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Abstract Two processes are necessary to solve group
decision making problems: a consensus process and a
selection process. The consensus process is necessary
to obtain a final solution with a certain level of agree-
ment between the experts while the selection process
is necessary to obtain such a final solution. Clearly, it
is preferable that the set of experts reach a high de-
gree of consensus before applying the selection process.
In order to measure the degree of consensus, different
approaches have been proposed. For example, we can
use hard consensus measures, which vary between 0 (no
consensus or partial consensus) and 1 (full consensus),
or soft consensus measures, which assess the consen-
sus degree in a more flexible way. The aim of this pa-
per is to analyze the different consensus approaches in
fuzzy group decision making problems and discuss their
advantages and drawbacks. Additionally, we study the
future trends.
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I.J. Pérez · E. Herrera-Viedma
Department of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain
E-mail: ijperez@decsai.ugr.es

E. Herrera-Viedma
E-mail: viedma@decsai.ugr.es

1 Introduction

In a classical Group Decision Making (GDM) situation
there is a problem to solve, a solution set of possible
alternatives, X = {x1, . . . , xn}, and a group of two or
more experts, E = {e1, . . . , em}, characterized by their
own ideas, attitudes, motivations and knowledge, who
express their opinions about this set of alternatives to
achieve a common solution [30,32,33]. To do this, ex-
perts have to express their preferences by means of a
set of evaluations over the set of alternatives.

GDM problems arise from many real-world situa-
tions [8]. To solve these problems, the experts are faced
by applying two processes before obtaining a final solu-
tion [20,28,29]: consensus process and selection process
(see Fig. 1). The former consists in how to obtain the
maximum degree of consensus or agreement between
the set of experts on the solution set of alternatives.
Normally, the consensus process is guided by a human
figure called moderator [11,28] who is a person that
does not participate in the discussion but knows the
agreement in each moment of the consensus process and
is in charge of supervising and addressing the consen-
sus process toward success, i.e., to achieve the maxi-
mum possible agreement and to reduce the number of
experts outside of the consensus in each new consensus
round. The latter refers to how to obtain the solution
set of alternatives from the opinions on the alternatives
given by the experts. It involves two different steps [15,
34]: aggregation of individual opinions and exploitation
of the collective opinion. Clearly, it is preferable that
the set of experts achieves a great agreement among
their opinions before applying the selection process.

A consensus process is defined as a dynamic and it-
erative group discussion process, coordinated by a mod-
erator helping experts bring their opinions closer. At
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Fig. 1 Resolution process of a GDM problem

the beginning of every GDM problem, the set of ex-
perts has diverging opinions, then the consensus pro-
cess is applied and, in each step, the degree of existing
consensus among experts’ opinions is measured. If the
consensus degree is lower than a specified threshold, the
moderator would urge experts to discuss their opinions
further in an effort to bring them closer. Otherwise,
the moderator would apply the selection process in or-
der to obtain the final consensus solution to the GDM
problem.

A natural question in the consensus process is how
to measure the closeness among experts’ opinions in
order to obtain the consensus level. To do so, different
approaches have been proposed. For instance, several
authors have introduced hard consensus measures vary-
ing between 0 (no consensus or partial consensus) and 1
(full consensus) [3,4,35,36]. In this way, using hard con-
sensus measures, a distance from consensus as a differ-
ence between some average preference matrix and one
of several possible consensus preference matrices is de-
termined in [3,4]. In [35] some measures of attitudinal
similarity between individuals that is an extension of
the classical Tanimoto coefficient are derived. Finally,
a consensus measure based on a-cuts of the respective
individual fuzzy preference matrices is derived in [36].
However, consensus as a full and unanimous agreement
is far from being achieved in real situations and, even if
it is, in such a situation, the consensus reaching process
could be unacceptably costly. A more realistic approach
is to use soft consensus measures [25–27], which assess
the consensus degree in a more flexible way and, there-

fore, reflect the large spectrum of possible partial agree-
ments and guide the consensus process until widespread
agreement (not always full) is achieved among experts.
Soft consensus measures are based on the concept of co-
incidence [13], measured by means of similarity criteria
defined among experts’ opinions.

The aim of this paper is to analyze consensus ap-
proaches in fuzzy GDM problems to compute soft con-
sensus measures and discuss their advantages and draw-
backs. We identify three different coincidence criteria to
compute soft consensus measures: (1) strict coincidence
among preferences, (2) soft coincidence among prefer-
ences and (3) coincidence among solutions. Using these
coincidence criteria two advanced consensus approaches
have been proposed:

– Approaches allowing to generate recommendations
to help experts change their opinions in order to
obtain the highest degree of consensus possible [19–
21], and

– approaches adapting the consensus process to in-
crease the agreement and to reduce the number of
experts’ preferences that should be changed after
each consensus round [31].

The rest of the paper is organized as follows. In
Section 2, we analyze the different approaches to obtain
soft consensus measures in fuzzy GDM problems and
illustrate an example of application. In Section 3, we
discuss their advantages and drawbacks. The advanced
consensus approaches are shown in Section 4. Finally,
some concluding remarks are pointed out in Section 5.
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2 Approaches to obtain soft consensus
measures in fuzzy GDM problems

As aforementioned, soft consensus measures are based
on the coincidence concept [13], and we can identify
three different consensus approaches to compute them:
(1) consensus models based on strict coincidence among
preferences, (2) consensus models based on soft coin-
cidence among preferences, and (3) consensus models
based on coincidence among on solutions. We describe
them in more detail in the following subsections.

2.1 Consensus models based on strict coincidence
among preferences

In this case, similarity criteria among preferences are
used to compute the coincidence concept. It is assumed
only two possible results: the total coincidence (value
1) or null coincidence (value 0). Some examples of this
approach are the following:

– In [25], assuming fuzzy preference relations to repre-
sent experts’ preferences, the first consensus model
based on strict coincidence was defined. Given a par-
ticular alternative pair and two experts, if their pref-
erences are equal, then they are in agreement (value
1), and, otherwise, they are in disagreement (value
0). Then, consensus measures are calculated across
the global set of the alternatives in a hierarchical
pooling process from the coincidence measured on
experts’ preferences and using the fuzzy majority
concept represented by a linguistic quantifier [39].

– In [11,14], different consensus measures based on
strict coincidence were presented assuming that ex-
perts’ preferences are provided by means of linguis-
tic preference relations. Applying the strict coinci-
dence on preferences provided by the experts for
each alternative pair, the expert group is divided
into subsets, one subset for each possible linguistic
label used to quality the preference on the alterna-
tive pair. Then, using the cardinalities of the sub-
sets of experts three kinds of consensus measures
are defined, each one associated to the three differ-
ent levels of representation of a preference relation:
alternative pair, individual alternative and global
relation.

Assume a fuzzy GDM problem based on linguistic
preference relations as in [11,14], i.e., a GDM problem
where the experts E = {e1, . . . , em} express their pref-
erences relations P = {P 1, . . . , Pm} on the set of alter-
natives X using a linguistic term set S = {s0, . . . , sg}
whose cardinality or granularity #S = g + 1, being
ph

ik ∈ S the preference degree of alternative xi over

alternative xk for the expert eh. Additionally, the fol-
lowing properties are assumed [18,22]:

1. The set S is ordered: si ≥ sj if i ≥ j.
2. Negation operator: Neg(si) = sj such that j = g−i.
3. Min operator: Min(si, sj) = si if si ≤ sj .
4. Max operator: Max(si, sj) = si if si ≥ sj .

Then, a consensus model based on strict coincidence
could be carried out in the following steps:

1. Firstly, for each pair of experts (eh, el) (h = 1, . . . , m−
1, l = h+1, . . . , m), a strict similarity matrix SMhl =
[smhl

ik], i, k = 1, . . . , n, is obtained as follows:

smhl
ik =

{
1, if ph

ik = pl
ik

0, otherwise
(1)

2. Then, a collective similarity matrix, SM = [smik],
is obtained by aggregating all the similarity matri-
ces using the arithmetic mean φ as the aggregation
function:

smik = φ(smhl
ik, h = 1, . . . , m− 1, l = h + 1, . . . , m)

(2)

Note 1: In this case, we have used the arithmetic
mean as aggregation function φ, although, differ-
ent aggregation operators could be used according
to the particular properties that we want to imple-
ment.

3. Computing the consensus degrees and proximity mea-
sures as in [11]:
(a) Consensus Degrees: Once the similarity ma-

trices are computed, the consensus degrees are
calculated as follows:

i. Level 1. Consensus degree on pairs of al-
ternatives. The consensus degree, copik, on
a pair of alternatives, (xi, xk), is defined to
measure the consensus degree among all the
experts on that pair of alternatives. In this
case, this is expressed by the element of the
collective similarity matrix SM :

copik = smik (3)

The closer copik to 1, the greater the agree-
ment among all the experts on the pair of al-
ternatives (xi, xk). This measure will allow
the identification of those pairs of alterna-
tives with a poor level of consensus.

ii. Level 2. Consensus degree on alternatives.
The consensus degree on the alternative xi,
called cai, is defined to measure the con-
sensus degree among all the experts on that
alternative:

cai =

∑n
k=1;k 6=i (copik + copki)

2n− 2
(4)
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These values can be used to propose the
modification of preferences associated to those
alternatives with a consensus degree lower
than a minimal consensus threshold γ.

iii. Level 3. Consensus degree on the relation.
The consensus degree on the relation, called
CR, is defined to measure the global consen-
sus degree among all the experts’ opinions.
It is computed as the average of all the con-
sensus degrees on the alternatives:

CR =
∑n

i=1 cai

n
(5)

This is the value used to control the consen-
sus situation.

Note 2: In [11] three kinds of consensus are pro-
posed because they allow us to know the current
state of consensus from different viewpoints and,
therefore, to guide more correctly the consensus
reaching process.

(b) Proximity Measures: To compute the prox-
imity measures for each expert, we need to ob-
tain the collective preference relation, P c = [pc

ik],
which summarizes preferences given by all the
experts and is calculated by means of the aggre-
gation of the set of individual preference rela-
tions {P 1, . . . , Pm} as follows:

pc
ik = φ(p1

ik, . . . , pm
ik) (6)

To do so, the Linguistic Ordered Weighted Av-
eraging (LOWA) operator [12] can be used. The
LOWA operator is based on the ordered weighted
averaging (OWA) operator defined in [37], and
on the convex combination of linguistic labels de-
fined in [9]. In [12] it was shown that it is a ratio-
nal operator to aggregate linguistic information
that satisfies some important properties as com-
mutativity, monotony, unanimity and neutrality.

Definition 1 Let A = {a1, . . . , am} be a set of
labels to be aggregated, then the LOWA opera-
tor, φ, is defined as:

φ(a1, . . . , am) = W ·BT =
Cm{wk, bk, k = 1, . . . ,m} =
w1 ¯ b1 ⊕ (1− w1)¯ Cm−1{βh, bh, h = 2, . . . ,m}

(7)

where W = [w1, . . . , wm], is a weighting vec-
tor, such that, wi ∈ [0, 1] and Σiwi = 1. βh =
wh/Σm

2 wk, h = 2, . . . , m, and B = {b1, . . . , bm}
is a vector associated to A, such that, B = σ(A) =
{aσ(1), . . . , aσ(m)}, where, aσ(j) ≤ aσ(i) ∀ i ≤ j,

with σ being a permutation over the set of la-
bels A. Cm is the convex combination operator
of m labels and if m = 2, then it is defined as
C2{wi, bi, i = 1, 2} = w1¯sj⊕(1−w1)¯si = sk,

such that, k = min{T , i + round(w1 · (j −
i))} sj , si ∈ S, (j ≥ i), where “round” is the
usual round operation, and b1 = sj , b2 = si.

If wj = 1 and wi = 0 with i 6= j ∀i, then the
convex combination is defined as: Cm{wi, bi, i =
1, . . . , m} = bj .

Using P c, for each expert, eh, a proximity ma-
trix, PMh = [pmh

ik], is obtained:

pmh
ik =

{
1, if ph

ik = pc
ik

0, otherwise
(8)

Finally, the computation of the proximity mea-
sures is carried out at three different level as fol-
lows:

i. Level 1. Proximity measure on pairs of al-
ternatives. The proximity measure of an ex-
pert eh on a pair of alternatives (xi, xk) to
the group’s one, called pph

ik, is expressed by
the element (i, k) of the proximity matrix
PMh:

pph
ik = pmh

ik (9)

ii. Level 2. Proximity measure on alternatives.
The proximity measure of an expert eh on
an alternative xi to the group’s one, called
pah

i , is calculated as follows:

pah
i =

∑n
k=1,k 6=i (pph

ik + pph
ki)

2n− 2
(10)

iii. Level 3. Proximity measure on the relation.
The proximity measure of an expert eh on
his/her preference relation to the group’s
one, called prh, is calculated as the aver-
age of all proximity measures on the alter-
natives:

prh =
∑n

i=1 pah
i

n
(11)

Given an expert, if his or her proximity measure
is close to 1, then he or she has has a positive
contribution for the consensus to be high, while
if it is close to 0, then he or she has a negative
contribution to the consensus.

Example 1: Suppose four experts E = {e1, e2, e3, e4}
which use the linguistic term set S = {Null (N), Very
Low (VL), Low (L), Medium (M), High (H), Very High
(VH), Total (T)} to provide their linguistic preference
relations on a set of four alternatives:
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P 1 =




− H V H L

L − T V H

L N − L

H L V H −


 ; P 2 =




− H H M

L − V H T

V L L − H

M N L −




P 3 =




− H M V H

L − M L

L L − T

V L H N −


 ; P 4 =




− L H M

V H − M V H

L M − L

M L T −




As aforementioned, to obtain the consensus degrees,
we compute the different strict similarity matrix for
each pair of experts using the Eq. (1):

SM12 =




− 1.0 0.0 0.0
1.0 − 0.0 0.0
0.0 0.0 − 0.0
0.0 0.0 0.0 −


 ;SM13 =




− 1.0 0.0 0.0
1.0 − 0.0 0.0
1.0 0.0 − 0.0
0.0 0.0 0.0 −




SM14 =




− 0.0 0.0 0.0
0.0 − 0.0 1.0
1.0 0.0 − 1.0
0.0 1.0 0.0 −


 ;SM23 =




− 1.0 0.0 0.0
1.0 − 0.0 0.0
0.0 1.0 − 0.0
0.0 0.0 0.0 −




SM24 =




− 0.0 1.0 1.0
0.0 − 0.0 0.0
0.0 0.0 − 0.0
1.0 0.0 0.0 −


 ;SM34 =




− 0.0 0.0 0.0
0.0 − 1.0 0.0
1.0 0.0 − 0.0
0.0 0.0 0.0 −




Then, we compute the collective similarity matrix using
the φ:

SM =




− 0.50 0.17 0.17
0.50 − 0.17 0.17
0.50 0.17 − 0.17
0.17 0.17 0.00 −




From SM we obtain the following consensus degrees:

1. Consensus degrees on pairs of alternatives. The ele-
ment (i, k) of SM represents the consensus degrees,
copik, on the pair of alternatives (xi, xk).

2. Consensus degrees on alternatives:

ca1 = 0.34 ca2 = 0.28 ca3 = 0.20 ca4 = 0.09

3. Consensus degrees on the relation:

CR = 0.23

Clearly, we have a low consensus degree among ex-
perts and, therefore, in a decision situation we would
have to continue the negotiation process. To do so, as
in [19–21] we could guide the negotiation process by
means of the proximities measure. To obtain the prox-
imity measures, we need to compute the collective fuzzy
linguistic preference relation by aggregating all individ-
ual linguistic preference relations.

Using the LOWA operator [12] with the weighting
vector W = {0.5, 0.20, 0.16, 0.14}, we obtain the follow-
ing P c:

P c =




− H H M
M − V H V H

L L − H

M L H −




The proximity matrices for each expert are:

PM1 =




− 1.0 0.0 0.0
0.0 − 0.0 1.0
1.0 0.0 − 0.0
0.0 1.0 0.0 −


 ;PM2 =




− 1.0 1.0 1.0
0.0 − 1.0 0.0
0.0 1.0 − 1.0
1.0 0.0 0.0 −




PM3 =




− 1.0 0.0 0.0
0.0 − 0.0 0.0
1.0 1.0 − 0.0
0.0 0.0 0.0 −


 ;PM4 =




− 0.0 1.0 1.0
0.0 − 0.0 1.0
1.0 0.0 − 0.0
1.0 1.0 0.0 −




And then, the proximity measures are:

1. Proximity measure on pairs of alternatives. The prox-
imity measure of an expert eh on a pair of alterna-
tives (xi, xk) to the group’s one, pph

ik, is expressed
by the element (i, k) of the proximity matrix PMh.

2. Proximity measure on alternatives:

{pa1
1, pa1

2, pa1
3, pa1

4} = {0.33, 0.50, 0.17, 0.33}
{pa2

1, pa2
2, pa2

3, pa2
4} = {0.67, 0.50, 0.67, 0.50}

{pa3
1, pa3

2, pa3
3, pa3

4} = {0.33, 0.33, 0.33, 0.00}
{pa4

1, pa4
2, pa4

3, pa4
4} = {0.67, 0.33, 0.33, 0.67}

3. Proximity measure on the relation:

pr1 = 0.33 pr2 = 0.58 pr3 = 0.25 pr4 = 0.50

With these scores the experts 1 and 3 should change
highly their positions to increase the level of consensus
in the next consensus rounds.

2.2 Consensus models based on soft coincidence
among preferences

As above, similarity criteria among preferences are used
to compute the coincidence concept. However, in this
case, a major number of possible coincidence degrees is
considered. It is assumed that the coincidence concept is
a gradual concept which could be assessed with different
degrees defined in the unit interval [0,1]. These are the
more popular consensus models. Some examples of this
approach are the following:

– In [25], a first consensus model based on soft coin-
cidence was also defined. But in this case, given a
particular alternative pair and two experts, the co-
incidence among their preference is measured using
a closeness function s : [0, 1] → [0, 1].
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– In [26,27], some soft consensus measures are intro-
duced and defined as extensions of those presented
in [25], considering GDM problems with heteroge-
neous set of alternatives and heterogeneous groups
of experts, respectively.

– An extension of these models is presented in [10],
which consists in the computation of consensus mea-
sures using the ordered weighted averaging (OWA)
operator [37].

– In [5], a soft consensus model for multi-criteria GDM
problems defined in a ordinal fuzzy linguistic ap-
proach was defined. In this case, coincidence values
are obtained by means of a linguistic similarity func-
tion defined directly on linguistic assessments given
on the alternatives.

– In [13], the fuzzification of soft coincidence concept
was presented. The soft coincidence is defined in
each alternative pair of a linguistic preference rela-
tion as a fuzzy set defined on the set of expert pairs
and characterized by closeness observed among their
preferences. The closeness among preferences is es-
tablished by means of ad-hoc closeness table defined
among all the possible labels of linguistic term set
used to represent the preferences.

– In [20], a soft consensus approach is presented to
deal with GDM problems in a multi-granular fuzzy
linguistic context. Three kinds of soft consensus mea-
sures are considered as in [11,13,14]. In this case,
the soft coincidence among multi-granular linguis-
tic preferences is obtained using a similarity func-
tion defined on transformation of such preferences
in a basic linguistic term set.

– In [21], a soft consensus model based on three con-
sensus measures was also proposed. In this case,
experts provide their preferences by means of in-
complete fuzzy preference relations assessed in [0,1]
and the soft coincidence is defined using a similarity
function among preferences in [0,1].

– Finally, in [6], a soft consensus model is presented
for GDM problems in a unbalanced fuzzy linguis-
tic context [17,24]. In this case, as in [11,13,14], the
soft coincidence is computed using a similarity func-
tion defined on transformation of unbalanced fuzzy
linguistic preferences in a basic linguistic term set.

Following in the framework used previously, we could
apply a consensus model based on soft coincidence in
a fuzzy GDM problem based on linguistic preference
relations as follows:

1. Compute the similarity matrices SMhl = [smhl
ik],

i, k = 1, . . . , n,:

smhl
ik = s(ph

ik, pl
ik) (12)

where s(ph
ik, pl

ik) is a similarity function which mea-
sures the coincidence between the opinions ph

ik and
pl

ik. Depending on the fuzzy context, different simi-
larity functions can be used [20,21].

2. Then, a collective similarity matrix, SM = [smik],
is obtained by aggregating all the similarity matrices
using the arithmetic mean φ:

smik = φ(smhl
ik, h = 1, . . . , m− 1, l = h + 1, . . . , m)

(13)

3. Compute the consensus degrees and proximity mea-
sures:
(a) Consensus Degrees: Once the similarity ma-

trices are computed, the consensus degrees are
calculated at three different levels as in the con-
sensus models based on strict coincidence among
preferences:

i. Level 1. Consensus degree on pairs of al-
ternatives:

copik = smik (14)

ii. Level 2. Consensus degree on alternatives:

cai =

∑n
k=1;k 6=i (copik + copki)

2n− 2
(15)

iii. Level 3. Consensus degree on the relation:

CR =
∑n

i=1 cai

n
(16)

(b) Proximity Measures: To compute the prox-
imity measures for each expert, we need to ob-
tain the collective preference relation, P c = [pc

ik],
which is computed as follows:

pc
ik = φ(p1

ik, . . . , pm
ik) (17)

To do so, the LOWA operator [12] can be used.
Using P c, for each expert, eh, a proximity ma-
trix, PMh = [pmh

ik], is obtained:

pmhl
ik = s(ph

ik, pc
ik) (18)

Finally, the computation of the proximity mea-
sures is carried out at three different level as fol-
lows:

i. Level 1. Proximity measure on pairs of al-
ternatives:

pph
ik = pmh

ik (19)

ii. Level 2. Proximity measure on alternatives:

pah
i =

∑n
k=1,k 6=i (pph

ik + pph
ki)

2n− 2
(20)
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iii. Level 3. Proximity measure on the relation:

prh =
∑n

i=1 pah
i

n
(21)

Example 2: Assuming the same linguistic preference re-
lations provided by the experts in the above example,
the soft consensus degrees are obtained as follows.

To obtain the consensus degrees, firstly, we compute
the different similarity matrix for each pair of experts.
In this case, we need to define a similarity function. As
we assume a fuzzy linguistic framework, the following
similarity function can be used:

s(si, sj) = 1− |i− j|
g

(22)

Using this similarity function, the following similarity
matrices are obtained:

SM12 =




− 1.00 0.83 0.83
1.00 − 0.83 0.83
0.83 0.67 − 0.67
0.83 0.67 0.50 −


 ; SM13 =




− 1.00 0.67 0.50
1.00 − 0.50 0.50
1.00 0.67 − 0.33
0.50 0.67 0.17 −




SM14 =




− 0.67 0.83 0.83
0.50 − 0.50 1.00
1.00 0.50 − 1.00
0.83 1.00 0.83 −


 ; SM23 =




− 1.00 0.83 0.67
1.00 − 0.67 0.33
0.83 1.00 − 0.67
0.67 0.33 0.67 −




SM24 =




− 0.50 1.00 1.00
0.33 − 0.67 0.83
0.83 0.83 − 0.67
1.00 0.67 0.33 −


 ; SM34 =




− 0.67 0.83 0.67
0.50 − 1.00 0.50
1.00 0.83 − 0.33
0.67 0.67 0.00 −




Then, we compute the collective similarity matrix:

SM =




− 0.81 0.83 0.75
0.72 − 0.62 0.66
0.92 0.75 − 0.27
0.75 0.67 0.42 −




Finally, we obtain the following consensus degrees:

1. Consensus degrees on pairs of alternatives. The el-
ement (i, k) of sm represents the consensus degrees
on the pair of alternatives (xi, xk).

2. Consensus degrees on alternatives:

ca1 = 0.80 ca2 = 0.71 ca3 = 0.63 ca4 = 0.59

3. Consensus degrees on the relation:

CR = 0.68

According to this score, we can affirm that the con-
sensus level is acceptable in contrast to the Example
(1) based on the strict coincidence.

Proximity measures are obtained from the collec-
tive fuzzy linguistic preference relation, which using

the LOWA operator with the weighting vector W =
{0.5, 0.20, 0.16, 0.14}, is the following:

P c =




− H H M

M − V H V H

L L − H

M L H −




From P c, the proximity matrices for each expert are:

PM1 =




− 1.00 0.83 0.83
0.83 − 0.83 1.00
1.00 0.67 − 0.67
0.83 1.00 0.83 −


 ; PM2 =




− 1.00 1.00 1.00
0.83 − 1.00 0.83
0.83 1.00 − 1.00
1.00 0.67 0.67 −




PM3 =




− 1.00 0.83 0.67
0.83 − 0.67 0.50
1.00 1.00 − 0.67
0.67 0.67 0.33 −


 ; PM4 =




− 0.67 1.00 1.00
0.67 − 0.67 1.00
1.00 0.83 − 0.67
1.00 1.00 0.67 −




1. Proximity measure on pairs of alternatives. The prox-
imity measure of an expert eh on a pair of alterna-
tives (xi, xk) to the group’s one, pph

ik, is expressed
by the element (i, k) of the proximity matrix PMh.

2. Proximity measure on alternatives:

{pa1
1, pa1

2, pa1
3, pa1

4} = {0.89, 0.89, 0.80, 0.86}
{pa2

1, pa2
2, pa2

3, pa2
4} = {0.94, 0.89, 0.92, 0.86}

{pa3
1, pa3

2, pa3
3, pa3

4} = {0.83, 0.79, 0.75, 0.58}
{pa4

1, pa4
2, pa4

3, pa4
4} = {0.89, 0.81, 0.81, 0.89}

3. Proximity measure on the relation:

pr1 = 0.86 pr2 = 0.90 pr3 = 0.74 pr4 = 0.85

In this case, unlike Example (1) all experts present
adequate proximity measures, and the experts with worse
scores are e3 and e4.

2.3 Consensus models based on coincidence among on
solutions

In this case, similarity criteria among the solutions ob-
tained from the experts’ preferences are used to com-
pute the coincidence concept and different degrees as-
sessed in [0,1] are assumed [2,19]. Basically, we compare
the positions of the alternatives between the individual
solutions and the collective solution, which allows to
know better the real consensus situation in each mo-
ment of the consensus process. Some examples of this
approach are the following:

– In [19] was defined the first consensus model based
on the measuring the coincidence degree between
individual solutions and collective solution. It is as-
sumed that experts represent their preferences by
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means of different elements of representation (rela-
tion, ordering and utilities) and then it is not possi-
ble to compare preferences. To overcome this prob-
lem, authors propose to compare solutions to obtain
the coincidence degrees. This means that the first
step of consensus process to measure coincidence
degrees is to apply a selection process to obtain a
temporary collective solution and the temporary in-
dividual solutions, and measure the closeness among
them. An important characteristic of this consensus
model was the introduction of a recommendation
system to aid experts to change their preferences in
the consensus reaching process and, in such a way,
to substitute the moderator’s actions.

– In [2], a similar consensus model is presented but as-
suming heterogeneous GDM problems, i.e., experts
with different importance degrees.

Following the consensus model defined in [19], which
only is based on consensus degrees not proximity mea-
sures, we can define a consensus model based on coin-
cidence among solutions for fuzzy GDM problems with
linguistic preference relations as follows:

1. To obtain the collective ordered vector of alterna-
tives (temporary collective solution) V c. To do so,
we apply a selection process in two steps the selec-
tion process [1,7,34]:
(a) Aggregation. In this step, a collective preference

relation P c = (pc
ik) is obtained by means of

the aggregation of all individual preference rela-
tions {P 1, P 2, . . . , Pm}. This collective relation
indicates the global preference between every or-
dered pair of alternatives according to the ma-
jority of experts’ opinions.

(b) Exploitation. In this step, the set of solution al-
ternatives is obtained from the collective prefer-
ence relation. In this consensus model we call it
as collective ordered vector of alternatives. To do
so, different choice degrees of alternatives could
be used [16,23].

2. Calculating the individual ordered vector of alter-
natives (individual solution) V h for every expert eh.
To do it, we apply directly the exploitation step on
each individual linguistic preference relation Ph.

3. Calculating the proximity of each expert eh for each
alternative xi, called ph(xi), by comparing the rank-
ing positions of that alternative in the experts’ in-
dividual solution V h (symbolized by V h

i ) and in
the collective solution V c (symbolized by V c

i ) as
ph(xi) = p(V h, V c)(xi) = f(|V c

i − V h
i |). As a gen-

eral dissimilarity function, f(x) = (a ·x)b, 1 ≥ b ≥ 0
may be considered, and, in particular, the function

taking a = 1/(n− 1) may be used, and then

ph(xi) = p(V h, V c)(xi) = f(|V c
i − V h

i |) =

=

(
|V c

j − V h
i |

n− 1

)b

∈ [0, 1]
(23)

The parameter b controls the rigorousness of the
consensus process, in such a way, that values of b

close to one decrease the rigorousness and, there-
fore, the number of rounds to develop in the group
discussion process, and values of b close to zero in-
crease the rigorousness and, therefore, the number
of rounds. Appropriate values for b are: 0.5, 0.7, 0.9,
1.

4. Calculating the consensus degree of all experts on
each alternative xi using the following expression:

C(xi) = 1−
m∑

h=1

ph(xi)
m

(24)

5. The consensus measure over the set of alternatives,
called CX , will be calculated by the aggregation of
the above consensus degrees on the alternatives. It
is considered that the consensus degrees about the
solution set of alternatives has to take a more im-
portant weight in this aggregation. To do so, in [19]
it was used the S-OWA OR-LIKE operator defined
by Yager and Filev [38]:

CX = SOWAOR−LIKE({C(xs); xs ∈ Xsol},
{C(xt); xt ∈ X −Xsol}) =

= (1− β) ·∑ν
t=1

C(xt)
ν

+ β ·∑γ
s=1

C(xs)
γ

(25)

where γ is the cardinal of the set Xsol; ν is the car-
dinal of the set X−Xsol; β ∈ [0, 1]. β is a parameter
to control the OR-LIKE behavior of the aggregation
operator. The higher the value of β, the higher the
influence of the consensus degrees of the solution
alternatives on the global consensus degree.

Example 3: Assuming the same linguistic preference re-
lations provided by the experts in the above examples,
the soft consensus degrees based on coincidence among
solutions are obtained as follows:

1. Obtaining the collective ordered vector of alterna-
tives V c:
(a) Aggregation: Using the LOWA operator [12] and

the weighting vector W = {0.5, 0.20, 0.16, 0.14},
the following collective linguistic preference re-
lation is obtained:

P c =




− H H M

M − V H V H

L L − H

M L H −
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(b) Exploitation: We use a choice degree called dom-
inance degree [16] to characterize the alternatives
and compute the ordered vector of alternatives:

DDi = φ(pc
i1, p

c
i2, . . . , p

c
i(i−1), p

c
i(i+1), . . . , p

c
in)

(26)

To do so, we use the LOWA operator with the
weighting vector W = {0.54, 0.28, 0.18}. Then
the dominance degrees {DD1, . . . , DD4} are the
following:

DD1 = M, DD2 = H

DD3 = M, DD4 = M

And thus, the collective ordered vector of alter-
natives is {x2, x1, x3, x4}.

2. Calculating {V h; h = 1, . . . , m}:

e1 : {x2, x1, x4, x3}, e2 : {x2, x1, x3, x4}
e3 : {x1, x3, x2, x4}, e4 : {x2, x4, x1, x3}

3. The differences between the ranking of alternatives
in the temporary collective solution and the individ-
ual solution are:

V c
i − V h

i x1 x2 x3 x4

e1 0 0 -1 1

e2 0 0 0 0

e3 1 1 -2 0

e4 0 2 -1 -1

4. Consensus degrees on alternatives calculated for b =
1:

(C(x1), C(x2), C(x3), C(x4)) = (0.83, 1.0, 0.67, 0.67)

5. Consensus measure calculated for b = 1 and β = 0.6
is:

CX = 0.88

As we observe, assuming the same framework con-
sidered in Examples (1) and (2), we obtain a higher
consensus level with this consensus model, which re-
flects better the actual decision situation.

3 Discussion

In this section, we analyze the advantages and draw-
backs of the different fuzzy soft consensus approaches.

1. Strict coincidence among preferences. This consen-
sus approach assumes only two possible values: 1
if the opinions are equal and, otherwise, a value of
0. Therefore, as we have seen in the Example (1),
the advantage of this approach is that the compu-
tation of the consensus degrees is simple and easy.
However, the drawback of this approach is that the
consensus degrees obtained do not reflect the real
consensus situation because it only assigns values of
1 or 0 when comparing the experts’ opinions, and,
for example, we obtain a consensus value 0 for two
different preference situations as (very high, high)
and (very high,low), when clearly in the second case
the consensus value should be lower than in the first
case. It can be seen in the Example (1), where the
degree of consensus obtained is very low (0.23) al-
though checking the preference relations provided
by the experts, we can observe that the consensus
among the experts is higher.

2. Soft coincidence among preferences. In this approach,
similarity criteria among preferences are used to com-
pute the coincidence concept but, in this case, it
is assumed that the coincidence concept is a grad-
ual concept which could be assessed with different
degrees defined in [0, 1]. The advantage of this ap-
proach is that the consensus degrees obtained re-
flect better the real consensus situation. Compar-
ing Examples (1) and (2), this is clearly observed.
However, the drawback of this approach is that the
computation of the consensus degrees is more diffi-
cult because we need to define similarity criteria to
compute the consensus measures, and, sometimes,
as it happens in [6,20], it is not possible to define
these similarity measures directly.

3. Coincidence among solutions. The advantage of this
approach is that the consensus degrees are obtained
comparing not the opinions but the position of the
alternatives in each solution, what allows us to re-
flect the real consensus situation in each moment
of the consensus reaching process, as it happens in
the Example (3). However, the drawback of this ap-
proach is that the computation of the consensus de-
grees is more difficult than in the above approaches
because we need to define similarity criteria and it
is necessary to apply a selection process before ob-
taining the consensus degrees. As we show in Exam-
ple (3) the computation of the consensus degrees is
more complex.

4 Advanced consensus approaches

In this section, we describe the soft advanced consensus
approaches which have been developed using the above
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concepts of coincidence. These consensus approaches
are mainly two: ones generate recommendations to help
experts and others develop adaptive consensus processes.
We present them in the following subsections in depth.

4.1 Consensus approaches generating
recommendations to help experts

These approaches generate simple and easy rules to help
experts change their opinions and find out which direc-
tion that change should follow in order to obtain the
highest degree of consensus possible [19,21].

To do so, they are based on two consensus criteria,
consensus degrees indicating the agreement between ex-
perts opinions and proximity measures used to find out
how far the individual opinions are from the group
opinion. Thus, proximity measures are used in con-
junction with the consensus degrees to build a guid-
ance advice system, which acts as a feedback mecha-
nism that generates recommendations so that experts
can change their opinions. Furthermore, these consen-
sus criteria are computed at the three different levels of
representation of information of a preference relation:
pair of alternatives, alternative, and relation. In such a
way, we will be able to identify which experts are close
to the consensus solution, or in which alternatives the
experts are having more trouble to reach consensus.

So, the computation of the consensus degrees in this
advanced consensus approaches is carried out using the
Eq. (3)-(5), i.e., as in the above consensus models. Once
consensus degrees are calculated, the proximity mea-
sures are obtained. To compute them for each expert,
the Eq. (9)-(11) are used.

As aforementioned, if the proximity measures are
close to 1, then they have a positive contribution for
the consensus to be high, while if they are close to 0,
then they have a negative contribution to the consensus.
Therefore, we can use them to provide advice to the
experts to change their opinions and to find out which
direction that change has to follow in order to obtain
the highest degree of consensus possible.

Thus, once proximity measures are calculated, the
recommendations to help experts change their opinions
are generated. The production of advice to achieve a
solution with the highest degree of consensus possible
is carried out using two kinds of rules [20]: Identification
rules and Direction rules.

1. Identification rules (IR). We must identify the
experts, alternatives and pairs of alternatives con-
tributing less to reach a high degree of consensus
and, therefore, should participate in the change pro-
cess.

(a) Identification rule of experts (IR.1). It identi-
fies the set of experts that should receive advice
on how to change some of their preference val-
ues. This set of experts, called EXPCH, that
should change their opinions are those whose sat-
isfaction degree on the relation is lower than the
minimum consensus threshold γ. Therefore, the
identification rule of experts, IR.1, is the follow-
ing:

EXPCH = {eh | prh < γ} (27)

(b) Identification rule of alternatives (IR.2). It iden-
tifies the alternatives whose associated assess-
ments should be taken into account by the above
experts in the change process of their prefer-
ences. This set of alternatives is denoted as ALT .
The identification rule of alternatives, IR.2, is
the following:

ALT = {xi ∈ X | pah
i < γ ∧ eh ∈ EXPCH}

(28)

(c) Identification rule of pairs of alternatives (IR.3).
It identifies the particular pairs of alternatives
(xi, xk) whose respective associated assessments
ph

ik the expert eh should change. This set of pairs
of alternatives is denoted as PALTh. The iden-
tification rule of pairs of alternatives, IR.3, is the
following:

PALTh = {(xi, xk) | xi ∈ ALT∧
∧eh ∈ EXPCH ∧ pph

ik < γ} (29)

2. Direction rules (DR). We must find out the direc-
tion of the change to be recommended in each case,
i.e., the direction of change to be applied to the pref-
erence assessment ph

ik, with (xi, xk) ∈ PALTh. To
do this, we define the following two direction rules.
(a) DR.1. If ph

ik > pc
ik, the expert eh should decrease

the assessment associated to the pair of alterna-
tives (xi, xk), i.e., ph

ik.
(b) DR.2. If ph

ik < pc
ik, the expert eh should increase

the assessment associated to the pair of alterna-
tives (xi, xk), i.e., ph

ik.

4.2 Adaptive consensus approaches

These consensus approaches are based on a refinement
process of the consensus process that allows to increase
the agreement and to reduce the number of experts’
preferences that should be changed after each consensus
round [31]. The refinement process adapts the search for
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Fig. 2 Reduction of the number of changes of preferences into the consensus process

the furthest experts’ preferences to the existent agree-
ment in each round of consensus. So, when the agree-
ment is very low (initial rounds of the consensus pro-
cess), the number of changes of preferences should be
bigger than when the agreement is medium or high (fi-
nal rounds) (see Fig. 2).

These approaches consider that in the first rounds
of the consensus process, the agreement is usually very
low and it seems logic that many experts’ preferences
should be changed. However, after several rounds, the
agreement should have improved and then just the fur-
thest experts’ preferences from the collective prefer-
ence should be changed. It involves that the proce-
dure to search for the furthest experts’ preferences from
collective preference should be different according to
the achieved agreement in each round. Each Prefer-
ence Search Procedure (PSp) should have a different
behavior and should return a different set of preferences
that each expert should change in order to improve the
agreement in the next consensus round. In consequence
of the adaptation of the consensus process to the exis-
tent agreement in each round, the number of changes
of preferences suggested to experts after each consensus
round will be smaller according to the favorable evolu-
tion of the level of agreement.

In such a way, in the consensus process, if the agree-
ment among experts is low, i.e, there are a lot of experts’
preferences with different assessments, the number of
experts which should change their preferences in order
to make them closer to collective preference should be
great. However, if the agreement is medium or high, it
means that the majority of preferences are similar and
therefore there exist a low number of experts’ prefer-
ences far from the collective preference. In this case,
only these experts should change them in order to im-
prove the agreement. Keeping in mind this idea, these

approaches propose distinguishing among three level of
agreement: very low, low and medium consensus. Each
level of consensus involves to carry out the search for
the furthest preferences in a different way. So when the
consensus degree CR is very low, these approaches will
search for the furthest preferences on all experts, while
if CR is medium, the search will be limited to the fur-
thest experts. To do so, these approaches carries out
three different PSps:

– PSp for very low consensus,
– PSp for low consensus, and
– PSp for medium consensus.

The possibility of carrying out different PSps ac-
cording to the existent consensus degree in each round
defines the adaptive character of the model.

5 Concluding remarks

We have analyzed different consensus approaches to
compute soft consensus measures in fuzzy GDM prob-
lems. Additionally, we have described the new advanced
approaches, i.e., those approaches allowing to generate
recommendations to help experts change their opinions
in order to obtain the highest degree of consensus possi-
ble, and, on the other hand, those approaches adapting
the consensus process to increase the agreement and re-
duce the number of experts’ preferences that should be
changed after each consensus round.
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