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Abstract 28 

This work focuses on the analysis of the seasonal cycle of temperature and relative humidity (RH) profiles and 29 

integrated water vapor (IWV) obtained from microwave radiometer (MWR) measurements over the mid-30 

latitude city of Granada, southern Spain. For completeness the study, the maximum atmospheric boundary layer 31 

height (ABLHmax) is also included. To this end, we have firstly characterized the HATPRO-RPG MWR errors 32 

using 55 co-located radiosondes (RS) by means of the mean-bias (𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ ) profile and the standard deviation 33 

(𝑆𝐷𝑏𝑖𝑎𝑠) profile classified under all-weather conditions and cloud-free conditions. 34 

This characterization pointed out that temperature from HATPRO-MWR presents a very low 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  respects RS 35 

mostly below 2.0 km agl, ranging from positive to negative values under all-weather conditions (from 1.7 to -36 

0.4 K with 𝑆𝐷𝑏𝑖𝑎𝑠 up to 3.0 K). Under cloud-free conditions, the bias was very similar to that found under all-37 

weather conditions (1.8 to -0.4 K) but with smaller 𝑆𝐷𝑏𝑖𝑎𝑠 (up to 1.1 K). The same behavior is also seen in this 38 

lower part (ground to 2.0 km agl) for RH. Under all-weather conditions, the mean RH bias ranged from 3.0 to 39 

-4.0 % with 𝑆𝐷𝑏𝑖𝑎𝑠 between 10 to 16.3 % while under cloud-free conditions the bias ranged from 2.0 to -0.4 % 40 

with 𝑆𝐷𝑏𝑖𝑎𝑠 from 0.5 to 13.3 %. Above 2.0 km agl, the 𝑆𝐷𝑏𝑖𝑎𝑠 error increases considerably up to 4 km agl (up 41 

to -20 %), and then decreases slightly above 7.0 km agl (up to -5 %). In addition, IWV values from MWR were 42 

also compared with the values obtained from the integration of RS profiles, showing a better linear fit under 43 

cloud-free conditions (R2= 0.96) than under all-weather conditions (R2= 0.82). The mean bias under cloud-free 44 

conditions was -0.80 kg/m2 while for all-weather conditions it was -1.25 kg/m2. Thus, the 𝑆𝐷𝑏𝑖𝑎𝑠for all the 45 

statistics (temperature, RH and IWV) of the comparison between MWR and RS presented higher values for all-46 
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weather conditions than for cloud-free conditions ones. It points out that the presence of clouds is a key factor 47 

to take into account when MWR products are used.  48 

The second part of this work is devoted to a seasonal variability analysis over five years, leading us to 49 

characterize thermodynamically the troposphere over our site. This city atmosphere presents a clear seasonal 50 

cycle where temperature, ABLHmax and IWV increase from winter to summer and decrease in autumn, 51 

meanwhile RH decreases along the warmer seasons. This city presents cold winters (mean daily maximum 52 

temperature: 10.6 ± 1.1 °C) and dry/hot summers (mean daily maximum temperature of 28.8 ± 0.9 °C and mean 53 

daily maximum of surface RH up to 55.0± 6.0 %) at surface (680 m asl). Moreover, considering temporal trends, 54 

our study pointed out that only temperature and RH showed a linear increase in winters with a mean-rate of (0.5 55 

± 0.1) °C/year and (3.4 ± 1.7) %/year, respectively, from ground to 2.0 km agl, meanwhile IWV presented a 56 

linear increase of 1.0 kg·m-2 /year in winters, 0.78 kg·m-2 /year in summers and a linear decrease in autumns of 57 

-0.75 kg·m-2 /year. 58 

KEYWORDS: Microwave radiometry, passive remote sensing, thermodynamic characterization of atmosphere, 59 

atmospheric boundary layer. 60 

 61 

1 Introduction  62 

Tropospheric temperature and water vapor content are two key variables for understanding the thermodynamic 63 

processes in the atmosphere. Firstly, the knowledge of the thermal structure in the lower part of the atmosphere 64 

is a key input for atmospheric boundary layer (ABL) studies (Crook, 1996; Moreira et al., 2018), for turbulence 65 

analysis (O’Connor et al.,2010; Vogelmann et al., 2012), regional climatology and mesoscale numerical models 66 

applied on weather forecasting (Stevens and Bony, 2013). Secondly, the water vapor content is directly related 67 

to the hydrological cycle, influencing the clouds formation and, therefore, the planetary albedo (Hoff and 68 

Hardesty, 2012), and modifying the Earth energy balance at surface. Moreover, the water vapor contribution to 69 

the natural greenhouse effect is up to 60 % under clear sky conditions, absorbing a significant part of the 70 

outgoing infrared radiation (Kiehl and Trenberth, 1997), but also affecting the atmospheric chemical 71 

composition and the atmospheric aerosol particles size (Boucher et al., 2013). 72 

 73 

Radiosondes (RS) provide in-situ temperature and relative humidity (RH) measurements with high accuracy, 74 

precision and vertical resolution. However, their applicability is constrained by several issues: (i) the low 75 

frequency of launches; (ii) the air parcel probed might change because of the horizontal wind drift and variable 76 

ascent rate during the measurement; (iii) the equipment and man-power costs; and (iv) limitations of 77 

measurements under low relative humidity conditions (Vaughan et al., 1988). As an alternative, Raman lidar 78 

(RL) systems, based on an active remote technique with high spatial and temporal resolution, can overcome 79 

some of the RS drawbacks for measuring water vapor profiles. One of the disadvantages of Raman lidar systems 80 

compared to RS is that weather conditions affect the measurements. Besides, these systems need to perform 81 

regular calibrations of the water vapor Raman channel by using co-located RS or MWR (Mattis et al., 2002; 82 
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Guerrero-Rascado et al., 2008a; Navas-Guzmán et al., 2014, Bedoya-Velásquez, et al., 2018). In addition, due 83 

to the low signal-to-noise-ratio inherent to the RL technique, it is mostly used during night-time. Other methods 84 

to retrieve water vapour profiles are based on the synergy between in-situ aircraft and satellite measurements 85 

(Stankov, 1998; Löhnert et al., 2004; Delanoe and Hogan, 2008). 86 

 87 

Another approach for obtaining these atmospheric profiles is through passive remote sensing techniques. In this 88 

sense, the MWR is an instrument that measures the thermal radiation emitted by the atmosphere within 20-200 89 

GHz, operating in continuous mode (24/7) (Rose et al., 2005). Over other techniques, it can provide atmospheric 90 

profiles with a high temporal resolution and a reasonable vertical resolution under almost all-weather conditions 91 

(Navas-Guzmán et al., 2016). In addition to temperature and RH profiles, the MWR also provides integrated 92 

quantities such as integrated water vapor (IWV) and liquid water path (LWP) with high accuracy (Crewell and 93 

Löhnert, 2003; Löhnert and Crewell, 2003).  94 

 95 

This work presents an analysis of the MWR performance in terms of accuracy and precision by means of a 96 

comparison with RS measurements. The mean-bias (𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ ) and the standard deviation (𝑆𝐷𝑏𝑖𝑎𝑠) between MWR 97 

and co-located RS have been calculated for the physical temperature and RH profiles, and for IWV. The study 98 

also includes the investigation of the MWR performances under all-weather conditions versus cloud-free 99 

conditions and daytime versus night-time measurements. After the characterization of the MWR performances, 100 

we focused on a tropospheric analysis of the seasonal variability of temperature and RH profiles, IWV and the 101 

atmospheric boundary layer height (ABLH) in the city of Granada, a Southern mid-latitude region in Spain, 102 

over a period of five years. 103 

 104 

The structure of the paper is described as follows. The experimental site and instrumentation is presented in 105 

Section 2. Section 3 describes the methodology used to assess the MWR performance and to derive vertically-106 

resolved information on atmospheric thermodynamic properties and ABLH. In addition, it describes the data 107 

pre-processing applied in the statistical seasonal study. Section 4 presents the results and discussion of the 108 

comparison between MWR and RS measurements and the 5-year statistical analysis of thermodynamics profiles 109 

over Granada. Finally, the conclusions are summarized in Section 5. 110 

 111 

2 Experimental site and instrumentation 112 

2.1 Experimental site 113 

The data used in this work were collected at the urban station located in the IISTA-CEAMA building (Granada, 114 

Spain, 37.16° N, 3.61° W, 680 m asl). The city is located in a natural basin surrounded by mountains with 115 

elevations between 1000 and 3398 m above sea level (asl). Near continental conditions prevailing at this site 116 

are responsible for large seasonal temperature differences, providing cool winters and hot summers. The diurnal 117 

thermal oscillation at surface is quite high throughout the year, often reaching up to 20 ºC, and relative humidity 118 

is below 40% most of the time. The region is mostly affected in summer by mineral dust particles transported 119 



5 
 

from the North of Africa (Lyamani et al., 2006a, 2006b, 2010, 2012; Guerrero-Rascado et al., 2008b, 2009, 120 

2011; Córdoba-Jabonero et al., 2011; Titos et al., 2012; Navas-Guzmán et al., 2013; Valenzuela et al., 2014; 121 

Granados-Muñoz et al., 2016; Benavent-Oltra et al., 2017). Other aerosol sources are mainly produced by 122 

traffic, domestic-heating (wintertime) and biomass burning transported from North America, North Africa and 123 

the Iberian Peninsula itself (Alados-Arboledas et al., 2011; Navas-Guzmán et al., 2013; Ortiz-Amezcua et al., 124 

2014, 2017; Titos et al., 2017). 125 

2.2 Instrumentation  126 

The main instrument used in this work is the ground-based MWR (RPG-HATPRO G2, Radiometer physics 127 

GmbH) (Rose et al., 2005). This is a passive remote sensor, which measures the thermal emission of radiation 128 

from the atmosphere in the microwave region. The MWR has a radiometric resolution between 0.3 and 0.4 rms 129 

at 1.0-s integration time and a high temporal resolution for vertical profiles, retrieving roughly one profile each 130 

two minutes. The MWR has two bands with seven channels each one, the K-band (22 - 31 GHz) provides 131 

information about vertical humidity, making also possible to get information of integrated column products 132 

such as IWV and LWP. The V-band (51 - 58 GHz) contains information about vertical temperature profile 133 

(Löhnert and Mainer, 2012; Navas-Guzmán et al., 2016), associated to the thermal emission from molecular 134 

oxygen in the atmosphere. Water vapor observations are performed at zenith position, while temperature 135 

information can be retrieved assuming horizontal homogeneity and performing vertical scanning observations 136 

(Löhnert et al., 2009). Vertical profiles of temperature and RH are composed by 39 bins, where 25 are below 2 137 

km of altitude (roughly inside de ABL) with a variable resolution from 10 to 200 m. The vertical resolution in 138 

the free troposphere (2 to 10 km) varies from 200 m to 2000 m (the last 14 bins). An absolute calibration is 139 

recommended to be performed at least every 6 months, by using cold liquid-nitrogen and hot loads as reference 140 

(Turner et al. 2007, Maschwitz et al., 2013). The accuracy of the temperature profile reported by the 141 

manufacturer is lower than 0.75 K RMSE in the range 1.2 - 4.0 km and larger than 1.0 K RMSE from 4 to 10 142 

km. However, there is no reported accuracy for RH profile, because RH profiles are retrieved from the 143 

combination of temperature and absolute humidity profiles. The absolute humidity profiles have an accuracy 144 

up to ± 0.02 g/m3 RMS from 0 to 1 km, up to ± 0.04 g/m3 RMS above 2 km), and within the boundary layer up 145 

to ± 0.03 g/m3 RMS (i.e. 0-2000 m). MWRs commonly use temperature inversion methods based on neural 146 

networks or linear regressions, which requires a long database taken close to the instrument for training them 147 

(Cimini, et al., 2015), normally, many RSs are used for this aim, becoming it their principal disadvantage. Also, 148 

other inversion algorithms based on Optimal Estimation Method (Rodgers, 2000) have been used in the last 149 

years to overcome this problem (Bernet et al., 2017; Navas-Guzmán et al., 2014b, 2017). In this work, the 150 

manufacturer has performed the training of the MWR inversion algorithm by using neural networks. 151 

 152 

RSs are launched from IISTA-CEAMA mainly during field campaigns or specifically for RL water vapor 153 

channel calibration (Guerrero- Rascado et al., 2008a; Navas-Guzmán et al., 2014a; Granados-Muñoz et al., 154 

2015; Bedoya-Velásquez et al., 2018). The system used for RS launches is a GRAW DFM-06/09 (GRAW 155 
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Radiosondes, Germany), which provides profiles of temperature (resolution 0.01°K, accuracy 0.2 °K), pressure 156 

(resolution 0.1 hPa, accuracy 0.5 hPa) and RH (resolution 1%, accuracy 2%), with vertical resolution depending 157 

on the RS ascension velocity, usually around 5 m/s. Data acquisition done by a GRAWmet software and ground 158 

station are used. Up to 55 RSs were launched, mainly during summertime, during the five-year period analyzed 159 

here (2012 - 2016).  160 

 161 

Additionally, a co-located Sun/sky photometer (Cimel Electronique; CE-318N) has been used in this study. 162 

This instrument belongs to AERONET (Holben et al., 1998), which processes the spectral Sun and sky 163 

measurements from the photometer and provides aerosol optical and microphysical properties integrated over 164 

the atmospheric column. Aerosol optical depth (𝐴𝑂𝐷𝜆) at 380, 440, 500, 675, 870 and 1020 nm are among the 165 

AERONET products (https://aeronet.gsfc.nasa.gov). The uncertainty in the retrieved 𝐴𝑂𝐷𝜆, associated with 166 

primary calibration, is 0.01 for visible and infrared wavelengths, while the ultraviolet region has an uncertainty 167 

of 0.02 (Holben et al., 1998). In this work, water vapor product from AERONET (level 1.5; version 2) was used 168 

as IWVaeronet. 169 

 170 

Finally, in order to discern clear and cloudy conditions, we have used a cloud cover database obtained from the 171 

co-located sky cameras installed on the IISTA-CEAMA roof-top. Cloud cover information from January 2012 172 

to January 2015 was retrieved from the All Sky Imager shown in Cazorla et al. (2008) and Román et al. (2012); 173 

while from February 2015 to December 2016 cloud cover was obtained from the SONA sky camera presented 174 

in Cazorla et al. (2015) and Román et al. (2017b). A full description of both cameras and methods for each one 175 

can be found in Cazorla et al. (2008) and Román et al. (2017a).   176 

 177 

3 Methodology  178 

3.1 Assessment of MWR versus RS 179 

In order to characterize the accuracy and precision of the physical temperature and RH profiles from the MWR, 180 

a statistical analysis based on the comparison with RS has been done. During this 5-year period, simultaneous 181 

measurements of RS and MWR were available, with a total of 55 RS launches of which 23 RS were launched 182 

under cloud-free conditions. Thus, the comparison was done by means of the 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  (Eq. 1), which was 183 

interpreted as the accuracy of the MWR measurements, 184 

𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ (𝑧) =
1

𝑁
[∑ (𝑀𝑊𝑅𝑖(𝑧) − 𝑅𝑆𝑖(𝑧)𝑁

𝑖=1 )]                     (1) 185 

and the standard deviation (SD) (Eq. 2), that provided information about the precision of the MWR,  186 

𝑆𝐷𝑏𝑖𝑎𝑠(𝑧) = √
∑ (𝑏𝑖𝑎𝑠𝑖 (𝑧)−𝑏𝑖𝑎𝑠 (𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2𝑁

𝑖=1

𝑁−1
                              (2)                                                                                       187 
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Where 𝑧 is the altitude and N is the total data-samples. In order to perform the comparison between RS and 188 

MWR profiles, all RS measurements were degraded to the MWR spatial resolution, which has a lower vertical 189 

resolution, and the MWR profiles were 30 min-averaged after the RS launch time. 190 

For analyzing the error in the IWV product of MWR, considering RS as reference, the relative mean-bias error 191 

(MBE) calculation was performed, as follows: 192 

𝑀𝐵𝐸 =
1

𝑁
∑

𝐼𝑊𝑉𝑀𝑊𝑅𝑖
−𝐼𝑊𝑉𝑅𝑆𝑖

𝐼𝑊𝑉𝑅𝑆𝑖

𝑁
𝑖=1                                       (3) 193 

The criteria defined for classifying cloud-free conditions days was based on two flags. Firstly, we used the 194 

cloud cover from sky camera database assuming cloud cover ≤ 1.0 oktas as cloud-free conditions. Secondly, 195 

we defined a threshold by the observation of the LWP and by checking the cloud base height from MWR, 196 

finding a representative threshold of LWP for cloud-free days ≤ 40𝑔/𝑚2. In addition, we used the MWR rain 197 

flag provided by the manufacturer to exclude rainy days from database. 198 

The MWR performance for IWV was also characterized by means of the mean bias error and also calculating 199 

the correlation between the IWV from MWR and the integration of the water vapor mixing ratio (r (z)) derived 200 

by RS from 0 to 10 km (without degradation of spatial resolution of the RS). This evaluation was also performed 201 

for cloud-free conditions and all-weather conditions classification. 202 

A classification was performed only for cloud-free conditions between daytime and night-time, considering 203 

daytime the measures which were obtained under sunlight presence and night-time measures under absence of 204 

sunlight, according to the seasons, resulting in 11 comparison cases during daytime and 12 comparison cases 205 

during night-time.  206 

 207 

3.2 Calculation of ABLH by using microwave radiometer 208 

The algorithm used for the ABLH determination using MWR measurements is described in detail in Moreira 209 

et al. (2018). This algorithm combines two methodologies: the parcel method (PM) and the temperature gradient 210 

method (TGM), which are based on the vertical temperature (T(z)) and potential temperature profiles (θ(z)) 211 

obtained from MWR by using the definition proposed in Stull, 2011. 212 

Thus, the θ(z) was analyzed in order to classify the atmospheric conditions as stable or unstable. This analysis 213 

was performed by the comparison of the surface potential temperature (θ(z0)) with all points in the θ(z) profile 214 

below 5 km. The situation was classified as stable if all θ(z) data points had values larger than θ(z0) and thus, 215 

TGM is applied. Otherwise, the condition was classified as unstable and, therefore, PM is used. 216 

The PM assumes the ABLH as the height z where the θ(z) is equal to surface potential θ(z0), because z is the 217 

altitude where an air parcel with ambient temperature (T) can rise adiabatically from the ground by convection 218 
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(Holzworth, 1964). Such method is applicable only under unstable situations, i.e. inside a convective boundary 219 

layer. 220 

The TGM (Stull, 1988) detects the ABLH in stable situations based on two definitions. Firstly, the surface-221 

based temperature inversion, meaning that TGM detects the first height z where T decrease as a function of 222 

altitude. Secondly, the top of the stable boundary layer, meaning that TGM finds the first height where dθ
dz⁄ =223 

0. 224 

The first step is to detect the altitude z where the surface-base temperature inversion is situated (from T profile). 225 

Then, from z is found the top of stable boundary layer in the θ(z). If surface-base temperature inversion or top 226 

of stable boundary layer is not found, the ABLH is classified as “not identified”. 227 

3.3 Statistical seasonal study 228 

The total of measures performed are presented in table 1, reaching up around one of million profiles measured 229 

with MWR over the whole five-years period, separating the calibration days and periods with data absence 230 

mainly associated to maintenance of the instrument. For this seasonal statistical study, we defined the seasons 231 

by months as follows: winter (December, January and February), spring (March, April and May), summer (June, 232 

July and August) and autumn (September, October and November). Here, we performed an hourly-average for 233 

each season of every year evaluated in order to have mean-seasonal-behavior from 0 to 24 hours to determine 234 

the seasonal diurnal cycle (vertical behavior for temperature and RH, and columnar integrated behavior for 235 

IWV), adding the results of the mean ABLHmax. Then, we divided the atmosphere in nine probed volumes: H1 236 

(bins: 1-14, from 0 to 0.55 km agl), H2 (bins: 15-19, from 0.6 to 1.0 km agl), H3 (bins: 20-22, from 1.2 to 1.5 237 

km agl), H4 (bins: 23-25, from 1.6 to 2.0 km agl), H5 (bins: 26-29, from 2.2 to 3.1 km agl), H6 (bins: 30-32, 238 

from 3.5 to 4.4 km agl), H7 (bins: 33-35, from 5.0 to 6.2 km agl), H8 (bins: 36-37, from 7.0 to 8.0 km agl),H9 239 

(bins: 38-39, from 9.0 to 10.0 km agl), in order to look for the seasonal variability of the median of the 240 

temperature and RH within the different tropospheric regions. In addition, we also used the median-seasonal 241 

trend of PW along the five years took from NASA AERONET level 1.5 level data for the Granada station to 242 

support some of the results obtained.  243 

4 Results and discussion 244 

 245 
4.1Characterization of MWR performances versus RS 246 

Figure 1 presents the (𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  and 𝑆𝐷𝑏𝑖𝑎𝑠) between MWR radiometer and RS for temperature and relative humidity 247 

under clear and all-weather conditions. These two statistic parameters are interpreted as the accuracy and the 248 

precision, respectively, of the MWR measurements. Figure 1a shows high variability of the temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  249 

for all-weather conditions mostly in the first hundreds of meters, passing from positive to negative values. The 250 

larger deviations observed close to ground have been observed in similar comparisons for previous studies and 251 

could be due to the larger uncertainties of the radiative transfer models for the most transparent MWR channels, 252 

which affect more the temperature retrievals in the lowest layers (Navas-Guzmán et al. 2016). In general, below 253 
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2.0 km agl, the variability shows low-temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  values from 1.7 to -0.4 K. The variability starts to 254 

increase from negative to positive within 2.0 to 4.0 km agl (up to 1.0 K). This 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  increases up to 1.8 K above 255 

4.0 km agl, indicating the losing of accuracy with altitude always with positive values. The 𝑆𝐷𝑏𝑖𝑎𝑠 of the 256 

temperature deviation profiles in all-weather conditions shows values lower than 3.0 K below 2.0 km agl, 257 

increasing up to 3.2 K from 2.0 to 4.0 km agl, and keeping constant close to 3.0 K from 4 to 7 km agl. The 258 

cloud-free conditions analysis shows the same variability in the mean bias within the first hundreds of meters 259 

than the one observed for all-weather conditions, after this region the 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  changed from positive to negative 260 

values, oscillating from 1.8 to -0.4 K (below 2.0 km agl). Then, between 2.0 to 4.0 km agl, the bias pass from 261 

negative to positive. Above 4.0 km agl some variability lower than 1.7 K, indicating the losses of the accuracy 262 

as altitude increases. The temperature 𝑆𝐷𝑏𝑖𝑎𝑠 profile under cloud-free conditions presents values lower than 1.1 263 

K from ground to 2.0 km agl, while they increase (up to 1.8 K) for higher altitudes. It is important to point out 264 

the lower 𝑆𝐷𝑏𝑖𝑎𝑠 values observed under cloud-free conditions, indicating a higher precision of temperature 265 

MWR measurements under clear conditions than for all-weather conditions. 266 

In addition, the surface heating caused by solar radiation tends to increase the variability of the temperature 267 

profiles over the firsts kilometers of the troposphere (up to 3.0 km agl). Above this altitude the atmosphere 268 

becomes cooler and the 𝑆𝐷𝑏𝑖𝑎𝑠profiles becomes quite constants. 269 

The same analysis was performed for RH under all-weather conditions and cloud-free conditions (Fig 1.b). 270 

Under all-weather conditions, the RH 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  profile shows relatively low deviations, passing from positive values 271 

(from surface to 1.6 km agl) to negative (from 1.6 until 2.0 km agl) (from 3 to-4.0 %). The RH 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  becomes 272 

greater (up to -18.0 %) from 2 to 4 km agl; then above 4 km agl reach up -11.0%. The 𝑆𝐷𝑏𝑖𝑎𝑠  ranges from 10 273 

to 16.3 % from ground to 2 km agl, above this altitude it presents a variation from 15 to 21.0 % (from 2 to 4 274 

km agl).Then, it decrease from 4 to 7 km agl from 21 to 17 %. Cloud-free conditions 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  profile has a similar 275 

behavior below 2 km agl (ranging from 2.0 to -4.0 %), then increasing up from -4.0 to -21.4 % until 4 km. 276 

Finally, a decrease is seen to -4.5% from 4 to 7 km agl. Regarding 𝑆𝐷𝑏𝑖𝑎𝑠-RH profile in cloud-free conditions, 277 

from ground to 2 km agl the discrepancy was ranging from 0.5 to 13.3 %, increasing from 2to 3.0 km agl up to 278 

19.3 %, then decreasing up to 15 % until 4.0 km agl. From 4.0 km agl to the top of the profile, decreasing until 279 

9.3 %. This losing of precision, mostly between 2 to 4 km agl, might be associated to the method for retrieving 280 

the RH profiles. This type of profile lose accuracy above the ABL, mainly because at this altitudes the absolute 281 

humidity is typically quite low (due to the low temperatures) becoming very difficult a proper detection of this 282 

property by microwave radiometry and, therefore, the RH retrievals loose precision. The 𝑆𝐷𝐵𝑖𝑎𝑠-RH profile of 283 

all-weather conditions presents higher variability respect to cloud-free conditions, showing a difference around 284 

5 % over almost all the profile, which might be associated to the cloud presence. 285 

Summarizing this inter-comparison, it is worth to point out that temperature profiles obtained from MWR makes 286 

an underestimation of those taken by RS just between 1.5 to 2.3 km agl, the profile below 1.5 and above 2.3 km 287 

agl presented an overestimation. The RH 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  profile exhibits an overestimation below 1.5 km agl, but above 288 

this altitude, an underestimation of the RH profiles is seen from MWR respect to the obtained for RS.   289 
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In order to characterize the performance of MWR to retrieve IWV (IWVMWR), an integration of the r (z) profile 290 

calculated from RS was performed to derive IWVRS. Figure 2 shows the scatter plot between IWVMWR and 291 

IWVRS. The fit for cloud-free conditions shows a slope closer to one (0.85+0.03) and a better determination 292 

coefficient (𝑅2
𝐶𝐹𝐶=0.96) than all-weather conditions (slope = 0.68+0.03, 𝑅2

𝐴𝑊𝐶  = 0.82), which determines that 293 

cloud-free days fit better. This fact is associated to the vertical and horizontal homogeneity that atmosphere 294 

presents under cloud-free conditions, which is not seen for RS and MWR measurements under cloud presence, 295 

evidencing high data dispersion in all-weather conditions (moving away to the 1:1 line). The MBE is also 296 

calculated to reinforce the fact that all-weather conditions introduce large errors respect to cloud-free conditions 297 

measurements, showing a MBE to cloud-free conditions up to -0.80 kg/m2, meanwhile for all-weather 298 

conditions the MBE is up to-1.25 kg/m2. As seen in Fig 2, the cloud presence introduces high data-dispersion, 299 

weakening the correlation. 300 

The performance of the MWR has also been analyzed distinguishing between daytime and night-time 301 

measurements (Fig.3), but only for cloud-free conditions since it is the scenario with better performance. The 302 

temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  is up to 2.0 K reached in the first hundreds of meters, which is the region with higher 303 

variability. Above that, a positive temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  is observed below 1.8 km agl, ranging from 0.7 to 1.0 K for 304 

daytime and from 0.5 to 0.6 K until 1.5 km agl for night-time, showing lower variability during night-time 305 

because of the sunlight absence. The 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  becomes negative from 1.8 to 3.5 km agl (up to -0.5 K) for daytime 306 

and from 1.5 to 2.3 km agl (up to -0.5 K) to night-time. The 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  becomes positive above 3.5 km agl reaching 307 

1.7 K for daytime and 1.8 K above 2.3 km agl for night-time. The 𝑆𝐷𝑏𝑖𝑎𝑠 analyzed under the same three ranges 308 

of altitude, presented lower values for daytime close to 0.6 K, 1.3 K and 1.7 K than night-time 1.0 K, 1.2 K and 309 

2.0 K, in fact the night-time is relatively more variable under the first 2 km agl, maybe associated to the thermal 310 

inversions during the night.  311 

The same behavior is also seen on RH 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ -profile where the daytime profile is more variable within the first 312 

1.5 km agl (up to 8 %) than night-time one (up to 2 %), which is almost constant in the first 1.5 km. The 313 

variability at daytime is mostly associated to the Sun presence, because the temperature modifies the water 314 

vapor pressure. From this altitude until 4.5 km agl for daytime and 5.5 km agl at night-time, the RH 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  315 

becomes negative decreasing up to -26.5% and -16.8 %, respectively. From 4.5 to 7 km agl for daytime and 316 

night-time from 5.5 to 7 km agl, the RH mean-bias decreased to -8.1 % and -8.4 %, respectively. RH-𝑆𝐷𝑏𝑖𝑎𝑠 317 

presented the following values according to the altitude ranges exposed above, for daytime from 6 to 8.8% (up 318 

to1.5 km agl), up to 23.5% (up to 4.5 km agl) and decreasing to 18.3 % (up to7 km agl), while night-time 319 

variates from 5 to 10.0% (within 1.5 km agl), increasing to 20.0 % (up to 4.5 km agl) and it starts to descend 320 

up to 11.1% at 7.0 km agl. From this analysis, we can point out that the MWR present quite good performance 321 

for RH in the first two kilometers, with mean bias and 𝑆𝐷𝑏𝑖𝑎𝑠  lower than 10%. Above 2 km (agl) these profiles 322 

should be used more carefully, taking into account that error might be as high as 20 %, affecting strongly the 323 

calculations performed. 324 

 325 
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4.2 Statistical analysis of five-year of MWR measurements 326 

4.2.1 Diurnal cycle analysis  327 

In order to investigate the diurnal cycle of the temperature and RH profiles in the troposphere, the hourly-mean 328 

cycle for temperature and RH profiles is analyzed for each season and every year from 2012 to 2016 (Fig.4 and 329 

Fig. 5, respectively). To complete the study, ABLHmax retrievals have been included. Figure 4 shows the hourly-330 

mean behavior of the temperature profiles, where we can see that the maximum effect of the solar irradiation at 331 

surface level is close to 16 UTC and the minimum around 7 UTC, variating slightly depending of the season. 332 

In addition, due to the solar heating of the surface, the lowermost troposphere is heated with a variable vertical 333 

extension, reaching up to 6 km agl in summer, and up to 5 km agl in autumn, becoming lower in winter (up to 334 

2 km agl) and spring (up to 4 km agl). This effect mainly drives the evolution of the mean-ABLH, which is a 335 

crucial parameter for studying aerosol dynamics and air masses transport (Moreira et al., 2018a,b). 336 

The algorithm implemented for ABLH retrieval presented in Sec. 3.2 allows us to retrieve the altitude where 337 

temperature profile evidences an abrupt change under stable or unstable atmospheric conditions. Thus, the 338 

mean-ABLHmax  presented on Fig. 4, increases gradually from winter (~ 2.1 km agl) to summer (~ 3.7 km agl), 339 

because of the increasing in solar incoming radiation that reaches the Earth´s surface. In autumn, the mean-340 

ABLHmax starts to decrease (~ 2.2 km agl), in agreement with the ABL studies reported by Moreira et al. (2018b) 341 

over this area. ABLHmax starts to increase lately in the morning in winter (~ 7 UTC), meanwhile summer 342 

exhibits faster increase up from 6 UTC, associated to the incoming solar insolation that begins earlier to warm 343 

up the surface. 344 

Fig. 4 determines that the warmest year of this study was 2015,with mean values at 16 UTC up to 11.6 ± 4.0 345 

°C, 19.0 ± 4.1 °C and 30.0 ± 1.8 °C at surface level in winter, spring and summer, respectively. Autumn was 346 

an exception, becoming autumn 2013 the warmest in the period 2012-1016, with mean-maximum temperature 347 

of 23.1 ± 5.7 °C. The coldest mean values at ground level by season were reached in winter 2012 (10.5 ± 3.5 348 

°C), spring 2013 (15.6 ± 7.6 °C), summer 2013 (27.5 ± 2.1 °C) and autumn 2012 (19.2 ± 6.4 °C). 349 

Fig. 5 presents the same analysis for RH, where the hourly-mean maximum values for the RH profile at surface 350 

level are observed close to 7 UTC. This is consistent with the lower temperature values, since the diurnal cycle 351 

between temperature and RH is opposite. The intervals with higher RH are in late night and mornings (from 2 352 

to 10 UTC) and night (from 21 to 24 UTC), where solar heating is weaker or absent. In the mornings, RH 353 

presents high values at surface level (winter ~ 80 %, spring ~ 65 %, summer ~ 50 % and autumn ~ 62 %). These 354 

values tend to increase with altitude until 4 km agl in winter, spring and autumn, but in summer reaches up to 355 

3 km because of higher temperatures. In the late afternoons, this value may be little lower at surface reaching 356 

up in winter ~ 70 %, spring ~ 55 %, summer ~ 40 % and autumn ~ 60 %, experimenting the same increase with 357 

altitude until 4 km agl depending of the season. The driest region observed in the RH profiles at surface level 358 

is close to 16 UTC, and it reaches in winter ~ 60 %, spring ~ 48 %, summer ~ 28 % and autumn ~ 35 %. This 359 

region can reach 5 km agl or more in spring and summer becoming lower in winter and autumn. As we shown 360 
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in Section 4.1, the RH mean-bias profiles above 2 km agl, losses accuracy and precision, therefore the results 361 

above this altitude have larger uncertainties.  362 

From Figs. 4 and 5, it is detected a clear seasonal cycle in temperature, RH and ABLHmax, governed by solar 363 

radiation. Granada is characterized by cold winters (mean hourly maximum temperature at surface of 10.6 ± 364 

1.1 °C) and warmer summers (mean-hourly maximum of 28.8 ± 0.9 °C). In summer, RH at surface can be as 365 

low as 18.5 ± 1.9 % (mean-hourly minimum value) in the driest part of the day and in the mornings where 366 

humidity is higher; it could reach a mean-hourly maximum of 55± 6 %, evidencing the dry conditions of this 367 

city.  368 

4.2.2 Statistical analysis of temperature and RH in the vertical coordinate 369 

In this section, a seasonal variability study of atmospheric variables like temperature and RH in altitude and 370 

IWV in column is presented. Figure 6 shows the temperature boxplots by year and season. In addition, we 371 

divided the profile by nine bins to cover the whole troposphere as was describe in section 3.3, allowing us to 372 

investigate effects inside the low troposphere, which is directly linked with ABL (typically from 0 to 3 km agl) 373 

and middle and high troposphere (from 3km agl to 10 km agl). Accordingly, to the results obtained in sec. 4.2.1, 374 

we are only interested on studying when temperature exhibits their maximum value along the day over all 375 

seasons (RH behaves oppositely); therefore, this statistical analysis will be performed at 16 UTC. Around this 376 

hour, the ABL is fully developed and the atmosphere is good mixed. 377 

Temperature boxplots dataset shows that 25 % of the lowest and 25% of the highest temperatures are 378 

symmetrically distributed respect to the median value showing low data dispersion for most of height-ranges 379 

evaluated. In general, all seasons presented in 2013 smaller boxes than the other seasons, mostly between H1 380 

to H4. Figure 6 presents that outliers are more frequent within H1 to H5, increasing in summer, associated to 381 

the increase of the variability caused by high temperatures within ABLH.  382 

RH boxes (Fig. 7) are quite larger than temperature pointing a higher data dispersion. In addition, RH shows 383 

much more outliers (both above and below the boxes), mainly associated to (i) the cloud presence and (ii) the 384 

decrease of the absolute humidity with altitude, making less accurate the radiometric measures. This fact makes 385 

that MWR retrievals present higher or lower values than real measurements above 2.0 km agl, producing more 386 

outliers. RH presents a trend to increase from H1 to H3 and decreasing from H4 to H9 for winter, spring and 387 

autumn. This trend is broke up in summer when this increase reaches higher altitudes (from H1 to H6), and 388 

decreases from H7 to H9. 389 

In general, IWV data boxplots presented in Fig. 8 exhibit less data-dispersion. The distribution of the data shows 390 

high equilibrium below 25 % and above 75 %, meaning that values are relatively well distributed around the 391 

median with lower data outliers. This variable presents a seasonal trend to increase from winter to summer and 392 

decreasing in autumn, showing their high relation with temperature seasonal trend. 393 

 394 
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4.2.3 Inter-annual trend analysis by season 395 

Table 2 reports for each season the inter-annual trend of temperature and RH computed by means of the 396 

calculation of the linear fits of the median values registered. Temperature only exhibits an inter-annual increase 397 

from H1 to H7 in winter season, from 0 to 1.0 km agl, increased between 0.4 and 0.6 °C/year, depending on the 398 

height range. Thus, winters in Granada are becoming warmer, mostly within the first 2.0 km agl. With a weaker 399 

correlation (R2=0.44), summers exhibit an increase of 0.4 ºC/year only close to surface (H1). The rest of the 400 

seasons do not present a clear inter-annual trend, with determination of R2 coefficients below 0.50 for all height-401 

ranges. 402 

The results of the inter-annual increase of temperature are in agreement with climatological studies performed 403 

at Iberian Peninsula by Río et al. (2011) and Coll et al. (2017), reporting a surface temperature increasing trend 404 

in winter in the South and South-Eastern of the peninsula, where Granada station presented the drier conditions 405 

in the southern region of the peninsula. The results obtained here presents higher values for the inter-annual 406 

trend of temperature respect to those reported in literature, mainly because the instrumentation involved, the 407 

dataset size and the statistical techniques used in the datasets. Moreover, the inter-annual temperature increases 408 

in winter season reported in this study are also in agreement to the report of CALIMA (Caracterización de 409 

Aerosoles originados por Intrusiones de Masas de aire Africanas, characterization of African air masses 410 

outbreaks, http://www.calima.ws/episodiosocurridos.html), which is a program in charge to quantify the 411 

Saharan dust events over Iberian Peninsula. Its record indicates that from 2013 to 2015 the Saharan dust 412 

outbreaks have increased their number and become more intense in winter season, mostly within the second 413 

fortnight of February.  414 

Regarding RH, winter presents a clearly linear increase for all the altitudes analyzed (note that information at 415 

ranges H6-H9 are not included due to the loose of accuracy and precision of the RH retrievals following section 416 

4.1). The highest rates of increasing are in the middle of the troposphere (between H4 and H5, 7.4 and 5.4 417 

%/year, respectively). In spring, the RH increases linearly from H2 to H4. In summer and autumn, non-418 

significant inter-annual trend were observed.    419 

Table 3 presents the inter-annual trend of IWV and PW by season. Our computations indicate that IWV is 420 

increasing over the years with high correlations in winter (1.0 ± 0.1kgm-2 /year, R2=0.95) and summer (0.8 ± 421 

0.1kgm-2 /year, R2=0.73), while PW only experimented an increasing trend high correlated (0.07 ± 0.03cm/year, 422 

R2=0.6) in winter. This behavior in winter pointed out that every year during our study Granada is becoming 423 

more humid; furthermore, the likelihood of precipitations is higher in winter than in the rest of seasons. The 424 

IWV in spring presented no-correlation (up to 0.26) due to the higher median value found in 2016 (up to 12.5 425 

kgm-2), this value tends to change the real tendency to decrease of this season (also seen in Fig. 8). If we perform 426 

the analysis hiding spring 2016 median data, IWV in spring presents a decreasing tendency with a slope up to 427 

-0.2kgm-2/year and R2=0.80. The fact of IWV in 2016 becomes higher is not clearly seen in this study, just we 428 

could associate to the statistical weight, because in March the percentage of missing data is up to 64.5 % (11 429 

days measured), so the median value of the month could affect the seasonal median. IWV in autumn presented 430 
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a strong correlation (R2=0.95) with a linear decrease up to – 0.75 kgm-2 /year which is not really linked with 431 

inter-annual temperature cycle. This analysis showed no-correlation of PW in spring, summer and autumn, 432 

however the seasonal trends for both IWV and PW are the same, increasing from winter to summer and 433 

decreasing in autumn. The higher values of IWV were reached in spring and summer, mostly associated to the 434 

vegetation presence and high temperatures, which increases the evapotranspiration process. Finally, it is 435 

important to taking into account the warm air mases that comes from Atlantic Ocean and Mediterranean Sea, 436 

with high temperatures, this fact increase the capacity of these air masses to harbor water vapor before 437 

saturation.  438 

5 Conclusions 439 

Our analysis over a 5-year dataset of the RPG-HATPRO MWR leaded us to quantify its accuracy and precision 440 

by means of the mean-bias and standard deviation for temperature and RH vertical profiles under cloud-free 441 

conditions and all-weather condition, and integrated water vapor (IWV) column product. In addition, an 442 

analysis of the MWR performances during night- and day-time was carried out under cloud-free conditions. 443 

We found that the temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  profile under all-weather conditions exhibited high confidence, mostly 444 

below 2 km agl with values ranging from 1.7 to -0.4K. The 𝑆𝐷𝑏𝑖𝑎𝑠  under all-weather conditions was quite 445 

constant in altitude, with values around 3 K in the whole troposphere. Under cloud-free conditions, the mean 446 

bias showed quite similar values than under all-weather conditions, although some differences were found in 447 

the lowest layer (below 1.5 km) and between 3 and 5 km (agl), where the mean bias was slightly higher under 448 

cloud-free conditions reaching up 1.8 K. An important point to be remarked is the lower 𝑆𝐷𝑏𝑖𝑎𝑠  that was 449 

observed under cloud-free conditions. The 𝑆𝐷𝑏𝑖𝑎𝑠  profile presented values ranging between 1.1 and 1.8 K in 450 

the whole troposphere, indicating a higher precision of the MWR under these conditions.  451 

The performance for RH under all-weather conditions showed from surface to 2 km agl that 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ was ranging 452 

from 3.0 to -4.0 % with 𝑆𝐷𝑏𝑖𝑎𝑠  between 10 to 16.3 %, and from 2 to 4 km the 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  was up to -18 % with 𝑆𝐷𝑏𝑖𝑎𝑠  453 

ranging between 15 to 21 %. Above 4 km the 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  reached up to -11.0 with 𝑆𝐷𝐵𝑖𝑎𝑠 ranging from 12 to 17 %. 454 

The same altitudes ranges were evaluated under cloud-free conditions showed high confidence within the first 455 

2 km ranging from 2.0 to -0.4 with 𝑆𝐷𝑏𝑖𝑎𝑠 from 0.5 to 13.3 %, then from 2 to 3 km agl were up to -4.0 to -21.4 456 

with 𝑆𝐷𝑏𝑖𝑎𝑠 19.3 %, and decreasing up to -4.5 % with 𝑆𝐷𝑏𝑖𝑎𝑠 9.3 %. The temperature and RH 𝑆𝐷𝑏𝑖𝑎𝑠  showed a 457 

positive offset close to 2.5 K and 5 %, respectively, between all-weather conditions and cloud-free conditions, 458 

associated with cloud presence. Finally, a performance of the IWV product allowed us to see the effect of the 459 

cloud presence over this product. Thus, the determination coefficient was up to 0.82 for all-weather conditions, 460 

meanwhile it increases up to 0.96under cloud-free conditions The MBE was lower for all-weather conditions (-461 

0.80 kg/m2) than cloud-free conditions (-1.25 kg/m2). 462 

The cloud-free conditions database (temperature and RH) was investigated under daytime and night-time 463 

scenarios. This classification exhibits a time-dependency associated to the solar heating on the surface, 464 

becoming more variable during daytime respect to night-time. The temperature 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅  profile was ranging from 465 

0.7 and 1.0 K with 𝑆𝐷𝑏𝑖𝑎𝑠up to 1.0 K agl at daytime below 1.8 km agl and from 0.5 to 0.6 K at night-time with 466 
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𝑆𝐷𝐵𝑖𝑎𝑠0.6 K below 1.5 km. This error increase with altitude. The RH also presents low errors below 1.5 km agl 467 

up to 8 % at daytime with 𝑆𝐷𝑏𝑖𝑎𝑠  ranging from 6 to 8.8 % and up to 2 % with 𝑆𝐷𝑏𝑖𝑎𝑠  ranging from 5 to 10 % at 468 

night-time. After this altitude, the accuracy and precision increase rapidly with height.    469 

The results obtained here allows to assess the reliability range of the HATPRO MWR G2 system, in order to 470 

use products like temperature, RH and IWV in further applications like foresting models, ABL studies, and 471 

aerosol hygroscopic growth, among others at this mid-latitude region. 472 

The second part of this work was focused on a statistical study over a 5-year dataset. Firstly, it was observed 473 

that temperature, IWV and ABLHmax daily-seasonal cycle presents an increasing trend from winter to summer, 474 

decreasing in autumn, meanwhile RH daily-seasonal cycle is opposite, maximum in winter decreasing until 475 

summer and then increasing again in autumn; all of them governed by the solar radiation. The maximum 476 

temperature values were around 16 UTC coinciding with the minimums RH values, instead RH maximums are 477 

located from 2 to 10 UTC and from 21 to 24 UTC. The hourly- mean cycle leading us to conclude that 2015 478 

was the warmest year for all seasons, except in autumn 2013 that showed up an abruptly increase of temperature 479 

respect to other years. The coldest seasons do not follow a yearly pattern, becoming the coldest winter 2012, 480 

spring 2014, summer 2014 and autumn 2015. The highest RH values were found in winter 2016, spring 2016, 481 

summer 2015 and autumn 2016; and the lowest RH values in winter 2012, spring 2014, summer 2014 and 482 

autumn 2014. Finally, the inter-annual study is linked with seasonal, pointing out that temperature and RH 483 

showed up an inter-annual linear increase in winter with a mean-trend up to (0.5 ± 0.1) °C/year and (3.4 ± 1.7) 484 

%/year, respectively, from ground to 6 km agl. IWV presented an inter-annual linear increase up to 1 kgm-2 485 

/year in winter and 0.78 kgm-2 /year in summer. The autumn presents a linear decrease trend up to -0.75 kgm-2 486 

/year. 487 

This work will provide solid ancillary information for ongoing investigations on topics such as aerosol 488 

hygroscopic growth, forecast models, aerosol transport and ABLH calculations over this region by using MWR 489 

products.  490 
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Figure captions  715 

Figure 1. Mean bias (solid line) and standard deviation (dashed line) on all-weather conditions (AWC, blue) 716 

and cloud-free conditions (CFC, red) for temperature (a) and RH (b) profiles between RS and MWR. 717 

 718 

Figure 2. IWV from MWR versus RS for all-weather conditions (AWC, in blue) and cloud-free conditions 719 

(CFC, in red). The gray dashed-line refers to 1:1 line. 720 

 721 

Figure 3. Mean bias (solid line) and standard deviation (dashed line) on daytime (red) and night-time (blue) for 722 

T (a) and RH (b) profiles between MWR and RS, all for cloud-free conditions (CFC). 723 

 724 

Figure 4. Mean 24-h cycle for temperature profiles and ABLH by season and year. The magenta line refers to 725 

the mean ABLHmax and the white contour is the SD. 726 

 727 

Figure 5. Mean 24-h cycle for RH profiles and ABLH by season and year. The magenta line refers to the 728 

mean ABLHmax and the white contour is the SD. 729 

 730 

Figure 6. Seasonal boxplots of temperature presented for nine atmospheric volumes covering the 39 bins of the 731 

MWR for the years 2012 (red), 2013 (green), 2014 (blue), 2015 (black) and 2016 (cyan). Winter (panel a), 732 

spring (panel b), summer (panel c), and autumn (panel d). In the boxes are represented the 25 and 75 percentile, 733 

the median, the maximum and minimum, and the outliers marked with asterisks. 734 

 735 

Figure 7. Seasonal boxplots of RH presented for nine atmospheric volumes covering the 39 bins of the MWR 736 

for the years 2012 (red), 2013 (green), 2014 (blue), 2015 (black) and 2016 (cyan). Winter (panel a), spring 737 

(panel b) summer (panel c) and autumn (panel d). In the boxes are represented the 25 and 75 percentile, the 738 

median, the maximum and minimum, and the outliers marked with asterisks 739 
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Figure 8. Seasonal boxplots of IWV the years 2012 (red), 2013 (green), 2014 (blue), 2015 (black) and 2016 741 

(cyan). The line within the box refers to the median value, and the top and bottom of the box are the 75 and 25 742 

quartiles, respectively. The outliers are marked with a red cross symbol. 743 

 744 

Table captions  745 

Table 1. MWR measurements over five-years at Granada station, reporting for each year the total of days (D) 746 

and profiles (P) measured by month.  747 

Table 2. Inter-annual trends of temperature and RH by season and height-range. Where W (winter), S (spring), 748 

SU (summer) and A (autumn). 749 

Table 3. Inter-annual trend of IWV and IWVaeronet by season in the period 2012-2016. 750 
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YEAR 2012 2013 2014 2015 2016 

MONTH D P D P D P D P D P 

January 31 12648 31 12648 20 14400 5 3600 28 20160 

February 29 11832 28 11424 28 20160 28 20160 29 20880 

March 31 12648 31 12648 31 22320 31 22320 11 7920 

April 30 12240 30 12240 11 7920 30 21600 26 18720 

May 31 12648 8 5760 20 14400 16 11520 31 22320 

June 30 12240 30 21600 30 21600 0 0 24 17280 

July 31 12648 31 22320 21 15120 18 12960 31 22320 

August 31 12648 31 22320 31 22320 31 22320 31 22320 

September 30 12240 30 21600 30 21600 30 21600 17 12240 

October 31 12648 31 22320 16 11520 27 19440 31 22320 

November 30 12240 24 17280 30 21600 30 21600 25 18000 

December 31 12648 14 10080 15 10800 30 21600 0 0 

TOTAL 366 149328 319 192240 283 203760 276 198720 284 204480 
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T (K) 

slope 

(°C/year) 
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0.5± 0.5 0.6± 0.3 0.6± 0.5 0.4± 0.8 0.4± 0.8 0.6± 0.5 0.1± 1.8 0.1± 3.1  
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R2 0.60 0.73 0.90 0.52 0.70 0.50 0.50 0.06 0.06 

slope 

(°C/year) 

0.7± 0.3 0.8± 0.3 0.8± 0.3 -0.3± 

0.3 
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slope 
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SU 
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slope 
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0.3± 0.5 0.4± 0.4 0.1± 0.5 -0.3± 
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A 

R2 0.01 0.08 0.01 0.20 0.10 0.16 0.15 0.11 0.18 

 

 

 

 

 

 

RH 

(%) 

slope 

(%/year) 

2.6± 0.1 2.6± 0.1 2.9± 0.1 7.4± 0.1 5.42± 0.03 --- --- --- --- 
W 

R2 0.79 0.77 0.54 0.56 0.91 --- --- --- ---  

slope 

(%/year) 

-1.7± 

0.1 

2.1± 0.1 1.7± 0.2 2.1± 0.1 0.9± 0.2 --- --- --- --- 
S 

R2 0.19 0.91 0.68 0.76 0.15 --- --- --- ---  

slope 

(%/year) 

-0.4± 

0.3 

-1.7± 

0.1 

-2.0± 

0.1 

-1.2± 

0.1 

1.3± 0.2  

--- 

--- --- --- 
SU 

R2 0.04 0.19 0.18 0.08 0.17 --- --- --- ---  

slope 

(%/year) 

-2.3± 

0.1 

-2.8± 

0.1 

-2.6± 

0.1 

-1.7± 

0.1 

1.3± 0.2  

--- --- --- --- A 
R2 0.40 0.17 0.17 0.18 0.12 

 

 

 

 

 

 

 

  slope (kgm-2/year) R2  Season 

 

 

IWVMWR 

(kgm2) 

1.0 ± 0.1 0.95 WINTER 

0.3 ± 0.7 0.26 SPRING 

0.8 ± 0.1 0.73 SUMMER 

-0.8 ± 0.2 0.95 AUTUMN 

 

 

IWVaeronet (cm) 

0.07 ± 0.03 0.60 WINTER 

0.01 ± 0.05 0.02 SPRING 

0.03 ± 0.03 0.30 SUMMER 

-0.03 ± 0.04 0.20 AUTUMN 

 


