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Abstract. This paper presents a new wrapper method able to optimize
simultaneously the parameters of the classifier while the size of the subset
of features that better describe the input dataset is also being minimized.
The search algorithm used for this purpose is based on a co-evolutionary
algorithm optimizing several objectives related with different desirable
properties for the final solutions, such as its accuracy, its final number
of features, and the generalization ability of the classifier. Since these
objectives can be sorted according to their priorities, a lexicographic
approach has been applied to handle this many-objective problem, which
allows the use of a simple evolutionary algorithm to evolve each one of
the different sub-populations.

Keywords: Many-objective evolutionary algorithm · Cooperative co-
evolutionary algorithm · Lexicographic optimization · Feature selection
· Wrapper approach.

1 Motivation

Wrapper methods are intrinsically simple, what has made them quite popular.
They basically consist of a classifier, a search algorithm, and way to assess the
prediction accuracy of the learning machine in order to guide the search towards
good feature subsets [19]. Besides, since wrapper methods select the features
subset according to the classifier that will be applied later on to the test set,
they usually achieve better accuracy than filter methods, although they are also
more computationally expensive [15].
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Regarding the classifier, Support Vector Machines (SVM) have been widely
used within wrappers [22]. However, the functioning of this classifier rely on some
parameters that must be fine tuned, according to the dataset, in order to achieve
a good accuracy. SVM relies on the regularization parameter C and also on the
set of parameters that define the type of kernel used. The correct initialization
of these parameters is of capital importance, mainly because the final result of
the wrapper method will depend on them. The problem here is that the value
of these parameters depend on the final dataset defined by the selected features,
which is a priori unknown.

Some approaches fix the parameters of the classifier heuristically before the
wrapper method is applied. For example, in [22] these parameters were optimized
with the whole training set (containing all the features) before the application of
the wrapper procedure. However, these parameters might not be optimal for the
final feature subset found by the wrapper algorithm. Besides, different values for
the parameters could have provided a different feature subset.

Since the parameters of the classifier depend on the final feature subset,
and this subset is the result of the search algorithm applied within the wrapper
method, this paper proposes that the classifier parameters should be simultane-
ously optimized while the search algorithm is finding the best subset of features.
That is, two interdependent problems should be simultaneously optimized: the
parameters of the classifier, which depend on the subset of features used, and the
best subset of features, which depend on the classifier used within the wrapper
method. Cooperative Co-Evolutionary algorithms (CCEAs) are particularly well
suited to this scenario, since they have been designed to evolve different species
of solutions simultaneously [27].

On the other hand, some objectives should be taken into account in order to
guide the search towards a good couple of classifier and subset of features. First
of all, the classification error and generalization capability should be optimized,
since the aim of this work is to find the subset of features that best describe
the original dataset. Another objective that many approaches take into account
is the number of features, that should also be minimized. Lastly, and since the
classifier parameters are also going to be optimized, some objectives could also
be defined. For example, in the case of the SVM classifier, the minimization
of C is preferred, since lower values of C avoid over-fitting and also speed up
the training and test processes. Thus, this is a Many-Objective Optimization
Problem (MaOP) too, that is, a Multi-Objective Problem (MOP) with more
than tree objectives [10].

Evolutionary algorithms (EAs) have also been widely applied to solve MaOPs
[20]. However, and although there are several approaches to design Many-Objective
EAs (MaOEAs), such as Pareto-based, indicator-based or aggregation-based ap-
proaches, all of them have been designed to treat all the objectives equally. That
is, all the objectives in the problem have the same level of importance. Although
this is the case in most MaOPs, not all the objectives have the same priority in
the case of feature selection problems. For example, given two possible solutions
for the problem, the one with a lower classification error is preferred, and only
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when the classification error for both is similar, the number of features should
be considered. Thus, a priority-based scheme should be incorporated into the
algorithm to guide the search towards adequate solutions.

Although some attempts have been made to support objective priorities in
EAs [9, 29], a much simpler approach is possible if the problem allows to set
a different priority level for each objective. This approach, which was initially
proposed in 1975 [25], is lexicographic optimization, and problems meeting this
restriction are also known as Lexicographic MOPs (LMOPs) [18]. Lexicographic
optimizers try to meet all the objectives sequentially. First, the most impor-
tant objective is optimized. Then, among the solutions meeting this objective, a
smaller set of solutions is chosen to satisfy the second objective, and so on until
all the objectives have been considered [1]. Although it may seem a quite sim-
ple approach, there are relevant LMOPs that have been successfully solved with
it, even at the present time, such as the design and optimization of integrated
vehicle control systems [17] or the design of autonomous vehicles [28].

There exist many analytical algorithms for LMOPs, but all of them impose
restrictions, such as the differentiability and convexity of the objective functions
[33]. Thus, for any general problem not meeting these constraints a more robust
optimization technique is necessary. On the other hand, Multi-Objective EAs
(MOEAs) have been applied successfully to MOPs where analytical approaches
have failed [5]. Therefore they can also be used to solve any kind of LMOP, even
with not convex and not continuous objectives. This is the approach presented
in this paper, a Lexicographic Many-Objective Cooperative Co-Evolutionary
Algorithm (LeMaOCCEA) to simultaneously optimize the parameters of the
classifier within a wrapper method while the number of features is also being
minimized.

The rest of the paper is organized as follows. Section 2 describes the lexico-
graphic relation for MaOEAs, a relation that allows the full ranking of possible
solutions for a MaOP where a different level of priority can be defined for each
objective. Then, Section 3 describes the wrapper method proposed in this paper,
a CCEA based approach using this lexicographic relation. After that, Section
4 presents some experimental results obtained with the proposed approach and
compares them with those obtained with other wrapper methods, and finally,
Section 5 concludes this work.

2 A lexicographic relation for MaOEAs

Assuming that no objectives have been defined for the problem, and that these
objectives have been sorted according to their priority, the fitness for any solution
for the problem can be expressed as:

f =
[
f0, f1, . . . , fno−1

]T ∈ Rno (1)

Given two fitness evaluations, f1 and f2, and a precision threshold t, the
lexicographic relations between them, noted as ≺l and �l, can be defined as:
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f1 ≺l f2 ⇔ ∃k ∈ [0, no) ∩ N : fk1 < fk2 ∧ |fk1 − fk2 | ≥ t
∧ |f i1 − f i2| < t ∀i < k (2)

f1 =l f2 ⇔ |f i1 − f i2| < t ∀i ∈ [0, no) ∩ N (3)
f1 �l f2 ⇔ f1 ≺l f2 ∨ f1 =l f2 (4)

As can be seen, this formulation differs from the pure mathematical lexico-
graphic relation because a threshold t has been introduced to let the Decision
Maker (DM) decide the precision used to make the comparison. Regarding the
behavior of the algorithm using this relation, it is quite similar to classical lexico-
graphic optimization techniques. It optimizes the objectives in order, but with an
important difference. Since an EA is used, local optima can now be avoided [24].

The use of this relation allows the full ranking of the solutions of a MaOP,
an thus, a simple EA can be used (not a MOEA or a MaOEA) with smaller
populations, since the algorithm will now provide only one optimal solution in
each population instead of a Pareto set of not comparable solutions.

3 Proposal

This section describes the main components of the LeMaOCCEA wrapper method
presented in this paper, a wrapper method able to optimize the parameters of
the classifier while the number of features taken into account is also being min-
imized. Fig. 1 shows its flowchart. The contributions of this paper have been
highlighted, indicating also the section that describes each one of them. The
remaining steps of the method are taken from the original EA.

3.1 Cooperative co-evolutionary approach

Since the wrapper method is based on an CCEA, potential solutions of the
problem will be evolved within populations of different species. In this case, a
hybrid single-level and two-level approach is proposed [16]. One species will be
used to evolve the parameters of the classifier while the features of the input
dataset will also be split into several species. The number of species used to
minimize the input features subset is not fixed a priori, and should be chosen
for each experiment according to the number of features in the dataset, in order
to balance the search spaces of every population.

With respect to the many-objective optimization part of the feature selection
problem, the use of the lexicographic relation described above allows the use of
a simple EA scheme to evolve each one of the species defined within the CCEA.

Finally, regarding the selection of representatives, the shuffle-and-pair method
[26] will be used. This method shuffles the indexes to access individuals in each
population and then combines all the individuals having the same index to form
and evaluate a complete solution. Since only one evaluation per individual may
seem a poor estimation of its fitness, the process is repeated r times, and then the
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Fig. 1. Flowchart of the proposed wrapper method. The steps that are not highlighted
are taken from the original EA

best evaluation for each individual is chosen as its fitness. The only restriction
for this method is that all the populations must be of the same size m.

3.2 Species representation

Since the proposed LeMaOCCEA is based on a hybrid single-level and two-
level approach, different representations for the species are needed. Specifically,
one representation for the parameters of the classifier, that will evolve in one
population, and another one for the subsets of features that will be co-evolved
in the remaining populations.
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Classifier species The SVM parameters will be encoded as a vector of floating
point numbers in the first population (P0).

Features subset species For the features subset species the representation
proposed in [12] will be used, that is, all the features will be evenly distributed
among the different species, and each sub-population will evolve subsets of fea-
ture indexes.

3.3 Breeding operators

Each kind of species will also use its own breeding operators, detailed below.

Breeding operators for the classifier species Given that the species used
to evolve the classifier parameters is represented as a vector of real numbers,
Simulated Binary Crossover (SBX) [6] and polynomial mutation [7] will be used
as breeding operators, since they have been specifically designed to handle real
numbers. Both operators rely on a polynomial distribution with a user-defined
index parameter ν, which usually is set up to 20 as standard default value.

Breeding operators for the features subset species Regarding the features
subset species, the breeding operators have also been adapted from [12], in order
that offspring belong to the same species of their parents.

Crossover operator Given a couple of progenitors, Ijk and Ijl , belonging to
population Pj , the two offspring, Ojk and Ojl , will be generated as follows. All
the common selected features in Ijk and Ijl will also be common in Ojk and Ojl .
The remaining selected features coded in Ijk and Ijl will be randomly distributed
between Ojk and Ojl in a way that Ojk and Ojl will have the same sizes than Ijk
and Ijl respectively. This crossover procedure will always generate valid solutions
that meet the constraints stated above.

Mutation operator This operator affects each individual gene or selected feature
within an individual separately. If a determined gene is chosen to be mutated,
then it may be deleted (reducing the number of selected features within the
individual) or randomly altered, being assigned a new value that should be
a valid feature index for the problem and should not be repeated within the
individual.

Once all the genes have been processed, the mutation operator may also add
a new feature index to the individual, increasing the number of selected features,
but only if the new feature index is not already selected.
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3.4 Lexicographic objectives for the feature selection problem

It seems sensible that the most prioritary objective should be related to the
accuracy of the classifier with the reduced features subset. Many works propose
the use of the cross-validation error to avoid over-fitting when training classi-
fiers [19]. However, and although this approach has proven successful, it has an
important drawback. It is quite computationally expensive, since all the poten-
tial solutions tried by the search algorithm must be evaluated several times. This
inconvenient affects even more to CCEA approaches, since all the individuals in
each sub-population must be re-evaluated every generation because their fitness
also depend on the individuals belonging to the remaining sub-populations.

To overcome this problem, a new MOP-based distributed cross-validation
approach has been proposed in [12]. For each potential solution (subset of input
features) to be evaluated, the original training dataset D is randomly split into
two subsets, Dtr and Dval according to parameter pval, which indicates the
percentage of samples used to validate the solution. Although D is split into two
different random subsets for each individual evaluation, the division procedure
always assures that a percentage pval of samples of each class in D are included
in Dval. Then, the classifier is trained only with the samples belonging to Dtr,
and later, two objectives are evaluated: the accuracy obtained by the classifier
using Dtr and also the accuracy using Dval. For the accuracy estimation, the
Kappa index [4] is proposed in [12], since it not only takes into account the
accuracy of the classifier, but also the per class error distribution.

The following objective in importance should be the size of the final features
subset, which should also be minimized, since the problem being solved is a
feature selection problem. Finally, the last objective in importance is related to
the regularization parameter C used by SVM classifiers. High values for this
parameter allows the SVM to use more training examples for the definition of
the hyperplane, which may tend to over-fitting, while lower values of C relax
this condition. Since the accuracy of the classifier has been included as one of
the higher priority objectives, setting the minimization of C as the lower priority
objective will guide the algorithm towards solutions with a higher generalization
ability without sacrificing the classifier accuracy.

Taking these reflections into account, the following objectives, sorted accord-
ing to their priority, will be taken into account:

1. Minimize the error rate estimated using Dval (SVM is trained with Dtr).
2. Minimize the error rate estimated using Dtr

3. Minimize the number of features
4. Minimize the regularization parameter C of the SVM

This approach considers the validation accuracy as the most prioritary ob-
jective, in order to avoid overfitting. Then the training accuracy is used to untie
solutions having similar validation accuracies. For those solutions with similar
validation and training accuracies, the number of features will be considered,
and finally, if there are sill tied solutions, the regularization parameter of the
SVM will be taken into account.
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4 Experimentation

This section describes all the details related to the experimentation process car-
ried out to evaluate the proposed LeMaOCCEA wrapper method. Experiments
have been performed using the Zoo dataset [11], a well known dataset belong-
ing to the UCI machine learning repository [8]. For all the experiments, each
dataset has been randomly split into two sets as proposed in [32]: a training
set containing 70% of all samples in each class, and a test set formed by the re-
maining samples. Adopting the same methodology will provide a fair comparison
between the proposed wrapper method and those described in [32].

4.1 Other wrapper alternatives

The results of the proposed LeMaOCCEA wrapper method will be compared to
those obtained by the following wrapper methods. All of them use KNN with
k = 5 to simplify the evaluation process [32].

Linear Forward Selection (LFS): This wrapper method [13] is derived from
the classical Sequential Forward Selection (SFS) [30], with the main difference
that LFS restricts the number of features that are considered in each step of the
forward selection, which can reduce the number of evaluations, optimizing the
overall computation time.

Greedy Stepwise Backward Selection (GSBS): It is based on the tradi-
tional Sequential Backward Selection (SBS) method [23]. It starts with all the
available features and removes sequentially one feature per iteration until the
elimination of any remaining feature worsens the accuracy of the classifier [2].

Commonly Used PSO Algorithm (ErFS): This method applies the Particle
Swarm Optimization (PSO) search algorithm [14] to minimize the error rate
of the classifier. The implementation presented in [32] fixes the inertia weight
w = 0.7298 and the acceleration constants c1 = c2 = 1.49618.

PSO With a Two-Stage Fitness Function (2SFS): This wrapper method,
also based on the PSO algorithm, divides the evolutionary process into two
stages. The first one only minimizes the error rate, whereas the second one also
takes into account the number of features in the fitness function [31]. Since the
results of this algorithm have also been taken from [32], the parameters of the
PSO algorithm are the same than in ErFS.

4.2 Implementation details and parameterization of the proposed
LeMaOCCEA method

The implementation of the co-evolutionary algorithm, along with the breeding
operators for the population evolving the parameters of the SVM classifier have
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Table 1. Parameters for the wrapper method

Parameter Value
Number of populations (np) 5
Population size (m) 150
Number of generations (n) 300
Mutation probability for the feature selection species (pmfs) 0.01
Mutation probability for the SVM parameters species (pmsvm) 0.05
Rate of training samples used for validation (pval) 0.33
Number of executions of the wrapper method (l) 40
Lexicographic precision threshold (t) 0.001
Co-evolutionary evaluation number of shuffles (r) 2

Table 2. Results obtained by the different wrapper alternatives

Method Test error rate # Features
LFS 20.950 8
GSBS 20 7
ErFS 4.500± 0.009 9.180
2SFS 4.500± 0.009 9.180
LeMaOCCEA 2.832± 1.609 4.800± 0.791

been taken from ECJ [21], a research Evolutionary Computation (EC) system
written in Java and developed within the Evolutionary Computation Laboratory
at the George Mason University, VA, USA. Moreover, for the SVM classifiers
LibSVM has been used [3]. The rest of the code has been written by the authors
of this work.

Since the LeMaOCCEA wrapper method presented in this paper relies on a
CCEA, there are some parameters that must be chosen to make it work. Table 1
shows the values used for the experiments presented in this section. The number
of species (populations) has been fixed in a way that the number of features
assigned to each population should be 4 or 5.

4.3 Results

Table 2 shows the results obtained by the proposed LeMaOCCEA wrapper
method, along with those achieved by the other wrapper methods introduced in
Section 4.1. Although at first sight it seems that the proposed wrapper method
outperforms the others, a Kruskal-Wallis statistical test has been applied to both,
the test error rates and also the number of features of the results provided by each
alternative. Table 3 shows the pairwise comparison of the proposed LeMaOC-
CEA wrapper method with all the other wrapper methods. As can be seen, the
proposed wrapper method is able to achieve statistically significant better error
rates and also smaller subsets of features than the other alternatives.
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Table 3. p-values obtained from multiple pairwise comparison of the test error rate
and the number of features achieved by the different wrapper alternatives using the
Kruskal-Wallis statistical test

Wrapper 1 Wrapper 2 Test error rate # Features
LFS LeMaOCCEA 0.000 0.000
GSBS LeMaOCCEA 0.000 0.000
ErFS LeMaOCCEA 0.000 0.000
2SFS LeMaOCCEA 0.000 0.000

5 Conclusions

This paper has presented a new wrapper approach which hybridized ideas of
CCEAs and lexicographic optimization in order to be able to optimize simul-
taneously the parameters of a SVM classifier and the subset of features that
better represent a dataset. The lexicographic approach allows to introduce any
number of objectives easily, allowing to solve even MaOPs with a simple EA
scheme as the search algorithm for each species. Another advantage of the pro-
posed LeMaOCCEA wrapper method is that it produces only one solution per
execution, instead of a set of Pareto optimal solutions, which simplifies the work
of the DM.

The proposed LeMaOCCEA wrapper method is also able to obtain statis-
tically significant better results than the rest of wrapper methods it has been
compared to, taking into account both the test error rate and also the number
of features finally selected.
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