0.010 (-0.054, 0.035) 0.668

Playing computer games, h/w �0.003 (-0.045, 0.039) 0.880 0.000 (-0.041, 0.042) 0.985
Watching television,h/w �0.028 (-0.073, 0.017) 0.219 �0.014 (-0.060, 0.031) 0.532

Mean diffusivity

Model 1 Model 2

β 95% CI p β CI p

Physical activity (n¼ 2532)
Total physical activity, h/w �0.079 (-0.119, �0.038) <0.001 �0.079 (-0.120, �0.038) <0.001

Active commuting, h/w �0.005 (-0.045, 0.036) 0.821 �0.005 (-0.046, 0.036) 0.812
Outdoor play, h/w �0.073 (-0.114, �0.032) <0.001 �0.074 (-0.114, �0.033) <0.001
Sport participation,h/w �0.043 (-0.086, �0.001) 0.045 �0.043 (-0.086, 0.000) 0.049

Screen time (n¼ 2346)
Total screen time, h/w �0.028 (-0.072, 0.015) 0.203 �0.031 (-0.075, 0.013) 0.170

Playing computer games, h/w �0.024 (-0.066, 0.017) 0.250 �0.026 (-0.067, 0.016) 0.230
Watching television, h/w �0.022 (-0.067, 0.022) 0.325 �0.025 (-0.070, 0.020) 0.280

*Note: Model 1 was adjusted for sex, age at the time of scanning, ancestral background, body mass index and maternal education. Model 2 was additionally adjusted for
emotional and behavior problems and non-verbal intelligence quotient. h/w ¼ hours per week.
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model (model 2), outdoor play and sport participation were inversely
associated with MD (β¼�0.074, 95% CI¼ (�0.114, �0.033), p< 0.001;
β¼�0.043, 95% CI¼ (�0.086, 0.000), p¼ 0.049, respectively). In order
to better describe these associations with FA and MD, further analyses
explored which underlying diffusivity metrics (i.e., RD and/or AD) were
associated with physical activity. Both RD and AD were significantly
associated with total physical activity (β¼�0.079, 95% CI¼ (�0.120,
�0.039), p< 0.001; β¼�0.054, 95% CI¼ (�0.094, 0.014), p¼ 0.008,
respectively).

No association was found between individual or aggregate screen
time variables and global DTI metrics (all p> 0.05) (Table 2).

3.2. Association between physical activity, screen time and tract-specific
FA and MD

Associations between total physical activity and tract-specific FA and
MD are shown in Table S5. Briefly, no association was found between
total physical activity and FA within individual tracts when significance
levels were adjusted for multiple testing. However, total physical activity
was associated with MD in nearly all tracts when adjusted for multiple
comparisons. Fig. 2 graphically represents the significant negative asso-
ciations between total physical activity and MD across individual tracts.

Lastly, exploratory analyses testing the association between total
screen time and tract-specific FA and MD are shown in Table S6.

3.3. Sensitivity analyses

Results remained similar whenmodels for physical activity and global
white matter microstructure were additionally adjusted for total screen
time, suggesting that physical activity is positively associated with white
matter microstructure, independent of total screen time (Table S7).
Screen time was still unrelated to global DTI metrics after additional
adjustment for total physical activity (Table S7).

Next, when categorically subdividing the sample based on physical
activity and screen time levels (e.g., high screen time, low physical ac-
tivity), the subgroup with high physical activity (>8.4 h/week) and high
screen time (>14.8 h/week seem) showed lower MD compared to the
5

rest of subgroups (Fig. S2 and Fig. S3, respectively).
Then, different interaction terms were tested to ascertain whether

associations were different across sub-groups of subjects. The association
between physical activity and white matter microstructure was consis-
tent across parents’ education categories. Similarly, no interaction be-
tween sex or ethnicity and physical activity was observed.

Lastly, we have included into the model nonlinear age terms, spe-
cifically a quadratic age term (Table S8) and also included a cubic age
term and results remain highly similar (Table S9). We also tested age-by-
sex interaction effects with these variables (i.e., age2 and age3) and the
interaction term was not significant (all P> 0.470). Importantly, the
model estimates for the association with physical activity and screen time
also remained highly similar. Finally, nonlinear screen time and physical
activity terms were not associated with FA or MD (See Supplemental
Material).

4. Discussion

Using neuroimaging data from over 2500 children, we found that
physical activity is associated with white matter microstructure, specif-
ically outdoor play and sport participation time. On the other hand, no
association was observed between screen time and white matter micro-
structure. In the context of the literature, this study expands upon the
compelling evidence of general health benefits of physical activity by
demonstrating a new association with white matter microstructure in
children.

Previous work on typical brain development has shown a positive
association between FA and age, as well as a negative association with
MD (Barnea-Goraly et al., 2005; Eluvathingal et al., 2007; Asato et al.,
2010; Giorgio et al., 2010; Schmithorst and Yuan, 2010; Brouwer et al.,
2012; Tamnes et al., 2018). Further, a similar pattern of association has
been shown with cognitive function, where white matter microstructure
is associated with better neuropsychological performance (Muetzel et al.,
2015). Within this context, the positive link between physical activity
and white matter microstructure shown in the present study could
explain the improvements observed in cognition (Hillman et al., 2008,
2015). Importantly, specific aspects of physical activity, namely outdoor



Fig. 2. Association between total physical activity and
tract-specific MD. Colour bar represents standardized
beta coefficients with lighter blue referring to negative
association. Lighter blue referring to stronger associ-
ation between total physical activity and MD. Corti-
cospinal tract (CST), acoustic radiation (AR), anterior
thalamic radiation (ATR), superior longitudinal
fasciculus (SLF), inferior longitudinal fasciculus (ILF),
inferior fronto-occipital fasciculus (IFOF), uncinate
fasciculus (UNC), cingulate gyrus part of cingulum
(CGC), hippocampal part of the cingulum (CGH), for-
ceps minor (FMI), and superior thalamic radiations
(STR).
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play and sport participation, were associated with white matter micro-
structure. The association between physical activity and white matter
microstructure has not been studied previously, which hampers further
comparisons with similar studies. Nonetheless, this work compliments
previous studies focused on the association between cardiorespiratory
fitness and exercise with white matter microstructure. For instance,
previous studies demonstrated that, in 9-to-10 year-old children, higher
levels of cardiorespiratory fitness were associated with higher FA in
sections of the corpus callosum, corona radiata, and superior longitudinal
fasciculus (Chaddock-Heyman et al., 2014). In contrast, adolescents with
better cardiorespiratory fitness showed greater number of streamlines,
especially in the corticospinal tract and forceps minor (Herting et al.,
2014), but also lower FA in the corticospinal tract (Herting et al., 2014).
Additionally, an 8-month exercise intervention showed increased FA in
sections of the uncinate fasciculus and superior longitudinal fasciculus in
overweight children in the exercise group when compared to controls
(Krafft et al., 2014; Schaeffer et al., 2014). Moreover, an 9-month exer-
cise intervention showed increased white matter microstructure in the
genu of the corpus callosum in 7- to 9-year-old children in the exercise
group when compared to controls (Chaddock-Heyman et al., 2018).

In the present study, no association was found between active
6

commuting and white matter microstructure. Previous work has also
shown that active commuting was not associated with cognitive perfor-
mance in children (Van Dijk et al., 2014). Thus, results are in line with an
increasing literature suggesting that increases in cognitive functioning in
childhood due to physical activity are most clearly observed in tasks that
involve executive functioning (e.g., sport participation) (Tomporowski
et al., 2008).

Previous work has demonstrated that increased levels of physical
activity might improve cerebral blood flow (Hillman et al., 2008), and
DTI has proven to be sensitive to white matter microstructural changes
that may result from cardio- and neuro-vascular risk factors (Lee et al.,
2009; Shefer et al., 2013). A possible physiological mechanism could be
the positive influence physical activity has on cardio-metabolic risk
factors, such as insulin resistance, blood lipids, blood pressure and in-
flammatory proteins (Eisenmann, 2004). Moreover, previous literature
showed higher levels physical activity are associated with better mental
health in children (Biddle and Asare, 2011; Biddle et al., 2018). As
childhood is a period where many physiological and psychological
changes occur, public health advocation for novel approaches to
increasing physical activity in children could be useful for improved
(neuro) physiological and psychological health. In this line, a recent large
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study of physical activity and cognition showed higher levels of physical
activity were associated with better global cognition (Walsh et al., 2018).
Our results suggest that these improvements in cognition could be
facilitated by better underlying white matter microstructure.

Another important finding was that screen time was not associated
with white matter microstructure. To the best of our knowledge, this is
the first study to examine the association between screen time and white
matter microstructure in children. These results further support the work
from Ferguson et al. and Orben et al. (Ferguson, 2017; Orben and Przy-
bylski, 2019) who showed that the relationship between screen time and
different mental health outcomes (e.g., externalizing problems, inter-
nalizing problems and academic performance) was null or very small.
Overall, the association between screen time and mental health are likely
nonlinear, and moderate engagement in certain screen time activities
may not lead to behavioral or emotional problems (Ferguson, 2017). For
instance, previous research found that meeting the 2 h or less recrea-
tional screen time per day recommendations was associated with supe-
rior global cognition (Walsh et al., 2018). In contrast, frequent weekly
use of video games was associated with conduct problems, as well as,
increased levels of television viewing were negatively associated with
neurocognitive development of children (Takeuchi et al., 2015). In
addition to these discrepancies in the literature, advances in technology
(e.g., availability of hand-held media devices, and social media)
compared to the construct of purely passive television viewing, further
underscore the importance of maintaining well-characterized measures
of screen time, as differing amounts/types of screen time could influence
the brain differently. Interestingly, associations between physical activity
and white matter remained after adjusting for levels of screen time. Thus,
though purely speculative, the benefits of physical activity may not be
negatively influenced by playing computer games and watching televi-
sion moderately, which has been reported previously for other general
cardiometabolic outcomes (Rezende et al., 2014).

Key strengths of the current study are the large sample size, and
incorporation of population-based neuroimaging. The nature and size of
the cohort allocates us with the data and power to adjust for multiple
confounding factors. Further, the population-based sampling offers
increased generalizability of the findings compared to previous studies.
However, several limitations require discussion. First, this is a cross-
sectional study, limiting inferences about causality and directionality to
any of the associated factors. Further, though residual confounding re-
mains a possibility, effect estimates were not substantially changed after
adjusting for a number of potential confounding factors. Future work
should consider other environmental confounders including well-
characterized measures of socioeconomic status. Second, physical activ-
ity and screen time levels were assessed by parental-reported question-
naires, lending to the possibility of under- or overestimations of the
behaviors. Therefore, objective measures such as accelerometry and
experience sampling should be utilized in future studies. Lastly, the effect
sizes for the association between physical activity and white matter
microstructure are relatively small. However, similar effect sizes are
observed in structure-function associations with cognition and white
matter microstructure (Muetzel et al., 2015), and the clinical relevance of
such effect sizes in the context of DTI has yet to be formally evaluated.

5. Conclusion

This study demonstrates that higher levels of physical activity are
associated with greater white matter microstructure in children ages 9-
to-10 years old from the general population. No association was
observed between screen time and white matter microstructure. Future
work should continue to explore longitudinal data in order to more
concretely decipher the temporality of the associations, so that educa-
tional and health institutions can consider whether to promote physical
activity during childhood as a potential (modifiable) protective factor in
the context of brain health.
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