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Abstract

We developed a Multi-Subband Ensemble Monte Carlo simulator for non-planar devices, taking into account two-dimensional
quantum confinement. It couples self-consistently the solution of the 3D Poisson equation, the 2D Schrödinger equation, and the
1D Boltzmann transport equation with the Ensemble Monte Carlo method. This simulator was employed to study MOS devices
based on ultra-scaled Gate-All-Around Si nanowires with diameters in the range from 4 nm to 8 nm with gate length from 8 nm to
14 nm. We studied the output and transfer characteristics, interpreting the behavior in the sub-threshold region and in the ON state
in terms of the spatial charge distribution and the mobility computed with the same simulator. We analyzed the results, highlighting
the contribution of different valleys and subbands and the effect of the gate bias on the energy and velocity profiles. Finally the
scaling behavior was studied, showing that only the devices with D = 4 nm maintain a good control of the short channel effects
down tho the gate length of 8 nm.
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1. Introduction

Non-planar MOS transistors with multiple gates represent
the most promising solution to the ultimate scaling of CMOS
technology [1] because of their superior immunity to short chan-
nel effects. Indeed, they are not only a possible future op-
tion under scrutiny, but they have already entered mass pro-
duction [2, 3]. When the size of a device reaches the nano-
metric scale, quantum effects play an important role; quantum
confinement is relevant for reduced lateral size (i. e. in the di-
rection perpendicular to transport) and even more so in non-
planar structures where confinement is two-dimensional. An
approximately correct electron distribution taking into account
quantum confinement can be obtained with corrections to the
classical potential, employing algorithms which, however, need
proper calibration for each considered structure and crystal ori-
entation (see for example [4, 5]). As a consequence, to properly
take into account quantum confinement effects in the cross sec-
tion of the device it is necessary to solve the Schrödinger Equa-
tion (SE). The Multi-Subband Ensemble Monte Carlo (MS-
EMC) approach employs the semi-classical Monte Carlo (MC)
method to solve the Boltzmann transport equation, coupled with
the solution of the SE in the perpendicular direction. The MC
method, compared to common transport framework such as Drift-
Diffusion, takes directly into account non-equilibrium carrier
transport. On the other hand, compared to full quantum ap-
proaches, MC allows a simpler implementation of scattering
mechanisms and a relatively reduced computational effort.

In this work, we describe an MS-EMC simulator for 3D
devices developed by our group, and show the possibilities it
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offers by studying the scaling properties of ultimate Gate-All-
Around (GAA) MOS transistors with ultra-thin Si nanowires.
Section 2 is devoted to the description of the simulator, while in
the following one (Section 3) we define devices under study and
report the obtained results and insights into the device behavior.
Finally, conclusions are drawn in Section 4

2. Simulator description

To model a non-planar device, such as GAA MOSFETs,
we employ a simulator based on the MS-EMC approach. This
method has been widely and successfully employed for the sim-
ulation of planar semiconductor devices [6, 7, 8, 9], and only
recently it has been applied to 3D devices [10, 11]. The simu-
lator is based on the space-mode approach [12], where the SE
is solved in several cross sections perpendicular to the trans-
port direction z, for each considered conduction band valley.
In this way, the eigen-energies, Eν,i(z), and the wave functions,
ξν,i(x, y, z), are obtained for different values of z along the de-
vice, where ν and i are the valley and subband indices, respec-
tively. After that, the energy levels are corrected for the effects
of non-parabolic band structure as described in [13] while wave
functions are left uncorrected.

Carrier transport is simulated through the MC method: once
electrons are assigned to a subband (specified by its valley ν and
index i), its motion is restricted to one dimension in the z direc-
tion and the driving force is computed employing the deriva-
tive of subband energy levels, that is F = −∂Eν,i(z)/∂z. Then,
as usual in the MC scheme, the subband population, nν,i(z) is
computed by counting the simulation particles in subband ν, i
at different cross sections. By multiplying the population by
the corresponding distribution function |ξν,i(x, y, z)|2, the total
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Figure 1: Simulation scheme for a given value of VG .

electron density is obtained. The resulting charge density is
employed in the 3D Poisson Equation (PE), which is solved in
a loop with the SE and the MC simulation in order to achieve
a self-consistent solution. To improve the stability and the con-
vergence properties of the self-consistent loop, the non-linear
PE is employed [14].

For the simulation, the device structure is described em-
ploying a 3D finite element mesh with tetrahedral elements. Be-
cause of the need to discretize the SE in different cross sections,
this 3D mesh is constructed by extruding a 2D triangular mesh.
The finite element mesh allows a good representation of com-
plex geometries (e.g. round nanowires, rounded corners, lean-
ing sidewalls in FinFETs) and a natural formulation of the equa-
tions (PE, SE) near material boundaries. The MC simulation in-
cludes carrier scattering by acoustic and optical phonons [15],
taking into account Pauli exclusion principle [16]. To improve
the MC statistics, especially in the sub-threshold regime, we
employ a variance reduction technique based on non-uniform
super-particle weight [17]. Here the weight is computed ac-
cording to the total energy of the particle injected into the de-
vice through the contacts, as in the following equation:

w(E) = w0

(
1 + exp

(
q

E − EF

2kBT

))−1

(1)

where EF is the Fermi energy (known at source and drain con-
tacts where electrons are injected), kB is the Boltzmann con-
stant, T is absolute temperature, and w0 a normalization con-
stant, chosen and updated during the simulation in order to ob-
tain a given number of (super-)particles. Notice that the expres-
sion of Equation (1) is similar to the Fermi-Dirac distribution
function with an added factor 1/2 in the exponent and a nor-
malization factor.

The general simulation strategy for a given value of the
gate bias VG is shown in the diagram of Figure 1. The algo-
rithm starts with VD = 0 V and a self-consistent solution of SE
and PE in equilibrium (without transport) is found, employing
a predictor-corrector method [18]. This allows the initializa-
tion of the MC simulator employing the electron density given
by the equilibrium Fermi-Dirac distribution for each subband.
Then a loop with the MC simulation and the solution of PE
and SE is started. In a first phase (SC0), the drain bias VD is
kept equal to 0 V while a self-consistent solution is obtained.

Then, a second phase is started (VD), in which the boundary
conditions at the drain are changed increasing the voltage by a
small ∆VD step in each iteration of the loop, until the desired
value of VD is reached. After that, the boundary conditions are
kept fixed and the MC-PE-SE loop (SC1) is repeated until the
variation of the potential between one iteration and the follow-
ing becomes lower than the prescribed tolerance, that, is when
a self-consistent solution is obtained. Once this is achieved,
the simulator starts computing the current (SC2) and an esti-
mation of the corresponding statistical error, until the latter is
below a specified threshold or a maximum number of iterations
is reached. Then, the procedure is repeated from the VD stage
with the following target value of the drain voltage.

Alternatively, it is possible to compute the low-field mobil-
ity, µn, by a similar procedure. Only the channel of the device
is considered and small values of a uniform electric field are
applied in the longitudinal direction. As in the full device sim-
ulation, an equilibrium self-consistent state with VD = 0 V is
first obtained. Then, different small values of the drift elec-
tric field, F, are applied by shifting the subband energy lev-
els, while an infinite channel length is emulated by employing
periodic boundary condition. Finally, mobility is extracted by
fitting the obtained values of the velocity, vn with the linear re-
lation vn = µnF.

To improve the performance of the simulator, a high level
of parallelism is employed. In the MC code, the independent
super-particle flights are simulated in a parallel fashion through
the use of OpenMP; particular care is needed for synchronization
to inject and remove particles at contacts and to gather particle
statistics. On the other hand, specialized and optimized sparse
matrix parallel routines are employed for the solution of the PE
and the SE.

3. Results

We simulate GAA field-effect transistors based on cylindri-
cal Si nanowires with channel along the 〈100〉 direction, with
diameter D ranging from 4 nm to 8 nm. The coordinate ref-
erence system is chosen so that the x and y axes are in the
cross section plane and the z axis is in the transport direction.
The gate oxide (SiO2) thickness is Tox = 1 nm. The channel
is considered undoped (NA = 1 × 1013 cm−3) and a midgap
metal is assumed for the gate (with work function 4.56 eV).
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Figure 2: ID-VD curves for the device with D = 8 nm and LG = 14 nm.

The source and drain doping density is NS D = 1 × 1020 cm−3,
with an underlap of Lsp = 2 nm and Gaussian distribution with
σ = 0.8 nm. The simulated devices have gate length LG ranging
from 14 nm down to 8 nm, while the total length of the source
and drain regions, including extensions, is LS D = 14 nm each.
As stated in Section 2, we employ a 3D mesh obtained by ex-
trusion of a 2D mesh, as the latter is used to discretize the SE
in the cross sections. This 2D mesh makes use of a variable
number of triangles depending on the nanowire diameter: the
minimum is ∼ 1500 for D = 4 nm and the maximum is ∼ 3500
for D = 8 nm. The mesh spacing in the transport direction
is finer in the channel region (∆zmin = 0.5 nm) and gradually
grows in the source and drain regions (up to ∆zmax = 2 nm).
The number of nodes and tetrahedra in the full 3D mesh is ap-
proximately 32 500 and 182 500, respectively, for the smallest
considered device; 98 000 and 560 000 for the largest one. All
simulations have been performed at T = 300 K.

Figure 2 shows the simulated output characteristics of the
largest device, with diameter D = 8 nm, and gate length LG =

14 nm. Figure 3 shows the simulated transfer characteristics for
all the considered devices: as expected the current is larger for
nanowires with wider cross section and for shorter gate length.
The statistical noise inherent to the MC method is greatly sup-
pressed, thanks to the variance-reduction technique employed
in the simulator: current fluctuations can be observed only for
ID values smaller than 1 nA. In any case the residual statis-
tical noise in the ID-VG curve gives rise to larger fluctuations
in the second derivative of ID with respect to VG: therefore we
cannot locate the threshold voltage Vth with the maximum of
∂2ID/∂V2

G. Therefore, we extract Vth by employing a fixed value
of ID. To take into account the difference in the gate length
of the considered devices, we employ ID,th(LG = 14 nm) =

0.08 µA for the longest device and scale it inversely with LG;
that is ID,th(LG) = 0.08 µA× (14 nm/LG). The results are shown
in Figure 4. The obtained values of Vth are larger for D = 4 nm
for all cannel lengths, due to quantum confinement. Moreover,
a strong Vth roll-off is observed for the wider nanowires with
D = 6 nm or D = 8 nm, while only a small drift of Vth is present
in the case of D = 4 nm.

If we restrict our analysys to the longest devices (i.e. with
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Figure 3: ID-VG curves for all simulated devices.
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Figure 4: Threshold voltage Vth (computed at VD = 50 mV) as a function of
gate length LG , for different values of nanowire diameter D.

LG = 14 nm) and plot the drain current vs. the gate voltage
overdrive, VG − Vth, the curves corresponding to devices with
different diameters collapse (see Figure 5) except for very large
applied biases. This means that the behavior of ID below the
threshold voltage and slightly above it is independent of the
diameter. To investigate this fact, we plot in Figure 6 the lin-
ear electron density ninv, that is the charge density integrated
in a cross section near the middle of the channel, versus the
gate voltage overdrive. Only very small differences can be ob-
served for values of VG − Vth larger than approximately 0.2 V,
indicating that linear density does not depend on the nanowire
diameter D. This, in turn, means that the average spatial charge
density must be inversely proportional to the cross-section area,
for the same gate overdrive. Such behavior can be explained by
considering the spatial charge distribution, n, along a cross sec-
tion in the middle of the gated region as it is shown in Figure 7.
In narrow nanowires, such as those considered in this paper, the
charge concentration is almost always peaked around the cen-
ter of the nanowire, as shown in Figure 7 (a), (b), and (c): for
VG = Vth + 0.2 V the shape of the electron distribution is very
similar, with increasing width and decreasing peak concentra-
tion as the diameter grows from 4 nm to 8 nm. Only for the
widest device (D = 8 nm) and larger gate bias (VG = Vth+0.3 V)
the maximum value of n is located at a position different from
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Figure 5: Drain current ID as a function of gate overdrive VG − Vth for devices
with LG = 14 nm.

−0.2 0 0.2 0.4
101

102

103

104

105

106

107

LG = 14nm

VD = 0.05V

VG − Vth (V)

n
in
v
(c
m

−
1
)

D = 4nm

D = 6nm

D = 8nm

0

2 · 106

4 · 106

6 · 106

Figure 6: Linear electron density ninv in the middle of the channel as a function
of gate overdrive.

the geometrical center of the nanowire. In particular, due to
the anisotropy of the Si conduction band valleys, four maxima
appear along the x and y axes.

If we compare Figures 5 and 6, however, we can notice that
the differences among the ID curves for a gate overdrive larger
than 0.1 V are larger than the differences in the ninv curves.
Therefore, the differences in the drain current cannot be at-
tributed exclusively to the inversion charge and must stem from
other causes. To shed light on this issue we also computed the
mobility, µn, shown in Figure 8. Here, we can observe that µn is
severely degraded for decreasing D, which justify the residual
differences in the ID curves.

The simulator also allows for measuring and comparing in-
ternal quantities such as, for example, those related to the sub-
band profiles and populations. In a 〈100〉 nanowire with circu-
lar cross section, the six equivalent ∆ valleys of Si conduction
band split into nonequivalent sets. With our choice of coordi-
nates, the doubly degenerate ∆x and ∆y valleys, present their
longitudinal direction in the cross-section plane. For both val-
leys, the confinement masses are ml = 0.926 m0 in one direc-
tion and mt = 0.19 m0 in the perpendicular one (where m0 is the
free electron mass): due to the symmetry of the circular shape,
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Figure 7: Electron density in the middle of the channel for VG = Vth + 0.2 V
and D = 4 nm (a), D = 6 nm (b), D = 8 nm (c); VG = Vth + 0.3 V and D = 8 nm
(d). The dashed line indicates the Si/SiO2 interface. Units of dimensions in the
cross sections are nm while the units of electron density are cm−3.

the corresponding energy levels are equal, with wave functions
with different symmetry axes. On the other hand, the ∆z val-
leys with their longitudinal effective mass along the transport
direction give rise to subbands with higher energy: in this case
the confinement effective mass is isotropic in the cross-section
plane and equal to mt. Figure 9 shows the energy profiles of
the two lowest subbands of each valley for the largest device,
with D = 8 nm and LG = 14 nm. Notice that, as explained be-
fore, the lowest energy subband corresponds to the ∆x and ∆y

valleys. However, the confining potential is different inside the
channel and in the source and drain regions, so that the subband
with second lower energy belongs to different valleys according
to the position z. Moreover, since in the ∆z valleys the transport
mass is larger than in the ∆x and ∆y valleys (ml vs. mt), the pop-
ulation of the corresponding subbands can be larger even if the
energy levels are higher, as shown in Figure 10. Here we can
see that the population of the first subbands of ∆x, ∆y and ∆z are
approximately equal in the gated region.

We now turn to the analysis of the profiles as a function
of the gate voltage VG, in the same device (D = 8 nm, LG =

14 nm). Figure 11 shows the fundamental subband energy, Ex,1
(or, equivalently, Ey,1), the total linear electron density, ninv, and
the average electron velocity in the transport direction, 〈vz〉,
as a function of the position z along the channel, for VD =

0.05 V and different values of VG. In the subband profile (Fig-
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the device, for VD = 0.05 V and different values of VG . All curves correspond
to the device with D = 8 nm, LG = 14 nm.

ure 11(a)), we can see that the maximum energy (that is the
peak of the source-to-drain barrier) is located in the center of
the device in the sub-threshold regime (for VG = 0.3 V) and
gradually moves towards the source end of the channel as VG

increases. This displacement is also associated with a change
in the shape of the profile inside the channel: rounded for small
VG and almost straight for high VG, sloped towards the drain.
In the ninv curve (Figure 11(b)), we can notice that, even in sub-
threshold regime (when the electron density in the channel is
four orders of magnitude smaller than in the source and drain),
the profile is very smooth, and the statistical noise produced
by the MC method is kept under control thanks to the afore-
mentioned variance reduction technique. Next, the shape of the
curves presents a trend similar to the one observed in the sub-
band profile, in the sense that the shape gets more flat when the
gate bias increases. However, there is a noticeable difference:
the position of the minima in the sub-threshold regime does not
correspond to the center of the channel but it is displaced to-
wards the drain. The position of such minima corresponds to
maxima of the velocity curves Figure 11(c), as the current is
constant in the whole device in a stationary state. As expected,
in the channel region the average velocity is higher than in the
source/drain regions, because of the reduced electron density.
In general, the average velocity increases for larger values of
VG, following the increase of the drain current. However, this
trend is reversed in a small region inside the channel, around
the position of the average velocity maximum: the peak veloc-
ity decreases for increasing VG.

We can also check the correct implementation of the scat-
tering mechanisms and of the Pauli exclusion principle as men-
tioned in section 2, by analyzing the carrier distribution as a
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function of energy. To be able to compare to an analytical
expression we consider the equilibrium case, with VD = 0 V.
In this case, there exists a constant Fermi level, EF , in the
whole device, aligned with the Fermi level of source and drain,
and the energy distribution of electrons must follow the Fermi-
Dirac distribution. To implement the Pauli exclusion princi-
ple, the electron distribution function is computed by particle
counting for every subband and every device cross-section, ob-
taining the function fν,i(kz, z). Then, to perform a compari-
son with the Fermi-Dirac distribution we compute fν,i(E, z) =

fν,i
(
kz(E), z

)
+ fν,i

(
−kz(E), z

)
, where kz(E) is the positive value of

wave-vector kz corresponding to the total energy E for subband
v, i. In Figure 12, we show fx,1(E, z), the distribution function
of the fundamental subband (the first subband of ∆x valley) as
a function of energy at three different positions: in the center
of the channel (z = 0 nm), just outside the channel towards the
drain region (z = 8 nm), and in the drain region near the contact
(z = 21 nm). The result show that Fermi-Dirac distribution is
correctly reproduced.

Finally, we turn to the analysis of the short channel effects
(SCEs) in the simulated devices and their dependence on the
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Figure 14: Sub-threshold swing as a function of gate length for different values
of nanowire diameter.

gate length LG. We can expect the narrower devices to pos-
sess better electrostatic control of the channel, especially for
larger gate lengths. However, the MS-EMC simulator allows us
to obtain quantitative results which properly take into account
lateral quantum confinement. A first indication of the SCEs is
given by the Drain Induced Barrier Lowering (DIBL), a mea-
sure of the variation of the threshold voltage shift caused by the
drain bias: DIBL =

∣∣∣Vth@VD2 − Vth@VD1
∣∣∣/(VD2 − VD1). In this

case, the DIBL values shown in Figure 13 are computed em-
ploying the following drain voltage values: VD1 = 0.05 V and
VD2 = 0.5 V. In the figure, we can observe that for D = 4 nm the
DIBL hardly increases for decreasing LG, with a largest value
as small as 58 mV/V for the shortest device (LG = 8 nm). For
the nanowires with with D = 6 nm and D = 8 nm, gate length
scaling produces a larger increase of the DIBL, which exceeds
100 mV/V at LG = 8 nm and LG = 10 nm, respectively.

Similar conclusions can be drawn by observing the sub-
threshold swing (SS), represented in Figure 14. The longest
devices, with LG = 14 nm, show the same SS value for every
D (within the numerical accuracy): SS ' 65 mV/dec., which is
close to the ideal MOSFET limit at room temperature. How-
ever, the scaling behavior is quite different: while the narrowest
device keeps SS values lower than 70 mV/dec. for all the con-
sidered gate lengths, the device with D = 8 nm shows a linear
increase reaching SS ' 110 mV/dec. at LG = 8 nm.

4. Conclusion

This paper describes a numerical simulator that solves in a
self-consistent way the 3D Poisson equation, the 2D Schrödinger
equation, and the 1D Boltzmann transport equation through the
Ensemble Monte Carlo method. This software can be used
to study the static characteristics of ultra-scaled MOSFET de-
vices, also in the sub-threshold region thanks to the implemen-
tation of a variance reduction technique based on variable super-
particle weights. It also allows us to inspect the carrier distri-
bution, taking into account quantum confinement effects, and
to compare the phonon limited mobility and drain current in-
cluding the short-channel and high-field effects, both computed
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with the MC method.
We applied this simulator to narrow Si nanowire MOSFETs

with reduced gate length. We correlated the differences in the
curves above threshold with the different shape of the charge
distribution in the cross section of the device and with the mo-
bility degradation for small diameters. We analyzed the elec-
tron density and velocity distribution inside the channel of the
device as a function of the applied gate bias. Finally we stud-
ied the short channel effects and we found that the narrowest
cylindrical devices with D = 4 nm can keep a good electrostatic
control down to LG = 8 nm.
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