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Abstract 

The current methodology for determining  the biological effect of Boron Neutron 

Capture Therapy (BNCT) has recently been questioned, and a more accurate framework 

based in the photon isoeffective dose has been proposed. In this work we derive a first 

order approximation to this quantity than can be easily evaluated even from limited 

data, as is the current situation in the radiobiology of BNCT. This procedure removes 

the main drawbacks of the current method and it is based on new weighting factors that, 

as a difference with the previously used, are true constants (dose independent). In 

addition to this, we apply the formalism to allow the comparison to a fractionated 

conventional radiotherapy treatment, for which there is a lot of knowledge from clinical 

practice. As an application, the photon isoeffective dose of a BNCT treatment for a 

brain tumor is estimated. An excel sheet used for these calculations is also provided as 

supplementary material and can be used also with user-provided input data for the 

estimation of the photon isoeffective dose for comparison with conventional 

radiotherapy, both to single and fractionated treatments.  
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1. Introduction 

Boron Neutron Capture Therapy (BNCT), which has recently shown very promising 

results (Barth et al. 2012), is now facing a renaissance with the introduction of a new 

generation of accelerator based BNCT centers expected soon (Kreiner et al. 2016). 

Since the neutron beam spectrum from an accelerator can change substantially from a 

reactor-based system, a revision of the dose planning procedures is appropriate. 

In current BNCT clinical studies the physical dose is calculated as the sum of 

three contributions: the neutron dose, 𝐷𝑛, the boron dose, 𝐷𝐵, and the gamma dose, 𝐷𝛾. 

The neutron dose is usually separated as: the fast dose, 𝐷𝑓, from the secondary particles 

(mainly hydrogen recoils) produced by neutrons with energy above 0.5 eV and the 

thermal dose, 𝐷𝑡, for neutrons with energy below 0.5 eV (IAEA 2001, Goorley et al. 

2002). The latter is dominated by the 
14

N(n,p) reaction and sometimes it is also called 

the nitrogen dose (Joensuu et al. 2003), although the energy is mainly delivered by the 

ejected proton. The dose contribution from the 2.224 MeV photons from the hydrogen 

capture of thermal neutrons is excluded from 𝐷𝑡 and included in 𝐷𝛾. 



The reason for this separation is to account for the different relative biological 

effectiveness of these contributions, as the total dose is a mix of high and low LET 

products in tissue.Therefore, the "biological" or "weighted" dose (𝐷𝑊) is defined as the 

sum of the dose components weighted with different factors 𝑤𝑖 (IAEA 2001. Joensuu et 

al. 2003), previously called relative biological effectiveness (RBE) factors (Coderre and 

Morris 1999): 

 𝐷𝑤 = 𝑤𝑓𝐷𝑓 +𝑤𝑡𝐷𝑡 + 𝑤𝛾𝐷𝛾 + 𝑤𝐵𝐷𝐵 (1) 

The quantity Dw is interpreted as the equivalent photon dose which produces the 

same effect than the BNCT procedure and is expressed in Gy-Eq or Gy(W). The 

weighting factors 𝑤𝑖 are defined as the ratio of the reference photon irradiation 

dose, 𝐷𝑝, and the value of the physical dose component 𝐷𝑖 needed to produce the same 

effect: 

 𝑤𝑖 =
𝐷𝑝

𝐷𝑖
,         𝑖 = 𝑡, 𝑓, 𝛾, 𝐵. (2) 

The current 𝑤𝑖 factors were determined in radiobiology experiments, and they 

are assumed as constants, although they depend on the survival fraction (i.e. the doses 

delivered) of those experiments. For example, the common value for 𝑤𝑓 and 𝑤𝑡 of 3.2 

for tumors was obtained for an in-vivo clonogenic gliosarcoma cell survival of 1%, but 

for other survival fractions the values vary from 2.8 to 3.5 (Coderre et al. 1993). The 

photon weighting factor has been taken systematically as one, although there is 

evidence against this value because of the smaller photon dose rate in BNCT (Kiger et 

al. 2008, Hopewell et al. 2011, 2012). The boron weighting factor is a compound-

dependent factor, also called CBE (compound biological effectiveness), which was 

obtained by subtraction from the total beam effect and incorporating the biological 

effect of the rest of components with the assumed values of 𝑤𝑓 and 𝑤𝑡 (Coderre and 

Morris 1999). In this way, any deficiency of the other coefficients could be 

compensated. These factors can be applied reliably to other beams for which the 

different dose terms are similar to the conditions in which this 𝑤𝐵 factor was obtained. 

However, this may not be the case for different neutron beams for the newly-proposed 

accelerator-based neutron sources. In particular, for the first accelerator-based neutron 

source which is performing clinical trials, the C-BENS at Kyoto (Tanaka et al. 2011, 

Ono 2018), it has been reported important differences with respect to the epithermal 

beam from a reactor (Tanaka et al. 2009, Ono 2018). This source, based on the 
9
Be(p,n) 

reaction, shows aspectrum with a maximum at higher epithermal energies than that for a 

typical reactor source, which may lead to a different relative contributions of 𝐷𝑓 and  𝐷𝑡 
at different depths. Also, for the reaction 

7
Li(p,n) near the threshold, which is used in 

some other facilities such as SOREQ (Halfon et al 2009), it has been measured an 

spectrum for which the high energy tail of the spectrum ends sharply below the MeV 

range (Bedogni et al. 2018). This is constrained from the kinematics of the reaction 

which precludes neutron energies in the MeV range, quite different than the tail of 

neutrons from reactors. Therefore, the relative contribution of 𝐷𝑓 can differ. 

In spite of its usefulness in the many clinical trials performed using research 

reactors, there are some drawbacks in the current procedure that can be improved.  First, 

as mentioned, the weighting factors are not constant as they are dose-dependent. The 

reason is that while the biological effect, defined as 𝐸 ≡ − ln 𝑆 where S is the survival 

fraction of cells after irradiation, can be assumed to depend linearly on the dose for high 



LET radiation, for photons the dependence is known to have a linear-quadratic (LQ) 

dependence (Kellerer and Rossi 1974, Chadwick and Leenhouts 1981), as: 

 𝐸 ≡ − ln 𝑆 = 𝛼𝑝𝐷𝑝 + 𝛽𝑝𝐷𝑝
2 (3) 

Therefore, for weighting a high LET radiation dose component 𝐷𝑖 it has to be 

used the factor 𝑤𝑖 = 𝐷𝑝/𝐷𝑖, where 𝐷𝑝 is the reference photon dose required to produce 

the same effect than this particular 𝐷𝑖 value. If this value is used for doses lower than 

the 𝐷𝑖 value chosen to compute 𝐷𝑝, the resulting weighted dose is underestimated, and 

for higher values of 𝐷𝑖, it is overestimated. 

Also, the additivity of the different terms may increase the error in the 

estimation of the equivalent photon dose by the addition of the weighted dose terms as 

illustrated graphically by Gonzalez and Santa Cruz (2012). In order to fix these 

drawbacks, and including other improvements, such as the synergies between different 

dose components, these authors defined the photon isoeffective dose, 𝐷𝑅, which 

represents more accurately the photon dose which produce the same biological effect 

than the BNCT treatment (González and Santa Cruz 2012). It can be calculated from a 

comparison between the biological effects of both the reference photon radiation and a 

BNCT treatment of components 𝐷𝑖 (𝑖 = 𝑓, 𝑡, 𝛾, 𝐵), via the equation: 

∑𝛼𝑖𝐷𝑖

4

𝑖=1

+∑∑𝐺𝑖𝑗(𝜃)√𝛽𝑖𝛽𝑗

4

𝑗=1

4

𝑖=1

𝐷𝑖𝐷𝑗 = 𝛼𝑅𝐷𝑅 + 𝐺(𝜃′)𝛽𝑅𝐷𝑅
2 . (4) 

 

This method takes into account the LQ model for all the dose components, the possible 

synergies between them and the repair mechanisms as a function of time by including 

the Lea-Catcheside time factor, 𝐺(𝜃). This formalism was applied to evaluate previous 

data for BNCT head and neck patients, finding that this isoeffective dose predicts the 

clinical responses better than the current weighted dose formalism (Gonzalez et al. 

2017). 

In this work, we propose a first order approach for the estimation of the photon 

isoeffective dose that can be applied with the common knowledge of the RBE data, but 

introducing the most important corrections required by the use of the radiobiological 

LQ method, which are the quadratic terms of the effect of both the gamma dose 

component in BNCT and the reference photon dose (the own isoeffective dose). For the 

incorporation of the radiobiology data to this method we propose the use of newly 

defined weighting factors which are true constants (i.e. dose-independent).   

2. Methods 

2.1. Formalism for the estimation of the photon iso-effective dose in BNCT  

 Our model consists of a first order approximation to the photon iso-effective 

dose described by Eq. (4) with some simplifying assumptions:  

(i) The quadratic parameters are neglected for the high LET radiation 

components (i.e., 𝛽𝑖 ≅ 0 for 𝑖 = 𝑓, 𝑡, 𝐵), a common aproximation in high LET 

radiobiology  (Bloomer and Adelstein 1982). Previous data from in-vitro irradiation in 

BNCT beams shows survival that follows a quadratic curve, but this includes the effect 



of the gamma component of the beam (normally the main component in those beams). 

Usually, once this component is extracted correctly and only the effect of  high LET 

radiation is represented, it well fit with a linear aproximation that not requires the 

quadratic parameter 𝛽𝑖.With this assumption, synergic effects between different dose 

components are also neglected, an effect that has been estimated to be of a 7% of the 

photon isoeffective dose (González and Santa Cruz 2012). However, the role of the 𝛽𝑖 
coefficients for the gamma component and especially for the reference photon radiation, 

accounts for the most part of the much higher discrepance between the photon 

isoeffective dose and the current formalism of RBE-weighted dose, and they are 

included in the present formalism This approximation is aimed to use available 

experimental data, that is still not conclusive for the synergies (Phoenix et al. 2013). 

(ii) We assume that the radiobiology coefficients for the gamma dose and the 

reference radiation, as being those of photons, are the same, which will be called 𝛼𝑝, 𝛽𝑝 

and can be taken from the extensive literature on the radiobiology of conventional 

radiation therapy. Although this assumption will continue through the formalism 

description, the possibility to include specific parameters for the  BNCT gamma 

component, when data is available, is included later on. 

(iii) For consistency with the use of conventional photon radiobiology data, the 

Lea-Catcheside factor 𝐺(𝜃′) for the reference radiation is assumed to be 1 for a single-

session treatment and 1/𝑛  for a fractionated treatment in  𝑛 sessions where the time 

between sessions is large (Brenner 2008). Additionally, the 𝐺 factor for the gamma 

component of the BNCT treatment is approximated by 1, but if a different value is 

adopted in the future, it can be introduced in our formalism as will be discussed below, 

where it will be also shown how a dose reduction factor for this component, as it has 

been suggested by some authors (Kiger et al. 2008, Hopewell et al. 2011, 2012), can be 

also incorporated. These options allow to consider the different dose rate effect of the 

two photon irradiations under comparison.  

With these assumptions, Eq.(4) is reduced to: 

 𝛼𝑡𝐷𝑡 + 𝛼𝑓𝐷𝑓 + 𝛼𝑝𝐷𝛾 + 𝛽𝑝𝐷𝛾
2+ 𝛼𝐵𝐷𝐵 = 𝛼𝑝𝐷𝑝 + 𝛽𝑝𝐷𝑝

2 , (5) 

where we have denoted as 𝐷𝑝 our approximation to 𝐷𝑅 in order to avoid confusion, but 

it represents an approximation to the photon iso-effective dose, in units of Gy (IsoE). 

The left hand side of the equation represents the biological effect 𝐸 of the BNCT 

treatment, which is defined as the log of the survival fraction 𝑆 of cells: 

 

𝐸 = − ln 𝑆 =  𝛼𝑡𝐷𝑡 + 𝛼𝑓𝐷𝑓 + 𝛼𝑝𝐷𝛾 + 𝛽𝑝𝐷𝛾
2+ 𝛼𝐵𝐷𝐵  (6) 

and the right hand side that of the photon reference irradiation, assumed applied in a 

single session: 

𝐸 = − ln 𝑆 =  𝛼𝑝𝐷𝑝 + 𝛽𝑝𝐷𝑝
2     (7) 

But we can also relate this effect to that produced by a fractionated conventional 

radiation treatment, which is known, taking into account repair mechanisms between 

sessions, described by (Fowler 1990): 

𝐸 = − ln 𝑆 =  𝛼𝑝𝑛𝑑𝑝 + 𝛽𝑝𝑛𝑑𝑝
2 ,            (8) 

Where 𝑛 denotes the number of sessions, and 𝑑𝑝 the dose delivered per fraction. This is 



equivalent to approximate the Lea-Catcheside factor for the fractionated treatment by 

1/𝑛 , as mentioned above. Therefore, either using equation (5) or Eq. (6) combined with 

Eq. (8), and dividing by 𝛼𝑝, we obtain: 

𝛼𝑡
𝛼𝑝
𝐷𝑡 + 

𝛼𝑓

𝛼𝑝
𝐷𝑓 + (𝐷𝛾 +

𝐷𝛾
2

𝛼𝑝/𝛽𝑝
) +

𝛼𝐵
𝛼𝑝
𝐷𝐵 =

{
 
 

 
 𝐷𝑝 +

𝐷𝑝
2

𝛼𝑝/𝛽𝑝
                              (9𝑎)

𝑛 (𝑑𝑝 +
𝑑𝑝
2

𝛼𝑝/𝛽𝑝
)                      (9𝑏)

 

We define new weighting factors as: 

 𝑊𝑖 = 
𝛼𝑖

𝛼𝑝
 , 𝑖 = 𝑡, 𝑓, 𝐵 . (10) 

These are the key factors for the present formalism. Assuming that the dose-

survival curve is well described by the LQ model (only linear for the high LET 

components), the 𝛼 coefficients do not depend on the survival fraction and therefore the 

𝑤𝑖
∗ factors are true constants. They are only specific to the tissue and the biological end-

point. 

Then, Eq.(5) reads:  

𝑊𝑓𝐷𝑓 +𝑊𝑡𝐷𝑡 + (𝐷𝛾 +
𝐷𝛾
2

𝛼𝑝/𝛽𝑝
) +𝑊𝐵𝐷𝐵 =   

{
 
 

 
 𝐷𝑝 +

𝐷𝑝
2

𝛼𝑝/𝛽𝑝
                 (11𝑎)

𝑛 (𝑑𝑝 +
𝑑𝑝
2

𝛼𝑝/𝛽𝑝
)         (11𝑏)

 

Just for convenience we will denote the left-hand-side of the equation as:  

 

𝐷𝑊
∗ = 𝑊𝑓𝐷𝑓 +𝑊𝑡𝐷𝑡 + (𝐷𝛾 +

𝐷𝛾
2

𝛼𝑝/𝛽𝑝
) +𝑊𝐵𝐷𝐵                (12) 

 

So, for finding the photon iso-effective dose of a single session treatment we 

only have to solve the quadratic equation (11a), which gives: 

 𝐷𝑝 = 
𝛼𝑝/𝛽𝑝

2
{−1 + √1 + 

4

𝛼𝑝/𝛽𝑝
𝐷𝑊
∗ } ,   (13) 

and, from Eq.(11b), for obtaining the photon isoeffective dose for a fractionated 

treatment, assuming 𝑑𝑝 is known (2 Gy typically), the number of doses of the 

fractionated iso-effective treatment is given by 

 

𝑛 =
𝐷𝑊
∗

𝑑𝑝 (1 +
𝑑𝑝

𝛼𝑝/𝛽𝑝
)
                               (14) 

 

from which the fractionated photon iso-effective dose is just 𝐷𝑝 = 𝑛𝑑𝑝.  In both cases, 

𝐷𝑊
∗  is given by Eq. (8).  

These formulas (13) and (14) allow to estimate the photon iso-effective dose in a 

direct way provided we have information on the new weighting factors, which will be 

discussed below, and the ratio 𝛼𝑝/𝛽𝑝, which is tabulated for a number of cell lines, 

tissues (tumor and normal) and specific effects in organs from the large amount of 



radiobiology data of conventional radiation. These ratios are commonly used in 

conventional radiotherapy for adjusting the fractioning of treatments when the planned 

schedule is altered. This ratio takes large values for tumors and small for normal tissues, 

except in acute response effects. 

 Although the photon isoeffective dose formalism of Eq. (2) was originally 

developed for tumor response, the present approximation given in Eqs. (13) and (14) 

can give also estimations of normal tissue complications provided that the 𝛼𝑝/𝛽𝑝 values 

entered correspond to the biological end-point of interest. The reason is that the right 

hand side of Eq.(11b) represents the well-known biological effective dose (BED) of 

standard radiotherapy, which is used for estimating also normal tissue effects and 

𝛼𝑝/𝛽𝑝 are determined for them. The reliability of the predictions depends on the 

accuracy of the input data. An implicit assumption in the use of Eq. (11b) is that the 

ratio 𝛼𝑝/𝛽𝑝 is the same for the gamma component of the BNCT and a fractionated 

radiotherapy treatment. This could be improved if we know the dose-response of the 

gamma dose in BNCT dose for the effect of interest and we can estimate their 

coefficients 𝛼𝛾, 𝛽𝛾 . If this is the case, Eq. (11a),(11b) should be replaced by:  

𝑊𝑓𝐷𝑓 +𝑊𝑡𝐷𝑡 +𝑊𝛾 (𝐷𝛾 + 𝐺(𝜃)
𝐷𝛾
2

𝛼𝛾/𝛽𝛾
) +𝑊𝐵𝐷𝐵 = 

{
 
 

 
 𝐷𝑝 +

𝐷𝑝
2

𝛼𝑝/𝛽𝑝
                  (15𝑎)

𝑛 (𝑑𝑝 +
𝑑𝑝
2

𝛼𝑝/𝛽𝑝
)          (15𝑏)

 

Where 𝑊𝛾 = 𝛼𝛾/𝛼𝑝 , which represents a dose reduction factor (DRF) for the 

gamma dose in BNCT, and 𝐺(𝜃) is the Lea-Catcheside factor for this component. 

Therefore, if future knowledge on these parameters is available from experimentation, 

this formula should be applied. 

2.2. Relation between new weighting factors, 𝑾𝒊 and previous ones, 𝒘𝒊.  

Ideally, the new weighting factors 𝑊𝑖   should be determined from radiobiological 

measurements, obtaining the 𝛼𝑖 coefficient for each dose component by a fitting of the 

function 𝑆𝑖 = 𝑒
−𝛼𝑖𝐷𝑖 to the survival empirical data of  𝑆𝑖 due to this particular dose 

component i. But it is not common to deal with this data as the irradiation always 

contains more than one term, and one has to proceed carefully as how to separate the 

effects of different components, for which data from different type of beams is required. 

An example of this situation will be mentioned in the next section. 

However, and this is the major advantage of this approximation, when we do not 

have the required data on the survival curve, but limited data such as a particular value 

of the previous RBE values obtained for a particular dose component, the current 

method can be applied to estimate the photon isoeffective dose. For this purpose, we 

will obtain now a relationship between the current weighting factors and the newly 

defined ones. 

If 𝐷𝑝𝑖  is the photon dose producing the same effect as a particular dose 

component 𝐷𝑖, then by equating the common effect that corresponds to both doses we 

can express: 

 𝛼𝑖𝐷𝑖 = 𝛼𝑝𝐷𝑝𝑖 + 𝛽𝑝𝐷𝑝𝑖
2 , (16) 

which can be written as: 



 
𝛼𝑖

𝛼𝑝
𝐷𝑖 = 𝐷𝑝𝑖 +

𝐷𝑝𝑖
2

𝛼𝑝/𝛽𝑝
 . (17) 

Identifying 𝑤𝑖 = 𝐷𝑝𝑖/𝐷𝑖 and 𝑊𝑖 = 𝛼𝑖/𝛼𝑝 ,  the following relation is found: 

 𝑊𝑖 = 𝑤𝑖 (1 +
𝐷𝑝𝑖

𝛼𝑝/𝛽𝑝
) , (18a) 

or equivalently, in terms of 𝐷𝑖 we find: 

 𝑊𝑖 = 𝑤𝑖 (1 +
𝑤𝑖𝐷𝑖

𝛼𝑝/𝛽𝑝
) . (18b) 

 According to Eq.(18a), 𝑤𝑖 is a decreasing function of the dose and coincides 

with 𝑊𝑖 in the limit  𝐷𝑝𝑖 → 0, therefore 𝑊𝑖 can be considered as the maximum RBE 

value defined previously (Carabe-Fernández et al. 2010). 

 

3. Results and discussion 

3.1. Estimation of the new weighting factors for brain tumor treatments from 

existing data of 𝒘𝒊.  

3.1.1. Tumor values of 𝑊𝑓 and 𝑊𝑡 

Currently it is assumed that the factors 𝑤𝑓 and 𝑤𝑡 take the same values, that we 

will denote by 𝑤𝑛 and called “pure neutron weighting factor”.  With this assumption, 

we will obtain an estimation of the new neutron weighting factor 𝑊𝑓 = 𝑊𝑡 ≡ 𝑊𝑛. 

However, one should keep in mind that this is not a requirement of the model that can 

be also applied if from new experiments a different value of 𝑊𝑓 than 𝑊𝑡 is obtained. 

The commonly accepted value of 3.2 for tumor was obtained by Coderre et al. 

(1993) studying the biological effectiveness factors from a rat 9L gliosarcoma model. 

The irradiations were performed at a mixed field of neutrons and photons at BMRR. 

However, they also performed X-ray irradiations that allowed them to remove the effect 

of the photon component of the mixed beam (assumed, as in this work, that both 

produce the same dose-response). From the data of the fit of the photon survival that 

these authors performed, which gave the results 𝛼𝑝 = 0.26 ± 0.03 Gy
-1 

and 𝛽𝑝 =

0.003 ± 0.001 Gy
-2

, and assuming that the survival fraction from the photon 

components is function 𝑆𝛾 = 𝑒
−𝛼𝑝𝐷𝛾−𝛽𝑝𝐷𝛾

2
, we can extract the pure neutron survival 

data as 𝑆𝑛 = 𝑆/𝑆𝛾 , this is illustrated in Table 1. 

 

𝐷 (Gy) 𝑆 𝐷𝛾(Gy) 𝑆𝛾 𝐷𝑛(Gy) 𝑆𝑛 

3 0.2±0.05 0.986 0.771±0.024 2.013 0.259±0.073 

4.1 0.08±0.04 1.349 0.700±0.030 2.751 0.114±0.062 

8.5 0.0014±0.002 2.796 0.472±0.043 5.704 0.003±0.004 
Table 1. Factorization of the survival fraction S of the in-vivo results of Coderre et al (1993) in the 𝑆𝛾 

and 𝑆𝑛 factors corresponding respectively to the effect of the gamma and neutron dose components 𝐷𝛾 

and 𝐷𝑛. 



 

 

Then, fitting the data of 𝑆𝑛 as a function of 𝐷𝑛 by the expression 𝑆𝑛 = 𝑒−𝛼𝑛𝐷𝑛 , 

illustrated if Figure 1, we obtain the result: 𝛼𝑛 = 0.876 ± 0.083 Gy
-1

. Therefore, using 

Eq.(10), we find that 𝑊𝑛 = 3.37 ± 0.71.  
 

 

 

 
 

 

Figure 1. Plot of the pure neutron 

survival from the measurements 

of Coderre et al. (1993) as a 

function of the neutron dose and 

the fit of the function 𝑒−𝛼𝑛𝐷𝑛 to 

these data. 

 

 

 

 

 

Obviously, a linear-quadratic term as used in the original paper of Coderre et al 

(1993) would provide a better fit, but as they said, they did it for a mathematical (an 

additional fit parameter) rather than for a physical reason. However, for consistency in 

our model, where the quadratic terms are neglected for the high LET components, we 

have restricted to the abovementioned one-paramter fit, which avoids dealing with a 

parameter with high uncertainty that can have a great impact on the survival for greater 

doses than dose for which data are available.  

3.1.2. Normal tissue values of 𝑊𝑓 and 𝑊𝑡 

The present formalism is not only useful in these cases where we have 

information of the survival curve, but also when there is limited data as the RBE 

calculated at one point. This is the case of the 𝑤𝑡 = 𝑤𝑡 ≡ 𝑤𝑛 factor reported for healthy 

tissue by Morris et al. (1994). In this work, the myelopathy effects on the spinal cord of 

rats (end point 50% incidence) under irradiation with a mixed neutron and photon beam 

was studied. In the absence of 
10

B, they obtained that the same biological effect was 

achieved by 13.58 ± 0.38 Gy of their beam than with 𝐷𝑝 =19.0 ± 0.2 Gy of X-rays, 

taken from Wong et al. (1993). From this observation, a mixed RBE equal to 1.4 was 

derived.  As the dose delivered to the blood in the vasculature of the spinal cord verified 

that 𝐷𝑡 + 𝐷𝑓 ≈ 𝐷𝛾(22), it can be calculated that 𝐷𝑛 = 𝐷𝑡 + 𝐷𝑓 = 6.79 ± 0.19 Gy. We 

apply our formalism for evaluating the 𝑊𝑛 from Eq. (10), which in this particular case 

can be written as: 

𝑊𝑛𝐷𝑛 + (𝐷𝛾 +
𝐷𝛾
2

𝛼𝑝/𝛽𝑝
) = 𝐷𝑝 +

𝐷𝑝
2

𝛼𝑝/𝛽𝑝
 

 

from which we find 𝑊𝑛 = 17.3 ± 1.0.  For this calculation we have used the value of 

𝛼𝑝/𝛽𝑝  = 3  Gy,  used in the same paper, from Wong et al. (1993). 

The resulting neutron weighting factor for neutrons and normal tissue is larger 

than for tumor. However, the photon iso-effective dose in normal tissue will remain 

much lower, as it will be seen in Section 3.5. 



In this section we have made the implicit assumption that the concept of photon 

isoeffective dose, originally conceived for describing tumor cell killing, can be also 

applied to the estimation, for normal tissue complications, of the photon dose that 

produce the same effect than the BNCT treatment. This is only valid if all the 

parameters used in Eqs. (12-15) (i.e. the dose-independent weighting factors or those 

parameters used to derive them and the alpha/beta ratio for the reference radiation) 

corresponds to the same biological end-point. The linear quadratic model has been 

extensively used for the description of the radiation effects at organs at risk different 

than cell killing (Emami 2013), and alpha/beta ratios are reported for various effects in 

different tissues and organs (Thames et al. 1990). The rationale beyond our assumption 

lies on the fact that the normal tissue complication probability (NTCP) of critical organs 

is considered as a function of the relative effectiveness of the treatment, defined as 

𝐷𝛤 = 𝐷 (1 +
𝑑

𝛼/𝛽
) =  

1

𝛼
(𝛼𝑛𝑑 + 𝛽𝑛𝑑2),         

 

The exponential of  − 𝛼𝐷𝛤, which appears in the exptression for the NTCP, is the 

reminiscent of the LQ model for cellular survival (Kehwar 2005). So the hypothesis 

underlining our approach for normal tissues is that a similar dependence can be assumed 

for the BNCT treatment, which is fact was assumed by Morris et al. (1994) but with the 

fixed RBE classical approach. 

3.1.3.Tumor value of 𝑊𝐵 for BPA 

The value commonly used in clinical trials (Joensuu et al. 2003) of 𝑤𝐵 = 3.8  
for tumor and the BPA compound was obtained by Coderre et al. (1993), where the 

value of 𝛼𝐵 = 2.32 ± 0.09 Gy
-1 

was found, after removing from the survival curve the 

effect of the neutron beam alone. Using the value of  𝛼𝑝 = 0.26 ± 0.03 Gy
-1  

from 

Table 1 (for the same model) and Eq.(6) we find 𝑊𝐵 = 4.35 ±0.67. 

3.1.4. Normal tissue value of 𝑊𝐵 for BPA 

The commonly accepted value for normal tissue of 𝑤𝐵 for the compound BPA is 1.3 

(Coderre and Morris 1999), which was measured in the experiment of Morris et al. 

(1994). In this work, the same biological end point mentioned in section 3.2 was found 

for a total dose of 13.81 ± 0.49 Gy, of which the boron component was 𝐷𝐵 = 4.93 ± 

0.65 Gy. The partial components for the pure neutron and gamma dose were in this case 

𝐷𝑛 = 𝐷𝛾 = 4.44 ± 0.22 Gy. With the present formalism, using Eq.(11a) and assuming 

𝑊𝑓 = 𝑊𝑡 = 17.3 ± 1.0, 𝛼𝑝/𝛽𝑝  = 3 Gy, we find that  𝑊𝐵 = 10.45 ± 3.46. 

3.1.5. Summary and discussion 

The estimation of the new weighting factors performed with some existing data 

are displayed in Table 2. It is important to remark the high uncertainty, due to the own 

uncertainties of the input data. Therefore, any conclusion from their application should 

be taken with caution, and new measurements with smaller uncertainties are desirable. 

These new measurements can be analysed with the present formalism in order to avoid 

errors from the subtraction of the gamma dose that is always present in neutron 

irradiation. With this aim we have started a campaign of radiobiology measurements for 

different cell lines at a pure cold neutron beam at ILL, with the aim of obtaining 𝑊𝑡 and 

𝑊𝐵 values accurately and studying their tissue dependence. These values are key as they 



are universal (due to thermal neutrons), while 𝑊𝑓 could depend on the particular 

spectrum and should be measured at each BNCT facility. 

 

Factor Tissue Value 

𝑊𝑡  Brain tumor 3.37 ± 0.71 

Normal brain 17.3 ± 1.0 

𝑊𝑓  Brain tumor 3.37 ± 0.71 

Normal brain 17.3 ± 1.0 

𝑊𝐵  Brain tumor 4.35 ± 0.67 

Normal brain 10.45 ± 3.46 
 
Table 2. Estimation of the new weighting factors from current data, as described in the text. 

 

 

3.2. Application for a brain tumor clinical trial. 

In order to illustrate the application of the present formalism, we will consider the 

average dose components applied in a BNCT clinical trial of brain tumours and we will 

compare with a conventional radiotherapy treatment by means of the photon 

isoeffective dose. A typical fractionated conventional treatment with photons delivers a 

total dose of 60 Gy in 30 sessions of 2 Gy. We will assume for the normal brain, 𝛼𝑝/𝛽𝑝 

= 3 Gy (Wong et al. 1993). As an example, we consider a BNCT brain tumor clinical 

trial of 18 patients (Joensuu et al. 2003), where the different dose components are 

reported. The average values from all cases of the normal brain maximum (peak) 

physical doses (in Gy) are: 𝐷𝐵 = 4.46,𝐷𝛾 = 3.86, 𝐷𝑡 = 0.61, and 𝐷𝑓 = 0.17 (Joensuu 

et al. 2003). With the classical procedure, the use of Eq. (1) and the weighting factors: 

𝑤𝑛 = 𝑤𝑓 = 𝑤𝑡 = 3.2 and 𝑤𝐵 = 3.8 tumor/1.3 normal tissue, an equivalent photon dose 

of 𝐷𝑤 = 12.15 Gy-Eq is obtained. This value does not exceed the maximal tolerated 

dose for targets 31–40 mm in diameter of 15 Gy in single-session radiosurgery 

(Lawrence et al. 2010). 

We will now apply the new weighting factors, calculated in the previous 

sections, for this tissue:  𝑊𝑓 = 𝑊𝑡 = 17.3 and 𝑊𝐵 = 10.45 (see Table 3). With these 

data we estimate the single-fraction photon iso-effective dose using Eqs. (9,11) as 

𝐷𝑝 = 12.95 Gy (IsoE). So, we found that, even with our larger values of the weighting 

factors for normal tissue, the dose delivered in BNCT to normal brain would remain 

below the limit, being not far from the weighted dose obtained with the previous 

formalism, 𝐷𝑤 = 12.2 Gy-Eq,  

To illustrate another goal of this work, we can also evaluate the iso-effective 

dose of a fractionated conventional radiation treatment using Eq.(14). This gives a value 

of 𝐷𝑝 = 41.36 Gy (IsoE), which corresponds to a photon treatment of about 21 sessions 

of 2 Gy, a value well below the usual protocols.  

Although the physical dose components at the tumor are not reported in this 

reference (Joensuu et al. 2003), we can also perform an approximate estimation of the 

photon iso-effective dose delivered to the tumor. With the assumption that the 

difference with respect to the maximum dose in normal tissue is due to the boron 

component, we can grossly estimate the physical doses at the tumor as 𝐷𝐵 = 10.6, 



𝐷𝛾 = 3.86, 𝐷𝑡 = 0.61, and 𝐷𝑓 = 0.17, which gives a total tumor physical dose of 15.2 

Gy. Then, the prediction of the current formalism (in this case using 𝑤𝐵 = 3.8) gives a 

weighted dose of 𝐷𝑤 = 46.6 Gy-Eq.  With the present approach, using 𝑊𝑓 = 𝑊𝑡 =

3.37, 𝑊𝐵 = 4.35 and the values 𝛼𝑝 =  0.26 Gy
−1, 𝛽𝑝 = 0.003 Gy

−2 (Coderre et al. 

1993), we estimate a photon iso-effective dose of  𝐷𝑝 = 36.98 Gy (IsoE), for a single 

irradiation and of 𝐷𝑝 = 51.65 (IsoE) for a fractionated treatment, which corresponds to 

roughly 26 sessions. The photon iso-effective dose estimated with the present formalism 

is substantially lower than the RBE-weighted dose. This is in agreement with previous 

results of González and Santa Cruz (2012) for brain and melanoma tumors, González et 

al. (2017) and Sato et al. (2018) for head and neck cancers.  

The comparison to fractionated photon radiotherapy shows the higher selectivity 

of BNCT with respect to conventional radiotherapy: while the tumor receives a 

treatment equivalent to 26 sessions of radiotherapy, the effect on normal brain is similar 

to the one produced by about only 21 sessions.  These results are summarized in Table 

3. However, it must be taken into account that the inhomogeneities in the BNCT 

procedure, mainly due to the boron distribution, are much larger then the dose 

distribution of conventional radiotherapy. Here, as an example for illustrating the 

procedure, only the mean tumor dose has been considered for the comparison, while the 

range of values should be considered also when comparing to a conventional procedure. 

This example of application is illustrated in an excel file associated to this paper 

as supplementary material. Although the 𝑊𝛾 factor is assumed to be one in this 

example, the excel file has the possibility of inserting a different value (a dose reduction 

factor, if applicable). 

 

Table 3: Results of the described example of a BNCT treatment using data from Joensuu et al. (2003) 

with both the current and the new formalism. The photon isoeffective dose 𝐷𝑝 has been obtained from Eq. 

(13), for the single photon equivalent irradiation and from Eq. (14) for the equivalent fractionated 

treatment, in both cases with 𝐷𝑊
∗  given by Eq. (11). They are compared to the previously used weighted 

dose 𝐷𝑊 obtained from Eq. (1). 

 

 

4. Conclusions 

The radiobiology of BNCT is currently facing a renaissance, in which the concept of 

weighted dose is being replaced by the photon isoeffective dose. In order to calculate 

this quantity from radiobiology data, a formalism based on the LQ model and dose-

independent weighting factors has been proposed. This also allows comparing a BNCT 

Tissue  Dose prescribed  

with photons (Gy) 

Conventional weighted 

dose for the BNCT 

treatment (𝐷𝑊) (Gy-

Eq) 

New method: Iso-effective dose 

for the BNCT treatment (𝐷𝑝) 

(Gy-IsoE) 

Normal brain 

(𝛼𝑝/𝛽𝑝 = 3) 
Fractionated: 60  

(30 sessions of 2 Gy) 

 41.36 

(21 sessions of 2 Gy) 

Single-fraction:  12.2 12.96 

Brain tumor 

 

(𝛼𝑝/𝛽𝑝 = 86.6) 

 

Fractionated: 60  

(30 sessions of 2 Gy) 

 51.58  

(26 sessions of 2 Gy) 

Single-fraction:  46.6 36.98 



treatment to conventional fractionated photon therapy. The newly-defined factors can be 

estimated from the current weighting factors, provided that the biological effect of the 

gamma dose was subtracted using the LQ model. As this is not the case for most of the 

data analysed, we propose that new radiobiology experiments should be carried out, and 

we suggest tabulating the new 𝑊𝑖 factors which are independent of the dose or survival 

fraction. 

In spite of the drawbacks of the currently used formalism, the discrepancies 

between the two methods for the clinical trials performed with reactor-based neutron 

sources are small and the quality of the previous treatments has been confirmed by the 

present calculation. However, this might not be the case for treatments in new neutron 

facilities (e.g. accelerator-based sources for BNCT), where the relative dose 

contributions may change. In any case, improvements in the determination of the 

photon isoeffective dose may lead to a better therapeutic outcome.  It is important to 

keep in mind that there are other sources of uncertainty in BNCT treatments which are 

not the scope of this work, especially the boron distribution both in tumor and in the 

different healthy tissues under the neutron field, which are difficult to quantify and for 

which important research efforts are made for reducing them. 

The main effects that could play a role and have been neglected in this 

formalism are the repair mechanism and the synergies between different components, 

that are not described. They are included in the formalism of the photon isoeffective 

dose of González and Santa Cruz (2012), summarized in Eq. (4). For obtaining the 

parameters involved in this equation, we suggest that experimentation at different set 

ups where the relative dose contribution differ significantly should be performed, in 

order to avoid quasilinear dependence uncertainties. For example, for studying 

synergetic effects irradiation with pure neutrons (or with the higher LET particles 

produced by them), with photons and with both radiations simultaneuosly are required, 

as done in the experiments of Phoenix et al. (2013). However the data available is still 

not conclusive (Phoenix et al. 2013) and more experimentation would be useful for 

quantifying this effect. Therefore we believe that our formalism represents an 

intermediate step towards the formalism of Gonzalez and Santa Cruz (2012), although 

the application of the latter that should be the future goal of BNCT radiobiology and 

that precise experimentation for obtaining the required data with accuracy should be 

performed. For example, a pure neutron beam as the cold neutron line PF1b at Institute 

Laue-Langevin previously mentioned where the gamma contamination is negligible 

could be combined with different gamma-generating media (hydrogen containing) for 

irradiating different cell lines. 

Summarizing, in this model a simple approach to the photon isoeffective dose of 

a BNCT treatment is proposed.  This can be considered as a first order approximation to 

the more accurate formalism of González and Santa Cruz (2012), keeping the simplicity 

of former approaches, but incorporating the LQ model just for the photon dose 

component in BNCT and for the reference photon irradiation, when using Eqs. (9,11) 

for comparison with a single photon irradiation and Eq. (14) for a fractionated 

treatment. The model proposed in the present study utilizes more accurately the 

available radiobiological knowledge, however its predictions should be taken with 

caution until enough data is known to reduce the uncertainties in the response for 

different tissues.  
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Supplementary Material: An excel file, used for the calculations of the photon isoeffective dose 

in Section 3.2 is available as Supplementary Material for this paper. In this file the user 

may introduce his/her own data (dose components, weighting factors and α/β ratios), and 

both the single-fraction and 2 Gy-fraction photon iso-effective dose are calculated. There 

are two sheets for different tissues: the first one for the normal tissue of the example and 

the second one for the tumor. 
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