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Multiple Attribute Strategic Weight Manipulation
With Minimum Cost in a Group Decision Making

Context With Interval Attribute Weights Information
Yating Liu, Yucheng Dong , Haiming Liang, Francisco Chiclana , and Enrique Herrera-Viedma

Abstract—In multiple attribute decision making (MADM),
strategic weight manipulation is understood as a deliberate
manipulation of attribute weight setting to achieve a desired
ranking of alternatives. In this paper, we study the strategic
weight manipulation in a group decision making (GDM) con-
text with interval attribute weight information. In GDM, the
revision of the decision makers’ original attribute weight infor-
mation implies a cost. Driven by a desire to minimize the cost,
we propose the minimum cost strategic weight manipulation
model, which is achieved via optimization approach, with the
mixed 0-1 linear programming model being proved appropriate
in this context. Meanwhile, some desired properties to manip-
ulate a strategic attribute weight based on the ranking range
under interval attribute weight information are proposed. Finally,
numerical analysis and simulation experiments are provided with
a twofold aim: 1) to verify the validity of the proposed models
and 2) to show the effects of interval attribute weights informa-
tion and the unit cost, respectively, on the cost to manipulate
strategic weights in the MADM in a group decision context.

Index Terms—Interval attribute weight information, mini-
mum cost, multiple attribute decision making (MADM), strategic
weight manipulation.

NOMENCLATURE

The main notations in this paper are as follows.
X Set of alternatives.
A Set of attributes.
E Set of experts.
V = [vij]n×m Decision matrix.
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V̄ = [v̄ij]n×m Standardized decision matrix.
Dw(xi) Evaluation function of alternative

xi with weight vector w.
w Weight vector of attribute weights.
wk Original attribute weight vector

over expert ek.
wk Revised attribute weight vector

associated with expert ek.
rw(xh) Ranking of alternative xh under

attribute weight vector w.
W Attribute weights set without any

constraint.
rw∈W(xh) Best ranking of alternative

xh under the set of attribute
weights W.

r̄w∈W(xh) Worst ranking of alternative
xh under the set of attribute
weights W.

Rw∈W(xh) = [rw∈W(xh),

r̄w∈W(xh)]
Ranking range under the set of
attribute weights W.

RWA
w∈W(xh) = [rWA

w∈W(xh),

r̄WA
w∈W(xh)]

Ranking range under the set of
attribute weights W associated
with the WA operator.

ROWA
w∈W (xh) = [rOWA

w∈W (xh),

r̄OWA
w∈W (xh)]

Ranking range under the set of
attribute weights W associated
with the OWA operator.

S Set of interval information of
attribute weights.

rw∈S(xh) Best ranking of alternative xh

under the set of interval attribute
weights S.

r̄w∈S(xh) Worst ranking of alternative xh

under the set of interval attribute
weights S.

RWA
w∈S(xh) = [rWA

w∈S(xh),

r̄WA
w∈S(xh)]

Ranking range under the set of
interval attribute weights S associ-
ated with the WA operator.

ROWA
w∈S (xh)[r

OWA
w∈S (xh),

r̄OWA
w∈S (xh)]

Ranking range under the set of
interval attribute weights S associ-
ated with the OWA operator.

I. INTRODUCTION

MULTIPLE attribute decision making (MADM) aims
to obtain a ranking of alternatives based on their
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evaluation information regarding multiple attributes. MADM
has received increasing attention in decision analysis [22],
[37], [45], [46], and it has been applied in a wide range of
fields [5], [8], [19], [33].

Attribute weights play an important role in the resolution
of MADM problems [28], [29]. Until now, there exist many
approaches in the specialized literature on how to obtain the
attribute weights in MADM. The existing approaches can be
mainly divided into three categories [12].

1) The subjective approach obtains the attribute weights
according to the decision makers’ subjective preference
information on the set of attributes. For example,
Doyle et al. [15] proposed a direct rating method
and a point allocation method; Barron and Barrett [1]
investigated three rank-ordered methods, while
Roberts and Goodwin [32] provided a rank order
distribution approach.

2) The objective approach determines the attribute
weights by using objective decision matrix informa-
tion and the entropy method [47]; or a TOPSIS-based
method [48]; or some other mathematical programming-
based method [7], [35].

3) The integrated approach obtains the attribute
weights according to both the decision makers’
subjective preference information and the objec-
tive decision matrix information. For example,
Cook and Kress [10] proposed a preference-aggregation
model, while Fan et al. [16], Horsky and Rao [20], and
Pekelman and Sen [30] constructed optimization-based
models.

Strategic manipulation or noncooperative behavior in deci-
sion making describes those situations in which some deci-
sion makers dishonestly express opinions to enhance the
chances of obtaining their most preferred alternatives. Strategic
manipulation is a common phenomenon and has been ana-
lyzed in depth in different decision contexts. For example,
Pelta and Yager [31] and Yager [42], [43] have proposed aggre-
gation approaches to defend against the strategic manipulation
in group decision making (GDM); where as Dong et al. [13],
Palomares et al. [26], and Xu et al. [41] have investigated
how to detect and manage a series of noncooperative behav-
iors in GDM consensus reaching processes from different
perspectives.

As mentioned above, approaches to set attribute weights
have been investigated intensively, however, in these
approaches decision makers are assumed to be honest
when expressing their preferences regarding attribute weights.
Recently, Dong et al. [12] proposed the concept of strate-
gic weight manipulation, in which a decision maker can be
dishonest in the sense of setting attribute weights strategically
to obtain his/her desired ranking of alternatives.

Although this paper by Dong et al. is useful in MADM,
there still exist issues that need to be addressed.

1) In [12], the strategic weight manipulation was inves-
tigated in an individual decision making context.
However, the increasing complexity of decision envi-
ronments means that many practical decisions involve
multiple decision makers. Additionally, the strategic

weight manipulation investigated in [12] assumed no
constraints on the weights and consequently the strate-
gic attribute weights could be set freely as any-
one of the domain values. However, decision mak-
ers often will present some attribute weight informa-
tion [6], [21], [23], [27], and thus, some attribute weight
information is partially known or subject to certain con-
straints. Therefore, it is necessary to investigate the
strategic weight manipulation in a group decision con-
text in which attribute weight information is partially
known.

2) When decision makers provide partially attribute
weights information in a group decision context, it is
more challenging for a manipulator to strategically set
attribute weights because some decision makers may be
reluctant to change their original attribute weights pref-
erences. As a result, the manipulator needs to take some
cost for decision makers to revise their original attribute
weight preferences. Driven by a desire to minimize the
cost, it is necessary to investigate the strategic weight
manipulation with minimum cost.

In order to address these two issues, this paper proposes
the strategic weight manipulation with minimum cost in
a GDM context with interval attribute weight information. The
proposed methodology to achieve this consists of the following
main steps.

1) Attribute weights are considered partially known, and
they are described by numerical intervals, i.e., interval
attribute weights information is assumed. Additionally,
multiple decision makers are assumed to be involved
in the strategic weight manipulation. Following these
assumption, this paper develops a new strategic weight
manipulation model in a group decision context with
interval attribute weights information.

2) A minimum cost model is developed to strategically
set the attribute weights, by revising the decision
makers’ original preferences of attribute weights to
obtain a desired ranking of alternatives. Meanwhile,
some desired properties with zero cost for manipulat-
ing strategic attribute weights are explored. Simulation
experiments with real data are provided to show the
effects of the interval attribute weight information
and the unit cost, respectively, in the cost to manip-
ulate strategic weights in the MADM in a group
context.

The remainder of this paper is organized as follows.
Section II introduces some basic concepts regarding the
MADM. Mixed 0-1 linear programming models to set
a multiple attribute strategic weight vector with minimum cost
are constructed in Section III. Section IV presents numerical
analysis and simulation experiments to justify the proposal put
forward in this paper. Concluding remarks and future research
agenda are included in Section V.

II. PRELIMINARIES

This section introduces some basic knowledge regarding
MADM and attribute weights.
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A. Classical MADM Problem

A classical MADM problem can be described as fol-
lows: Let X = {x1, . . . , xn} be a finite set of alternatives,
A = {a1, . . . , am} a set of predefined attributes, and w =
(w1, w2, . . . , wm)T the weight vector of the attributes, where
wj ≥ 0 and

∑m
j=1 wj = 1. Let V = [vij]n×m be the deci-

sion matrix, where vij denotes the attribute value associated
with alternative xi ∈ X and attribute aj ∈ A. The resolu-
tion process of an MADM problem includes, generally, two
steps.

1) Normalization Phase: Attributes are split into two cate-
gories: 1) benefit attributes and 2) cost attributes. The decision
matrix V = [vij]n×m is transformed into a normalized decision
matrix V̄ = [v̄ij]n×m, where

v̄ij =
vij − min

i
(vij)

max
i

(vij) − min
i

(vij)
(1)

if aj ∈ A is a benefit attribute, while

v̄ij =
max

i
(vij) − vij

max
i

(vij) − min
i

(vij)
(2)

if aj ∈ A is a cost attribute.
2) Ranking of Alternatives: Alternatives are ranked by

associating them with an evaluation value Dw(xi), which is
computed by a decision function F that assigns an overall eval-
uation to each alternative, i.e., Dw(xi) = Fw(v̄i1, v̄i2, . . . , v̄im),
with w = (w1, w2, . . . , wm)T being the attribute weight vector.
It is worth mentioning out at this point that the alterna-
tives’ overall evaluation is frequently derived by fusing their
attributes normalized decision values, i.e., by using as function
F an aggregation operator such as the weighted average (WA)
or the ordered weighted average (OWA) operators [38], [44],
which would result, respectively, in

Dw(xi) = WAw(v̄i1, v̄i2, . . . , v̄im) =
m∑

j=1

wjv̄ij (3)

where wj is the weight associated with the attribute aj

Dw(xi) = OWAw(v̄i1, v̄i2, . . . , v̄im) =
m∑

j=1

wjv̄i(j) (4)

where v̄i(j) is the jth largest value in {v̄i1, v̄i2, . . . , v̄im}, and
wj is the weight associated with the jth largest value in
{v̄i1, v̄i2, . . . , v̄im}.

There exist various approaches to rank the alternatives.
However, as this paper is a continuation of the study presented
in [12], the ranking approach used there is also employed here:
let Qh,w = {xi|Dw(xi) > Dw(xh), i = 1, 2, . . . , n} be the set of
the alternatives whose decision evaluation value is greater than
that of the alternative xh, and |Qh,w| its cardinality. Then, the
ranking position of the alternative xh is

rw(xh) = ∣
∣Qh,w

∣
∣ + 1. (5)

B. Research Problem: Attribute Weights in Group Decision
Context With Interval Attribute Weight Information

As mentioned in Dong et al. [12], the setting of
attribute weights has an important effect on the ranking
of alternatives. Thus, a manipulator may strategically set
the attribute weights to attain his/her desired ranking in
the MADM.

Generally, in real-life MADM problems, the decision matrix
V = [vij]n×m is considered as providing representing objective
information, with the attribute weights being set by one or
more decision makers.

We make the following assumption.
1) Let E = {e1, e2, . . . , el} be a set of decision makers and

let wk = (wk
1, wk

2, . . . , wk
m)T be the weight vector of the

attributes associated with the decision maker ek ∈ E,
where wk

j ≥ 0 and
∑m

j=1 wk
j = 1. The attribute weight

vector w = (w1, w2, . . . , wm)T is determined as the
average of all decision makers’ corresponding attribute
weight vectors

wj =
∑l

k=1 wk
j

l
. (6)

In MADM problems, because of time pressure or
limited expertise, some decision makers might not
be able to provide precise attribute weights but
incomplete attribute weights instead [6], [21], [23],
[27], i.e., some information on attributes weights
may be unknown or represented as interval values.
Usually, the basic forms of incomplete attribute weights
include weak ranking, strict ranking, ranking multi-
ples, interval form, ranking differences, and bounded
(see [21], [23], and [27]). In this paper, we consider
interval attribute weights, i.e., the attribute weights are in
some numerical intervals. Then, we make the following
assumption.

2) The attribute weight vector wk = (wk
1, wk

2, . . . , wk
m)T ,

associated with the decision maker ek ∈ E, is an interval
weight vector, i.e.,

wk
j =

[
Ik,−
j , Ik,+

j

]
(7)

where 0 ≤ Ik,−
j ≤ Ik,+

j ≤ 1. When conditions
∑m

i=1 Ik,+
i − maxj(I

k,+
j − Ik,−

j ) ≥ 0 and
∑m

i=1 Ik,−
i +

maxj(I
k,+
j − Ik,−

j ) ≤ 1 are verified, wk is said to
be a normalized interval weight vector [37]. These
conditions guarantee that there exists a weight vector
w = (w1, w2, . . . , wm)T such that

∑m
j=1 wj = 1 and

Ik,−
j ≤ wj ≤ Ik,+

j (∀j).
When the decision makers have interval information of
attribute weights, setting strategic attribute weights carries
a cost as the original attribute weight information has to
be revised, i.e., modified. Inspired by the classical min-
imum cost model [2], [3], in this paper, we study the
multiple attribute strategic weight manipulation with mini-
mum cost in a GDM context with interval attribute weights
information. Minimum cost strategic weight manipulation
(MCSWM) will be formulated and discussed in the next
section.
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III. MULTIPLE ATTRIBUTE STRATEGIC WEIGHT

MANIPULATION WITH MINIMUM COST

This section contains 1) the strategic weight manipulation
with minimum cost in MADM, 2) an approach based on the
mixed 0-1 linear programming to obtain its optimal solution,
and 3) some desired properties.

A. Basic Ideas and Model

In this section, we introduce some basic ideas and con-
struct an optimization-based model with minimum cost to find
out the manipulator’s strategic weight vector to obtain his/her
desired ranking of alternative(s).

In this paper, without loss of generality, we assume that the
manipulator wants to manipulate the alternatives {Xh∈G|G ⊆
{1, 2, . . . , n}}, to which the attribute weight vector w =
(w1, w2, . . . , wm)T is to be strategically set.

Let wk = (wk
1, wk

2, . . . , wk
m)T be the original normalized

interval attribute weights vector associated with the decision
maker ek. In order to strategically set the attribute weight
vector w = (w1, w2, . . . , wm)T , the manipulator hopes that
the decision makers can revise their original interval informa-
tion regarding attribute weight vectors. Let us denote wk =
(wk

1, wk
2, . . . , wk

m)T as the revised attribute weight vector asso-

ciated with the decision maker ek, where
∑m

j=1 wk
j = 1 and

0 ≤ wk
j ≤ 1. The difference between the original and the

revised attribute weight vector associated with the decision
maker ek can be measured by

d
(

wk, wk
)

=
m∑

j=1

d
(

wk
j , wk

j

)
(8)

where

d
(

wk
j , wk

j

)
=

⎧
⎪⎪⎨

⎪⎪⎩

Ik,−
j − wk

j , 0 ≤ wk
j < Ik,−

j

0, Ik,−
j ≤ wk

j ≤ Ik,+
j

wk
j − Ik,+

j , Ik,+
j < wk

j ≤ 1.

(9)

Motivated by the minimum cost model, setting strate-
gic attribute weights means the manipulator needs to take
some cost for the decision makers to revise their original
interval attribute weights information. Let fk be the unit cost
to revise the decision maker ek’s attribute weight. The unit
cost is a basic concept of minimum cost GDM models [17],
[18], [24], [51], [53] and refers to the cost for the deci-
sion makers adjusting the unit opinions. Usually, the unit
cost can be measured by money, time, and so on. In prac-
tical GDM context, the manipulator often assumes the cost
to persuade the decision makers in changing their opinions,
and the finalized measurement for the cost is determined by
the specified decision making problem. Generally, the greater
the distance of experts changing their opinions, the greater
the cost. Thus, the cost function of revising the decision
maker ek’s attribute weight can be defined as the prod-
uct of the unit cost and distance of opinions changing:
fkd(wk, wk).

Thus, the cost function of revising all the decision makers’
attribute weights can be denoted as

l∑

k=1

fkd
(

wk, wk
)

=
l∑

k=1

m∑

j=1

fkd
(

wk
j , wk

j

)
. (10)

It is assumed that the manipulator aims to minimize the
cost, that is

min
l∑

k=1

m∑

j=1

fkd
(

wk
j , wk

j

)
. (11)

Meanwhile, following (6), the attribute weight vec-
tor strategically set by the manipulator is determined as
follows:

wj =
∑l

k=1 wk
j

l
. (12)

Moreover, we assume the set of the alternatives that the
manipulator wants to manipulate is {xh∈G|G ⊆ {1, 2, . . . , n}},
and the manipulator’s desired ranking of the alterna-
tives in {xh∈G|G ⊆ {1, 2, . . . , n}} is {r∗(xh∈G)| G ⊆
{1, 2, . . . , n}}, i.e.,

rw(xh) = r∗(xh) (13)

where h ∈ G. Let |G| be the number of the alternatives in the
set {xh∈G|G ⊆ {1, 2, . . . , n}}, and it is assumed that |G| ≥ 1
in this paper.

Based on (8)–(13), we construct the MCSWM model to set
the strategic weight vector as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑l

k=1
∑m

j=1 fkd
(

wk
j , wk

j

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rw(xh) = r∗(xh), (h ∈ G)

w = (w1, w2, . . . , wm)T

wj =
∑l

k=1 wk
j

l , (j = 1, 2, . . . , m)
∑m

j=1 wk
j = 1, (k = 1, 2, . . . , l)

0 ≤ wk
j ≤ 1, (j = 1, 2, . . . , m)

wk
j = [Ik,−

j , Ik,+
j ], (k = 1, 2, . . . , l; j = 1, 2, . . . , m)

(14)

where wk
j , (k = 1, 2, . . . , l; j = 1, 2, . . . , m) are the decision

variables.

B. Solving the Minimum Cost Strategic Weight Manipulation
Model via Mixed 0-1 Linear Programming

In this section, we continue to use a mixed 0-1 linear pro-
gramming methodology to obtain the optimal solution to the
MCSWM [model (14)].

In order to transform model (14) into a mixed 0-1 lin-
ear programming, binary variable yih ∈ {0, 1} and a large
enough number M are introduced. Then, we have the following
results.

1) xi 	 xh if and only if yih = 1 under the conditions:
Dw(xi) > Dw(xh) − (1 − yih)M and Dw(xi) ≤ Dw(xh) +
yiM.
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2) xi∼≺ xh if and only if yih = 0 under the following
conditions: Dw(xi) ≤ Dw(xh) + yihM and Dw(xi) >

Dw(xh) − (1 − yih)M.
The following lemmas are proposed.

Lemma 1: For decision function with F the WA operator
as per (3), if there exists w∗ = (w∗

1, w∗
2, . . . , w∗

m)T satisfying
constraint conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m

j=1
w∗

j v̄ij >
∑m

j=1
w∗

j v̄hj − (1 − yih)M

(i = 1, 2, . . . , n; h ∈ G) (15)
∑m

j=1
w∗

j v̄ij ≤
∑m

j=1
w∗

j v̄hj + yihM

(i = 1, 2, . . . , n; h ∈ G) (16)

yih = 1 or 0, (i = 1, 2, . . . , n; h ∈ G) (17)
∑n

i=1
yih + 1 = r∗(xh), (h ∈ G) (18)

w∗
j =

∑l
k=1 w∗,k

j

l
, (j = 1, 2, . . . , m) (19)

∑m

j=1
w∗,k

j = 1, (k = 1, 2, . . . , l) (20)

0 ≤ w∗,k
j ≤ 1, (j = 1, 2, . . . , m) (21)

wk
j = [Ik,−

j , Ik,+
j ], (k = 1, 2, . . . , l; j = 1, 2, . . . , m) (22)

d(w∗,k
j , wk

j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ik,−
j − w∗,k

j , 0 ≤ w∗,k
j ≤ Ik,−

j

0, Ik,−
j < w∗,k

j ≤ Ik,+
j

(k = 1, 2, . . . , l; j = 1, 2, . . . , m)

w∗,k
j − Ik,+

j , Ik,+
j < w∗,k

j ≤ 1

(23)

then, rw∗(xh) = r∗(xh), (h ∈ G).

The proof of Lemma 1 is provided in Appendix A.
Lemma 2: For decision function with F the OWA operator

as per (4), if there exists w∗ = (w∗
1, w∗

2, . . . , w∗
m)T satisfying

constraint conditions (17)–(25)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m

j=1
w∗

j v̄i(j) >
∑m

j=1
w∗

j v̄h(j) − (1 − yih)M

(i = 1, 2, . . . , n; h ∈ G) (24)
∑m

j=1
w∗

j v̄i(j) ≤
∑m

j=1
w∗

j v̄h(j) + yihM

(i = 1, 2, . . . , n; h ∈ G) (25)

then, rw∗(xh) = r∗(xh), (h ∈ G).

The proof of Lemma 2 is provided in Appendix A.
Based on Lemmas 1 and 2, we obtain the following

theorem.
Theorem 1: By introducing the transformed decision

variables: zk
jq = 0 or 1,

∑3
q=1 zk

jq = 1, (k =
1, 2, . . . , l; q = 1, 2, 3; j = 1, 2, . . . , m), we have the
following.

1) If F is a WA operator, the MCSWM [model
(14)] can be transformed into the mixed 0-1 linear

programming
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑l

k=1
∑m

j=1 fk[(Ik,−
j − wk

j )z
k
j1 + (wk

j − Ik,+
j )zk

j3] (26)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m

j=1
wjv̄ij >

∑m

j=1
wjv̄hj − (1 − yih)M

(i = 1, 2, . . . , n; h ∈ G) (27)
∑m

j=1
wjv̄ij ≤

∑m

j=1
wjv̄hj + yihM

(i = 1, 2, . . . , n; h ∈ G) (28)
yih = 1 or 0, (i = 1, 2, . . . , n; h ∈ G) (29)
∑n

i=1
yih + 1 = r∗(xh), (h ∈ G) (30)

wj =
∑l

k=1 wk
j

l
, (j = 1, 2, . . . , m) (31)

∑m

j=1
wk

j = 1, (k = 1, 2, . . . , l) (32)

0 ≤ wk
j ≤ 1, (k = 1, 2, . . . , l; j = 1, 2, . . . , m)

(33)
wk

j = [Ik,−
j , Ik,+

j ]

(k = 1, 2, . . . , l; j = 1, 2, . . . , m) (34)

wk
j − Ik,−

j ≤ 0 + (1 − zk
j1)M

(k = 1, 2, . . . , l; j = 1, 2, . . . , m) (35)

wk
j ≥ 0 − (1 − zk

j1)M

(k = 1, 2, . . . , l; j = 1, 2, . . . , m) (36)

wk
j − Ik,−

j > 0 + (1 − zk
j2)M

(k = 1, 2 . . . , l; j = 1, 2, . . . , m) (37)

wk
j − Ik,+

j ≤ 0 − (1 − zk
j2)M

(k = 1, 2 . . . , l; j = 1, 2, . . . , m) (38)

wk
j − Ik,+

j > 0 + (1 − zk
j3)M

(k = 1, 2 . . . , l; j = 1, 2, . . . , m) (39)

wk
j − 1 ≤ 0 − (1 − zk

j3)M

(k = 1, 2 . . . , l; j = 1, 2, . . . , m) (40)
zk

j1 + zk
j2 + zk

j3 = 1

(k = 1, 2 . . . , l; j = 1, 2, . . . , m) (41)
zk

jq = 0 or 1, (q = 1, 2, 3; k = 1, 2, . . . , l

j = 1, 2, . . . , m). (42)

2) In (26)–(42) above, substitute constraints (27) and (28)
into constraints

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m

j=1
wjv̄i(j) >

∑m

j=1
wjv̄h(j) − (1 − yih)M

(i = 1, 2, . . . , n; h ∈ G) (43)
∑m

j=1
wjv̄i(j) ≤

∑m

j=1
wjv̄h(j) + yihM

(i = 1, 2, . . . , n; h ∈ G). (44)

If F is an OWA operator, the MCSWM [model (14)]can
be transformed into the mixed 0-1 linear programming
model (26), (29)–(44).

The proof of Theorem 1 is provided in Appendix A.
In this paper, denote models (26)–(42) as P1, and mod-

els (26), (29)–(44) as P2. In both P1 and P2 models, wk
j (k =

1, 2, . . . , l; j = 1, 2, . . . , m); yih, (i = 1, 2, . . . , n; h ∈ G);
zk

jq, (q = 1, 2, 3; j = 1, 2, . . . , m) are the decision variables.
The WA and OWA are two very popular aggregation

operators used in MADM problems. Compared with the
WA operator, the OWA is often be used to defend against
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the strategic manipulation. For example, in Olympic gym-
nastics competitions, the referees score the gymnasts. Then,
the maximum and the minimum scores are deleted, and
the arithmetic average of other scores is used as the col-
lective opinion of the referees. This procedure involves
the use of the OWA with the weight vector w =
(0, 1/(m − 2), . . . , 1/(m − 2), 0)T .

Based on Theorem 1, we can obtain the optimal solution to
the MCSWM via mixed 0-1 linear programming. Clearly, if
the optimal solution to the MCSWM exists, a manipulator can
set a strategic weight vector to obtain his/her desired ranking
of the alternatives {r∗(xh∈G)|G ⊆ {1, 2, . . . , n}}. Otherwise, it
is not possible to strategically manipulate the attribute weights
to achieve his/her goal.

C. Some Desired Properties for Models P1 and P2

In this section, we present some desired properties of the
MCSWM. In order to make the proposed properties easy
to understand, we first introduce the ranking range of an
alternative.

In an MADM problem, let W = {(w1, w2, . . . , wm)T |∑m
j=1 wj = 1, 0 ≤ wj ≤ 1} be the set of attribute weights

without any constraint; r̄w∈W(xh) = min
w∈W

rw(xh) the best rank-

ing of alternative xh under W; and r̄w∈W(xh) = max
w∈W

rw(xh) the

worst ranking of alternative xh under W. Then, Rw∈W(xh) =
[rw∈W(xh), r̄w∈W(xh)] is called the ranking range of alternative
xh under the set of attribute weights W.

Let S = {(w1, w2, . . . , wm)T |wj = ([
∑l

k=1 wk
j ]/l), 0 ≤ wk

j ≤
1,

∑m
j=1 wk

j = 1, wk
j ∈ [Ik,−

j , Ik,+
j ]}(j = 1, 2, . . . , m; k =

1, 2, . . . , l) be the set of interval attribute weights; r̄w∈S(xh) =
min
w∈S

rw(xh) best ranking of alternative xh under S; and

r̄w∈S(xh) = max
w∈S

rw(xh) the worst ranking of alternative xh

under S. Then, Rw∈S(xh) = [rw∈S(xh), r̄w∈S(xh)] is called
the ranking range of alternative xh under the set of interval
attribute weights S.

Specifically, when the WA operator F, as per (3), is used
to compute the decision evaluation value, let RWA

w∈W(xh) =
[rWA

w∈W(xh), r̄WA
w∈W(xh)] and RWA

w∈S(xi) = [rWA
w∈S(xi), r̄WA

w∈S(xi)]
be the ranking range of alternative xh under W and S,
respectively. When OWA operator F, as per (4), is used
to compute the decision evaluation value, let ROWA

w∈W (xh) =
[rOWA

w∈W (xh), r̄OWA
w∈W (xh)] and ROWA

w∈S (xh) = [rOWA
w∈S (xh), r̄OWA

w∈S (xh)]
be the ranking range of alternative xh under W and S,
respectively.

Then, the following three desired properties to manipulate
the attribute weights are presented as Properties 1–3.

Property 1: For a desired ranking {r∗(xh∈G)|G ⊆
{1, 2, . . . , n}} and |G| ≥ 1, we have the following:

1) If the objective value of P1 is zero, then r∗(xh) ∈
[rWA

w∈S(xh), r̄WA
w∈S(xh)], ∀h ∈ G.

2) If the objective value of P2 is zero, then r∗(xh) ∈
[rOWA

w∈S (xh), r̄OWA
w∈S (xh)], ∀h ∈ G.

The proof of Property 1 is provided in Appendix A.
Property 1 provides the necessary condition that make

possible for a manipulator to manipulate a strategic
attribute weight with zero cost to obtain a desired

ranking of alternatives under the WA and OWA operators,
respectively.

Property 2: For a desired ranking {r∗(xh∈G)|G ⊆
{1, 2, . . . , n}} and |G| = 1, we have the following:

1) The objective value of P1 is zero if and only if
r∗(xh∈G) ∈ [rWA

w∈S(xh), r̄WA
w∈S(xh)].

2) The objective value of P2 is zero if and only if
r∗(xh∈G) ∈ [rOWA

w∈S (xh), r̄OWA
w∈S (xh)].

The proof of Property 2 is provided in Appendix A.
Property 2 provides the necessary and sufficient condi-

tion for a manipulator to manipulate a strategic attribute
weight with zero cost to obtain any desired ranking of one
alternative under the WA and OWA operators, respectively.
Notably, for the case that |G| ≥ 2, we only can obtain
a necessary condition for the zero cost manipulation (see
Property 1).

Property 3: For a desired ranking {r∗(xh∈G)|G ⊆
{1, 2, . . . , n}} and |G| ≥ 1, we have the following:

1) The solution of model P1 does not exist if
it satisfies the condition ∃h ∈ G, r∗(xh) /∈
[rWA

w∈W(xh), r̄WA
w∈W(xh)].

2) The solution of model P2 does not exist if
it satisfies the condition ∃h ∈ G, r∗(xh) /∈
[rOWA

w∈W (xh), r̄OWA
w∈W (xh)].

The proof of Property 3 is provided in Appendix A.
Property 3 provides the condition under which a manipula-

tor cannot manipulate a strategic weight vector under any cost
to obtain his/her desired ranking.

IV. NUMERICAL ANALYSIS AND

SIMULATION EXPERIMENTS

In this section, we present an example with real
data (provided in Appendix B) from the Academic Ranking
of World Universities (ARWU; http://www.arwu.org/) [34]
and several simulation experiments to show the valid-
ity and desired properties of the proposed MCSWM
model.

A. Numerical Analysis

Let 50 Universities taken from ARWU be the set of alter-
natives {x1, x2, . . . , x50}, which will be ranked using the
following set of six attributes {a1, a2, . . . , a6}.

a1: Quality of Education (Alumni: Alumni of an institution
winning Nobel Prizes and Fields Medals).

a2: Quality of Faculty 1 (Award: Staff of an institution
winning Nobel Prizes and Fields Medals).

a3: Quality of Faculty 2 (HiCi: Highly Cited researchers in
21 broad subject categories).

a4: Papers published in Nature and Science (N&S).
a5: Papers indexed in Science Citation Index-expanded and

Social Science Citation Index (PUB).
a6: Per capita academic performance of an institution (PCP).
First, we transform the data for the 50 universities regarding

the set of attributes above into a normalized decision matrix
V̄ = [v̄ij]50×6. Let E = {e1, e2, e3} be a set of three experts.
Let w1 = (w1

1, w1
2, . . . , w1

6)
T , where w1

1 = [0.1, 0.3], and w1
j =

[0, 1], j = 2, 3, 4, 5, 6 are the interval attribute weights of
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expert e1; w2 = (w2
1, w2

2, . . . , w2
6)

T , where w2
2 = [0.2, 0.6],

and w2
j = [0, 1], j = 1, 3, 4, 5, 6 are the interval attribute

weights of expert e2; and w3 = (w3
1, w3

2 . . . , w3
6)

T , where w3
4 =

[0.4, 0.8], w3
5 = [0.2, 0.9], and w3

j = [0, 1], j = 1, 2, 3, 6 are
the interval attribute weights of expert e3.

Without loss of generality, let fk = 1, (k = 1, 2, 3), be
the unit cost of revising decision maker’s original attribute
weights. In the following, we assume that an expert wants
to manipulate the alternative xh, and his/her desired ranking
for such alternative is r∗. Then, based on models P1 and P2,
the manipulator can strategically set an attribute weight vector
w∗ with minimum cost C∗, to obtain his/her desired goal of
ranking.

1) Let x3 be the manipulated alternative and r∗(x3) =
3 the corresponding desired ranking. If F is the
WA operator, then this is possible as P1 results in
the following strategic attribute weight vector w∗ =
(0.367, 0.067, 0.033, 0.133, 0.4, 0) with minimum cost
C∗ = 0.

2) Let x20 be the manipulated alternative, and r∗(x20) =
15 the corresponding desired ranking. If F is the
OWA operator, then this is possible as P2 results
in the following strategic weight vector w∗ =
(0.421, 0.375, 0, 0, 0.011, 0.194) with minimum cost
C∗ = 0.57.

3) Let {x8, x13, x14, x15} be the manipulated alternatives,
and r∗ = {46, 23, 24, 13} their corresponding desired
ranking. If F is WA operator, then this is possible with
P1 resulting in the following strategic weight vector
w∗ = (0.064, 0.081, 0, 0.006, 0.849, 0) with minimum
cost C∗ = 0.382.

4) Let {x9, x10, x11, x12} be the manipulated alternatives,
and r∗ = {19, 7, 27, 16} their desired ranking. If F is
OWA operator, then because there is no solution to P2,
the manipulator will be unable to strategically set an
attribute weight vector to achieve the desired ranking.

Table I shows a strategic weight vector w∗ with its corre-
sponding minimum cost C∗ for different manipulated alterna-
tive(s) x∗ to achieve a desired ranking r∗.

From Table I, it can be noticed that in some cases the
manipulator incurred zero cost (C∗ = 0) to set a strategic
weight vector to obtain his/her goal. On the other hand, in
some other cases the manipulator is unable to set a strategic
weight vector under any cost. In the following, we will ver-
ify the validity of the conditions presented in Properties 1–3.
Table II shows the ranking ranges RWA

w∈W , ROWA
w∈W , RWA

w∈S, and
ROWA

w∈S for the 50 universities.
Based on the data from Tables I and II, we find the results

to be consistent with Properties 1–3.

B. Simulation Experiments

In this section, we present simulation experiments to analyze
the effect the interval attribute weights and the unit cost have
on the MCSWM.

1) Effect of Interval Attribute Weights: First, we con-
sider the constraints for the attribute weights. Let Sj =
{(w1, . . . , wj, . . . , wm)T |wi ∈ [I−

i , I+
i ]}(j = 1, 2, . . . , m) be

TABLE I
STRATEGIC WEIGHT VECTOR w∗ WITH MINIMUM COST C∗ FOR

DIFFERENT MANIPULATED ALTERNATIVE(S) x∗
AND DESIRED RANKING r∗

a set of interval attribute weights, where [I−
i , I+

i ] ⊂ [0, 1]
(i ≤ j) and [I−

i , I+
i ] = [0, 1] (i > j). In the other words, set

Sj constraints only the weight of an attribute ai with i ≤ j.
In Simulation Experiment I below, set Sj is randomly gener-
ated, and thus the bigger the value j the more constraints on
attribute weights there are, in the sense of average cases.

Let r∗(xh) be the manipulator’s desired ranking of the alter-
native xh, and fk (k = 1, 2, . . . , l) the unit cost to revise the
expert ek’s original interval attribute weights. Let FWA

Sj
(xh) and

FOWA
Sj

(xh) be the minimum cost to find out a strategic weight
vector from the set Sj to obtain the manipulator’s desired goal
ranking of alternative xh under the WA and the OWA operators,
respectively.

Next, we design Simulation Experiment I to analyze the
effect of interval attribute weights on the minimum cost
to manipulate a strategic weight vector. Without loss of
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TABLE II
RANKING RANGES RWA

w∈W , ROWA
w∈W , RWA

w∈S , AND ROWA
w∈S FOR 50 UNIVERSITIES

generality, we set fk = 1, (k = 1, 2, . . . , l) and set the
manipulated alternative to be x1.

Simulation Experiment I:
Input: n, m, and j.
Output: FWA

Sj
(x1) and FOWA

Sj
(x1).

Fig. 1. Average values of FWA
Sj

(x1) and FOWA
Sj

(x1) under different parameters
in Simulation Experiment I.

Step 1 (Generation of the Standardized Decision Matrix):
Generate randomly a standardized decision matrix V̄ =
[v̄ij]n×m, where v̄ij ∈ [0, 1].

Step 2 (Generation of the Desired Ranking of the Alternative
x1): Apply methods from Dong et al. [12] to obtain the rank-
ing ranges of the alternative x1, [rWA

w∈W(x1), r̄WA
w∈W(x1)] and

[rOWA
w∈W (x1), r̄OWA

w∈W (x1)], for the WA and the OWA operators,
respectively. Let r∗(x1) be the manipulator’s desired ranking
of the alternative x1. When using the WA operator, the value of
r∗(x1) is randomly selected from [rWA

w∈W(x1), r̄WA
w∈W(x1)]. When

using the OWA operator, the value of r∗(x1) is randomly
selected from [rOWA

w∈W (x1), r̄OWA
w∈W (x1)].

Step 3 (Generation of the Interval Attribute Weights Sets
Sj): Generate randomly a set of interval attribute weights
Sj = {(w1, . . . , wj, . . . , wm)T |wi ∈ [I−

i , I+
i ]}; generate a ran-

dom integer number j from set {1, 2, . . . , m}; generate random
values I−

i (i ≤ j) and I+
i (i ≤ j) from [0, 1) and [I−

i , 1), respec-
tively, and set [I−

i , I+
i ] = [0, 1] (i > j). Apply models P1 and

P2 to obtain FWA
Sj

(x1) and FOWA
Sj

(x1), respectively. Compute

the minimum cost FWA
Sj

(x1) and FOWA
Sj

(x1) to find out a strate-
gic weight vector from the set Sj to obtain the manipulator’s
desired goal ranking of alternative x1 under the WA and the
OWA operators, respectively.

We set different values of n, m, and j, and run 100 times
Simulation Experiment I to obtain average values of FWA

Sj
(x1)

and FOWA
Sj

(x1), which are shown in Fig. 1 below.
Clearly, Fig. 1 shows that: 1) in all cases, the aver-

age minimum cost to set strategic weight vectors under the
WA operator is smaller than that under the OWA operator
and 2) the average minimum cost to set strategic weight vec-
tors under the OWA operator increase more quickly than that
under the WA operator, as the attribute weights constraints
increase.

2) Effect of the Unit Cost: In Simulation Experiment II,
we assumed that the unit cost to revise the original attribute
weights information is the same for all experts, i.e., fk =
f , (k = 1, 2, . . . , l), and respectively, set as f = (u/100)

(u = 1, 2, . . . , 100) to study the effect of unit cost on the
minimum cost to strategically manipulate the attribute weight
vector in the MCSWM. Clearly, the larger the value of u, the
higher the unit cost is.
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Fig. 2. Average values of FWA,u
S (x1) and FOWA,u

S (x1) under different
parameters in Simulation Method II.

Let r∗(xh) be the manipulator’s desired ranking of the alter-
native xh. When setting f = (u/100), let FWA,u

S (x1) be the
minimum cost to find out a strategic weight vector from a set
of interval attribute weights S to achieve the manipulator’s
desired goal ranking of alternative xh under the WA and the
OWA operators, respectively. Without loss of generality, we set
the manipulated alternative to be x1 and the sets of interval
attribute weights are generated randomly.

Simulation Experiment II:
Input: n, m, and u.
Output: FWA,u

S (x1) and FOWA,u
S (x1).

Step 1: Same as step 1 in Simulation Experiment I.
Step 2: Same as step 2 in Simulation Experiment I.
Step 3 (Generation of the Interval Attribute Weights Sets

S): Generate the set of interval attribute weights S =
{(w1, w2, . . . , wm)T |wj ∈ [I−

j , I+
j ], j = 1, 2, . . . , m} by

randomly selecting I−
j and I+

j from [0, 1) and [I−
j , 1),

respectively.
Step 4 (Calculation of the Minimum Cost FWA,u

S (x1) and
FOWA,u

S (x1)): Set fk = f , (k = 1, 2, . . . , l) and f = u
100 . Apply

models P1 and P2 to obtain FWA,u
S (x1) and FOWA,u

S (x1), respec-
tively. Compute the minimum cost FWA,u

S (x1) and FOWA,u
S (x1)

to find out a strategic weight vector from the set S to obtain
the manipulator’s desired goal ranking of alternative x1 under
the WA and the OWA operators, respectively.

We set different values of n, m, and u, and run 100 times
Simulation Experiment II to obtain average values of
FWA,u

S (x1) and FOWA,u
S (x1), which are depicted in Fig. 2.

As with Simulation Method I, it is evident from Fig. 2 that
1) in all cases, the average minimum cost to set strategic
weight vectors under the OWA operator is larger than that
under the WA operator, and 2) as the unit cost increases, the
average minimum cost to set strategic weight vectors under
the OWA operator increases more quickly than that under the
WA operator.

Simulation Methods I and II both show a better performance
of the OWA operator than the WA operator in defending
against the strategic weight manipulation of the MADM
problems because of the higher associated minimum cost.

Furthermore, as the attribute weights constraints and the
unit cost increase, the performance of the OWA operator as
a defense mechanism against the strategic weight manipulation
increases faster than if the WA operator were used instead.

Consequently, it can be concluded that the OWA operator
provides a better defense mechanism than the WA operator
against multiple attribute strategic weight manipulation with
interval attribute weights information.

V. CONCLUSION

This paper focuses on the strategic weight manipulation
with minimum cost to obtain a desired ranking of alter-
natives, in a group decision context with interval attribute
weights information. The existing approaches to set attribute
weights have been investigated intensively, however, in these
approaches decision makers are assumed to be honest aiming
to obtain “best” attribute weights to get a ranking of alterna-
tives. This paper follows the new assumption presented in [12]
that the decision makers are not honest to strategically set
attribute weights to obtain their desired ranking of the alter-
natives. The main contributions presented in this paper are as
follows.

1) The strategic weight manipulation issue in [12] was
investigated in an individual decision making context
with no constraints on the attribute. In this paper, we
present the MCSWM model in a group decision context
with interval attribute weights information.

2) We discuss the conditions based on the ranking range
under interval attribute weights information for a) the
existence of a weight vector to be set strategically to
achieve the manipulator’s desired ranking and b) zero
cost for the manipulation.

3) We present detailed simulation experiments to reveal
the effects of the attribute weights information and the
unit cost on the minimum cost to manipulate strategic
weights in a group context.

Meanwhile, we argue that it will be an interesting future
research topic to investigate multiple attribute strategic weight
manipulation in a consensus-reaching context [14], [49], [50]
and the presence of trust relationship [39], [40].

APPENDIX A
PROOFS

Proof of Lemma 1: 1) Substitute yih = 1 into con-
straints (15) and (16), then

∑m
j=1 w∗

j v̄ij >
∑m

j=1 w∗
j v̄hj and∑m

j=1 w∗
j v̄ij ≤ ∑m

j=1 w∗
j v̄hj + 1 · M, (i = 1, 2, . . . , n; h ∈ G)

can be obtained. According to the result (1) in Section III-A,
xi 	 xh(h ∈ G) can be guaranteed. If yih = 0, then∑m

j=1 w∗
j v̄ij ≤ ∑m

j=1 w∗
j v̄hj and

∑m
j=1 w∗

j v̄ij >
∑m

j=1 w∗
j v̄hj −

1 · M, (i = 1, 2, . . . , n; h ∈ G). According to result (2) in
Section III-A, xi∼≺ xh (h ∈ G) can be guaranteed. Due to
w∗ = (w∗

1, w∗
2, . . . , w∗

m) verifying constraints (15)–(23), the
strategic weight vector w∗ can be obtained by revising the
decision maker’s original attribute weights, so the distance

d(w∗,k
j , wk

j ) should be given. Based on the non-negative prop-
erty of distance functions, we can obtain different distance
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formula for the different ranges of w∗, i.e.,

d(w∗,k
j , wk

j ) =

⎧
⎪⎪⎨

⎪⎪⎩

Ik,−
j − w∗,k

j , 0 ≤ w∗,k
j ≤ Ik,−

j

0, Ik,−
j < w∗,k

j ≤ Ik,+
j

w∗,k
j − Ik,+

j , Ik,+
j < w∗,k

j ≤ 1.

Finally, the constraint condition
∑n

i=1 yih + 1 =
r∗(xh), (h ∈ G) can guarantee rw∗(xh) = r∗(xh), , (h ∈ G).

This completes the proof of Lemma 1.
Proof of Lemma 2: Substitute the WA opera-

tor
∑m

j=1 w∗
j v̄ij >

∑m
j=1 w∗

j v̄hj − (1 − yih)M and∑m
j=1 w∗

j v̄ij ≤ ∑m
j=1 w∗

j v̄hj+yihM, (i = 1, 2, . . . , n; h ∈ G) into
the OWA operator

∑m
j=1 w∗

j v̄i(j) >
∑m

j=1 w∗
j v̄h(j) − (1 − yih)M

and
∑m

j=1 w∗
j v̄i(j) ≤ ∑m

j=1 w∗
j v̄h(j) + yihM, (i = 1, 2, . . . , n;

h ∈ G) in proof of Lemma 1 and conclude that
rw∗(xh) = r∗(xh), (h ∈ G).

This completes the proof of Lemma 2.
Proof of Theorem 1: Introduce the following trans-

formed decision variables zk
jq, with zk

jq = 0 or 1 (q =
1, 2, 3),

∑3
q=1 zk

jq = 1, (k = 1, 2, . . . , l; j = 1, 2, . . . , m).

Because wk
j = [Ik,−

j , Ik,+
j ]

d
(

wk
j , wk

j

)
=

⎧
⎪⎪⎨

⎪⎪⎩

Ik,−
j − wk

j , 0 ≤ wk
j < Ik,−

j

0, Ik,−
j ≤ wk

j ≤ Ik,+
j

wk
j − Ik,+

j , Ik,+
j < wk

j ≤ 1

then, the mix 0-1 formulas.
wk

j −Ik,−
j ≤ 0+(1−zk

j1)M and wk
j ≥ 0−(1−zk

j1)M guarantee

0 ≤ wk
j < Ik,−

j .

wk
j − Ik,−

j > 0 + (1 − zk
j2)M and wk

j − Ik,+
j ≤ 0 − (1 − zk

j2)M

guarantee Ik,−
j ≤ wk

j ≤ Ik,+
j .

wk
j −Ik,+

j > (1−zk
j3)M and wk

j −1 ≤ 0−(1−zk
j3)M guarantee

Ik,+
j < wk

j ≤ 1.

Then, we have d(wk
j , wk

j ) = (Ik,−
j − wk

j )z
k
j1 + (wk

j − Ik,+
j )zk

j3.
According to Lemmas 1 and 2, plug models (15)–(23)

and (17)–(25) into model (14) and transform the optimization
models into the mixed 0-1 linear programming mod-
els (26)–(42) and (26), (28)–(44), respectively.

This completes the proof of Theorem 1.
Proof of Property 1: Assuming that ∀h ∈ G, r∗(xh) ∈

[rWA
w∈S(xh), r̄WA

w∈S(xh)], the objective value of P1 is nonzero,
which means the manipulator must take some cost to revise
the decision maker’s original attribute weights. However, the
condition r∗(xh) ∈ [rWA

w∈S(xh), r̄WA
w∈S(xh)] means the manipula-

tor can obtain his/her ranking in the ranking range under the
original interval attribute weights information. The above two
results are in contradiction.

This completes the proof of Property 1.
Proof of Property 2 (Sufficiency): When |G| = 1, the

number of alternatives which are associated with the desired
ranking by the manipulator is only one. Then, if r∗(xh∈G) ∈
[rWA

w∈S(xh), r̄WA
w∈S(xh)], the manipulator can successfully obtain

his/her ranking in the ranking range under the original interval
attribute weights information, it is evident that the objective
value of P1 is zero.

TABLE III
ORIGINAL DATA FOR 50 UNIVERSITIES

Necessity: The proof is same to the proof of Property 1.
Similarly, we can prove the property of model P2.
This completes the proof of Property 2.
Proof of Property 3: Assuming that ∃h ∈ G, r∗(xh) /∈

[rWA
w∈W(xh), r̄WA

w∈W(xh)], solutions of models P1 and P2 exist,
which means that a manipulator can set strategic weight
to achieve his/her desired ranking. However, according to
the definition of ranking range under attribute weights W,
RWA

w∈W(xh) = [rWA
w∈W(xh), r̄WA

w∈W(xh)] means the ranking of alter-
native manipulator xh vary in this range. The above two results
are in contradiction.

Then, this completes the proof of Property 3.

APPENDIX B

See Table III.
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