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This is the peer reviewed version of the following article: Pedro Manuel
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Abstract

Visual textures in images are usually described by humans using lin-
guistic terms related to their perceptual properties, like “very coarse”,
“low directional”, or “high contrasted”. Computational models with the
ability of providing a perceptual texture characterization on the basis of
these terms can be very useful in tasks like semantic description of images,
content-based image retrieval using linguistic queries, or expert systems
design based on low level visual features. In this paper, we address the
problem of simulating the human perception of texture, obtaining linguis-
tic labels to describe it in natural language. For this modelling, fuzzy par-
titions defined on the domain of some of the most representative measures
of each property are employed. In order to define the fuzzy partitions,
the number of linguistic labels and the parameters of the membership
functions are calculated taking into account the relationship between the
computational values given by the measures and the human perception of
the corresponding property. The performance of each fuzzy partition is
analyzed and tested using the human assessments, and a ranking of mea-
sures is obtained according to their ability to represent the perception of
the property, allowing to identify the most suitable measure.

Keywords: image analysis; feature extraction; texture modelling; fuzzy
partitions; linguistic labels; human perception
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1 Introduction

Color, texture, and shape are typically the three most used low level features for
object recognition and image interpretation. Color and shape represent clear
concepts for humans, and their importance is widely known in computer vision.
Texture, however, is more imprecise and abstract but an equally important
feature. In spite of its importance, there is not an accurate definition for the
concept of texture, but some widespread intuitive ideas. Texture is described by
some authors, in opposition to the idea of homogeneity, as local changes in the
intensity patterns or gray tones [1]. Other authors consider texture as a set of
basic items called texels (or texture primitives), arranged in a certain way. How-
ever, for humans, the most common way to describe texture is by using vague
textural properties, like coarseness, directionality, contrast, line-likeness or reg-
ularity [2, 3], that are a more natural way to represent our perception about
texture primitives. Coarseness is related to the spatial size of texels, direction-
ality reflects whether they have a dominant orientation, contrast is related to
their distinguishability, line-likeness reflects whether they have straight shapes,
and regularity refers to the variation of their placement. From all of them, and
according to the psychological experiments performed by Tamura et al. in [3],
coarseness, contrast and directionality are considered the three most important
texture properties, playing a fundamental role in human visual interpretation
[4, 5, 6].

In addition, it is natural for humans to give linguistic terms to describe the
presence degree of these perceptual properties. For example, if a subject is asked
about the presence degree of coarseness in the images of Figure 1, this subject
would probably say that the texture shown in Figure 1(a) is “very coarse”,
the texture shown in Figure 1(b) is “coarse”, or the texture shown in Figure
1(c) is “very fine”. Likewise, if the subject is asked about the presence degree
of contrast, these textures may be perceived as “high contrasted”, “medium
contrasted” and “very low contrasted”, respectively.

Computational models that are able to provide such kind of linguistic terms
can be very useful in tasks where the most relevant information of the image lies
in the presence degree of the perceptual properties of texture. In this type of
tasks some interaction with subjects is usually needed, so models that describe
texture as humans would are particularly interesting. For example, these models
can be applied in fields such as semantic description of images [7, 8, 9], or
in content-based image retrieval systems [10, 11, 4]. In this case, linguistic
queries related to the presence degree of texture properties can be employed.
In addition, the proposed models can be also applied in expert systems, where
the information provided by the expert is related to the presence of the texture
properties. For example, suppose a medical expert that, according to his/her
experience, concludes that the regions with very fine and high contrasted texture
in microscopic images are indicative of a certain disease. Models that are able to
provide a textural description as expert would can be employed to automatically
identify these areas in the images.

In this paper, we propose a perception-based fuzzy approach where each
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Figure 1: Examples showing the imprecision associated to the properties.

texture property will be modelled by means of a fuzzy partition defined on the
domain of representative measures of the corresponding property. Because of the
importance of coarseness, contrast and directionality concepts, we will focus our
study on these perceptual properties (although other texture properties such as
regularity, line-likeness, etc. can be easily dealt with in a similar way). In order
to select the number of fuzzy sets in our partition, we analyze the ability of each
measure to discriminate between different categories of the perceptual property.
For this purpose, a distinguishability analysis will be applied to each measure on
the basis of the human perception of the texture property. To get information
about the human perception, a set of images covering different presence degrees
of the properties will be used to collect, by means of polls, human assessments
from a set of subjects. This way, we propose to set the number of linguistic labels
used in our approach as the number of different presence degrees of the property
that the measure can actually discriminate. Moreover, we propose to obtain the
membership function associated to each fuzzy set by using the information given
by the distinguishability analysis, obtaining a fuzzy partition adapted to the
human perception of the property. This way, the presence degrees associated to
the linguistic labels will match what a human would expect, providing intuitive
and very useful results, as it will be shown in section 8. In addition, goodness
measures are proposed in order to identify the most appropriate models to
represent the properties of coarseness, contrast and directionality.

The rest of the paper is organized as follows. Section 2 describes the related
work in the literature, while in section 3 a general overview of our methodology
is presented, introducing some basic concepts and the notation used in the pa-
per. After that, the different elements of the model are described in detail in the
following sections; specifically, the computational measures used as reference set
are summarized in section 4, the way to obtain human assessments about the
perception of the properties is faced in section 5, the distinguishability analysis
applied to the measures is detailed in section 6, while section 7 describes the
methodology employed to obtain the parameters of the proposed fuzzy parti-
tions. In section 8 a comparative study of these models with the state of the
art and some results obtained by applying them are shown. Finally, section 9
summarizes the main conclusions and future works.
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2 Related work

The majority of the image analysis techniques in computer vision try to model
texture by means of feature vectors (that usually have very large dimensions)
which have no direct relationship with the different perceptual properties. Most
of these techniques are based on multiresolution analysis and scale-space theory,
such as Gabor functions [12, 13, 14, 15, 16, 17] or Wavelets [18, 19, 20, 21, 22,
23], that are considered as the golden standard in the literature. In addition,
general image classification and feature learning techniques can be also applied
in texture analysis, such as techniques based on kernel learning [24, 25, 26, 27,
28, 29], dictionary learning [30, 31, 32, 33] or genetic programming [34, 35, 36, 37,
38, 39]. However, none of these approaches provides a textural representation
interpretable by humans. On the contrary, they are intended for comparing
different textures on the basis of the similarity between feature vectors, which
is a very important but completely different problem.

Although we can find in the literature some techniques that propose a texture
characterization based on its perceptual properties, most of these approaches
are crisp proposals [40, 41, 42, 43, 44, 3, 45] which do not take into account
the imprecision related to texture. This imprecision must be understood in the
sense that it is not possible to set precise thresholds in the measure domain
to give a textural interpretation (e.g. for coarseness measures, there is not an
immediate way to decide whether there is a fine texture, a coarse texture or
something intermediate). To face this problem, some techniques arise from the
fuzzy set field [46, 47, 4, 48, 49, 50].

In the first group of approaches, each texture property is modeled as a whole
by means of a unique fuzzy set, obtaining models that are able to directly
represent the presence degree of the property [51, 52]. This type of approach
can be very useful in classical tasks like pattern recognition. However, in other
tasks, like semantic description of images or content-based image retrieval using
linguistic queries, a texture characterization using linguistic terms is needed. In
this case, solutions based on fuzzy partitions are more useful, because a set of
linguistic labels and their corresponding membership degrees are provided. In
this paper, we have focused on this second type of approaches.

In the framework of the fuzzy partition-based approaches, a mapping from
low-level statistical features (the crisp measures mentioned above) to high level
textural concepts is performed by defining membership functions for each tex-
tural feature. In the majority of the fuzzy techniques in the literature [10, 53,
54, 4, 50, 55, 56], the measures proposed by Tamura et al. in [3] are used as ref-
erence set, and, for each texture property, a fuzzy partition with five linguistic
terms is obtained. This fuzzy partition is generated through an unsupervised
fuzzy clustering algorithm on the basis of the measure values obtained from an
image database.

However, all these fuzzy approaches have three main drawbacks, that, to the
best of our knowledge, have not been faced in the literature. The first one is
related with the election of the reference set. Although there is a large num-
ber of computational measures associated with each property, in most of these
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proposals only the measures proposed by Tamura et al. in [3] are considered
as reference set, without analyzing their ability to capture the corresponding
property compared with other measures. The second drawback is related to the
number of fuzzy set that have been proposed for the partitions. In all the ap-
proaches commented above the number of fuzzy sets are chosen arbitrarily (five
fuzzy sets are usually employed), without taking into account the capability of
each measure to discriminate between different categories of the corresponding
property. This way, the measure may not be able to provide significantly dif-
ferent values for all these categories, being not possible to distinguish so many
different presence degrees of the property. The third drawback of the fuzzy ap-
proaches commented above is that the parameters that define the membership
functions are adjusted manually or by using a fuzzy clustering, but without
considering the relationship between the measure values and the human per-
ception of the property. This implies that the linguistic labels related to these
membership functions do not necessarily match what a human would expect.

The perception-based fuzzy approach proposed in this paper allows to solve
all these problems. First, different measures of each property are used as refer-
ence set and the ability of each fuzzy partition to represent the corresponding
property has been analyzed, which allows to identify the most appropriate mea-
sures for coarseness, contrast and directionality properties; second, the number
of fuzzy sets used in our approach has been set to the number of different cat-
egories of the perceptual property that the measure can actually discriminate,
which allows to ensure that significantly different values can be provided by the
measure for all the categories; and third, the membership functions associated
to each fuzzy set are obtained by considering the human perception of the cor-
responding property, which allow to obtain presence degrees associated to the
linguistic labels that match what a human would expect.

3 Preliminaries and notations

As mentioned in the above section, in this paper we propose to model texture
properties by means of fuzzy partitions defined on the domain of computational
measures. Given a texture property (coarseness, contrast, directionality, reg-
ularity, etc), let F be a measure of that property and let DF be the measure
domain. The notions of fuzzy texture and fuzzy texture space are introduced
as follows:

Definition 3.1. A fuzzy texture T is a linguistic label whose semantics is rep-
resented by a normalized fuzzy subset of DF .

Definition 3.2. A fuzzy texture space Π is a set of fuzzy textures that defines
a partition of DF .
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From now on, let P = {fineness1, contrast, directionality} be the set of tex-
ture properties that will be modelled in this paper and let Fp = {F p1 , . . . , F

p
Kp
}

be a set of representative computational measures of the property p ∈ P. In our
approach, for each property p ∈ P and each measure F pk ∈ Fp we propose to
define a fuzzy partition Πp

k on the domain of the measure, obtaining linguistic
labels associated to the texture property. We will note Np

k the number of fuzzy
sets in the partition Πp

k, and we will note T pk,i the i-th fuzzy set in Πp
k. The

membership function T pk,i(x) for each fuzzy set T pk,i will be defined by using the
trapezoidal function shown in Figure 2, that has the form:

T pk,i(x; apk,i, b
p
k,i, c

p
k,i, d

p
k,i) =


0 x < apk,i or x > dpk,i
x−apk,i

bpk,i−a
p
k,i

apk,i ≤ x ≤ b
p
k,i

1 bpk,i ≤ x ≤ c
p
k,i

dpk,i−x
dpk,i−c

p
k,i

cpk,i ≤ x ≤ d
p
k,i

(1)

In addition, a fuzzy partition in the sense of Ruspini [57] will be assumed
for Πp

k, i.e.

Nk∑
i=0

T ik(x) = 1 ∀x ∈ DFp
k

(2)

with DFp
k

being the domain of the measure F pk . Some examples of this type of
fuzzy partition are shown in Figure 4.

This way, three questions need to be faced in order to define the fuzzy par-
tition Πp

k: (i) what reference set should be used for the fuzzy partition, (ii) how
many fuzzy sets will be in the partition, and (iii) how to obtain the parame-
ter values of the membership function for each fuzzy set. Concerning to the
reference set, we will define the fuzzy partition on the domain of a given compu-
tational measure F pk ∈ Fp. The measures analyzed in this paper, corresponding
to fineness, contrast and directionality properties, are summarized in section 4.
All of them are automatically computed from the texture images, obtaining a
real value, i.e. DFp

k
= R,∀F pk ∈ Fp.

In order to face the other two questions, we propose to analyze the ability
of each measure to distinguish between different presence degrees of the corre-
sponding property. In this analysis, a set of multiple comparison tests is applied
to each measure on the basis of the human perception of the texture property.
For this purpose, two new questions need to be faced: firstly, how to obtain the
data about the “human perception” of the property and, secondly, how to apply
the set of multiple comparison tests in order to obtain the number of classes
that can be discriminated by each measure.

1Let us remark that “coarseness” and “fineness” are opposite but related textural concepts.
The advantage of modelling the concept of fineness is that the maximum presence of this
property in the image is delimited by the pixel size.
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Figure 2: Trapezoidal function used for each fuzzy set T pk,i

To get information about the human perception of a property p ∈ P, a set
Ip = {Ip1 , . . . , I

p
Np
} of Np images covering different presence degrees of this prop-

erty is gathered. These images are arranged, by means of a poll, into different
classes with an associated presence degree of the property. The description of the
texture image set and the way to obtain this initial classification are detailed in
section 5. In order to estimate the number of classes that can be discriminated
by each measure F pk ∈ Fp, an iterative algorithm based on a set of multiple
comparison tests is applied to the measure values calculated for the images in
Ip. This algorithm starts with the initial classification of these images given by
the polled subjects, and iteratively joins clusters until a partition in which all
classes are distinguishable is achieved. The description of this distinguishability
analysis algorithm is detailed in section 6.

Finally, given a measure F pk ∈ Fp, we propose to set the number of fuzzy
sets Np

k in the partition Πp
k to the number of classes that can be discriminated

by this measure. In addition, the parameter values of the membership func-
tion T pk,i(x) for each fuzzy set T pk,i are obtained by using the information given
by the representative values and the confidence intervals associated to these
classes. The detailed description of the methodology employed to obtain these
parameters is presented in section 7.

4 Computational measures: the reference set

There are many measures in the literature that, given an image, capture the
presence of a textural property in the sense that the greater the value given by
the measure, the greater (lower) the presence of the property. In this study,
we propose to use the computational measures employed in our previous work
[52], corresponding to fineness, contrast and directionality properties. In this
section, these measures are summarized.

4.1 Fineness measures

Among all the perceptual texture properties, the coarseness-fineness is the most
popular one, being considered as the most fundamental feature in texture anal-
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Figure 3: Some examples of the texture images used in the poll corresponding to
the properties of fineness (a), contrast (b) and directionality (c). These images
are in decreasing order according to the presence degree of the corresponding
property.

ysis by some authors [4]. In fact, the presence of fineness is usually associated
to the presence of texture (from this point of view, texture is defined as local
variations against the idea of homogeneity). In this sense, a fine texture con-
tains small texture primitives with large gray tone differences between neighbor
pixels (e.g. the first image of Figure 3(a)), whereas a coarse texture corresponds
to larger primitives formed by several pixels (e.g. the last image of Figure 3(a)).

In this paper, we have initially considered the 17 fineness measures analyzed
in our previous work [58]. These measures can be classified into 3 groups ac-
cording to the strategy used to quantify the coarseness of the texture image.
The first group includes those measures that try to estimate directly the size of
the texels by analyzing the pixels of the image. In this group we can find the
measure defined by Abbadeni et al. in [59], the measure proposed by Tamura et
al. in [3], the Edge Density (ED measure), that is calculated as the percentage
of pixels which are an edge in the image, and the Fractal Dimension (FD mea-
sure) defined by Mandelbrot in [60], that is estimated by following the blanket
method introduced by Peleg in [61].
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The second group includes the measures obtained by applying statistics over
matrices that collect information about the relationships between the gray level
of each pixel and their neighbours. The measures of Haralick [41], that are based
on the GLCM matrix [62], are placed in this group. In particular, 6 coarseness
measures are obtained by applying the statistics contrast, correlation, entropy,
local homogeneity, variance and uniformity over this matrix. This group also
includes the measure defined by Amadasun in [63], the Short Run Emphasis
(SRE measure) given by Galloway in [64], the Small Number Emphasis (SNE
measure) defined by Sun et al. in [65], the Distribution of Gray Level Difference
(DGD measure) proposed by Kim et al. in [66], and the measure defined by
Weszka et al. in [67].

The third group is composed of two measures that are based on the Fourier
power spectrum of the image. The first one is the measure used by Newsam
in [68], computed as the average of power spectrum over ring-shaped regions
centered at the origin, and the second one is the first moment of the power
spectrum (FMPS measure), obtained by computing the mean value of Fourier
power spectrum of the image [69].

However, according to the study performed in [58], some of the above mea-
sures have an unsuitable behavior. The measures of Newsam, FMPS, Entropy
and uniformity are size dependent, i.e. the values given by these measures are
affected by the window size. In addition, the Variance measure does not provide
a representative information about the perception of fineness. Thus, these five
measures are rejected and they will not be taken into account in the following,
focusing our study on the other 12 measures, that are listed in the first column
of Table 1(a). Besides the independence with respect to the image size and the
ability to provide information about the fineness perception, other interesting
properties for texture analysis are also fulfilled by the proposed measures. As
it is shown in [58], they are robust against changes in the image characteristic,
like brightness and contrast, and they have a suitable behavior regarding the
presence of noise in the image.

4.2 Contrast measures

The contrast property reflects the clarity with which texture primitives are
distinguishable. In this sense, a well contrasted texture contains primitives that
are clearly visible and separable (e.g. the first image of Figure 3(b)), whereas
a low contrasted texture has a poor distinguishability between texels (e.g. the
last image of Figure 3(b)). Notice that this property refers to grayscale images,
and it should not be confused with the contrast related to color images.

In this paper, we propose to use 4 of the most used contrast measures in
the literature. Two of them try to estimate directly the contrast between texels
by analyzing the pixels of the image. The first one is the measure defined
by Tamura et al. in [3], which takes into account both the dynamic range of
gray levels in the image and the kurtosis of their distribution. The second one
is the contrast measure defined by Abbadeni in [59], which is based on the
autocovariance function.
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The other two measures are obtained by applying statistics over matrices
that collect information about the relationships between the gray level of each
pixel and their neighbours. The first one is the contrast statistic proposed by
Haralick et al. in [41], which is obtained from GLCM matrices. The second
one is the contrast measure proposed by Amadasun and King in [63], which
takes into account both global statistics (as the dynamic range of gray levels in
the image) and local statistics calculated from the Neighbourhood Gray-Tone
Difference Matrix.

4.3 Directionality measures

The directionality property is related to the presence of a dominant orientation
in texture primitives, and it depends on two factors: (i) the shape of texture
primitives individually, and (ii) their placement rule in the image. In this sense,
a directional texture contains primitives that have a dominant dimension, i.e.
texels with an elongated shape, and, in addition, this primitives are arranged
in the same orientation (e.g. the first image of Figure 3(c)). The directionality
presence decreases as the orientation of all texels does not match, even if they
have an elongated shape (e.g. the second image of Figure 3(c)), or as the shape
of texels is less elongated, even if they are arranged in the same orientation
(e.g. the third image of Figure 3(c)). The absence of directionality (omnidirec-
tional texture) is associated to texture primitives that do not have a dominant
dimension in their shape (e.g. the fourth image of Figure 3(c)) or such that
their arrangement does not have a dominant orientation (e.g. the last image of
Figure 3(c)).

In this paper, we will use 3 of the most known directionality measures from
the literature. The first one is the directionality measure defined by Tamura
et al. in [3], which is based on the computation of an histogram of local edge
probabilities against their directional angle. The second one is the directionality
measure proposed by Noureddine Abbadeni in [59], which is also based on the
analysis of directional angles, but considering the local edges obtained from the
autocovariance function, instead of the local edges of the original image. The
last measure is the directionality statistic computed from the Fourier power
spectrum of the image [67, 68], which analyzes the energy distribution in wedge-
shaped regions of the frequency domain.

5 Study of the perception of properties

In this section, we will describe the methodology proposed to classify the images
in the set Ip according to the human perception of the corresponding texture
property. For this purpose, first a image set Ip is selected for each property
p ∈ P (section 5.1). After that, a poll is designed for assigning images into
different classes with an associated presence degree of the property (section
5.2).
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5.1 The texture image set

For each property p ∈ P, a set Ip = {Ip1 , . . . , I
p
Np
} of Np = 80 images represent-

ing examples of this property has been selected. Figure 3 shows some images
extracted from the set Ip corresponding to the properties of fineness (Figure
3(a)), contrast (Figure 3(b)) and directionality (Figure 3(c)). Each set has been
selected satisfying the following conditions:

• It covers the different presence degrees of the property.

• The number of images for each presence degree is representative enough.

• Each image shows, as far as possible, just one presence degree of the
property.

Due to the third condition, each image Ipi ∈ Ip can be viewed as “homoge-
neous” respect to the presence degree of the corresponding property, i.e., if we
select two random windows (with a dimension which does not “break” the orig-
inal texture primitives and structure), the perceived presence of the property
will be similar for each window (and also with respect to the original image).
In other words, we can see each image Ipi ∈ Ip as a set of lower dimension
images (sub-images) with the same presence degree of the original one. This
will be very useful in our approach, because we can have a larger number of
samples in the distinguishability analysis without extending the number of im-
ages that the subjects have to classify in the poll. From now on, we will note
as IpW = {Ipi,w, i = 1, . . . , Np;w = 1, . . . ,Wp} the set of all the sub-images ex-
tracted from Ip, where Ipi,w is the w-th sub-image of Ipi and Wp is the number
of sub-images considered for each image.

5.2 The poll

Given the image set Ip, the next step is to obtain an initial classification of
the images according to the human perception of the property p ∈ P. For this
purpose, a poll has been designed allowing to assign the images of Ip to different
classes, where each class has an associated presence degree of the property. In
our proposal, an example image which represents the corresponding presence
degree is associated to each class. In order to make this classification easier
for subjects, they were first asked to sort the images of Ip according to their
presence degree of the texture property.

From now on, let Rp be the number of classes that have been considered in
the poll for the property p ∈ P. One of the classes is associated to the presence
degree 1 of this property. In our proposal, traditional examples used in the
literature to define very fine, high contrasted and very directional textures have
been considered for this class [70]. An example that represents this presence
degree for each property is shown in the first image of figures 3(a), 3(b) and
3(c), respectively. Another of the classes considered in the poll represents the
presence degree of 0 of the property. In this case, again, traditional examples

11



used in the literature to define very coarse, very low contrasted and very non-
directional textures has been considered for this class. The last image of figures
3(a) and 3(b) shows an example of this presence degree for fineness and contrast
properties, respectively. In the case of directionality, the presence degree of 0 is
associated to texture primitives that do not have a dominant dimension or such
that their arrangement does not have a dominant orientation, as it is shown in
the last two images of Figure 3(c).

The rest of classes represent presence degrees of the property between 0
and 1. In the case of fineness, nine classes have been regarded, considering
gradual variations in the size of texture primitives, five of which are shown in
the sample images of Figure 3(a). It should be noticed that these images are
in decreasing order according to the presence degree of the fineness concept.
In the case of contrast, five classes have been considered, taking into account
gray level differences in texel edges in order to scale their contrast between the
classes corresponding to degrees 1 and 0. The five representative images used
in the poll are shown in Figure 3(b). In the case of directionality, six classes
have been regarded, considering gradual variations in texels orientation or/and
shape, five of which are shown in Figure 3(c).

This way, an initial classification of the image set Ip into the Rp classes
used in the poll has been obtained, where each class will contain the images
assigned to it by the majority of the 20 subjects who have participated in the
poll. As commented above, thanks to the “homogeneity” in the presence degree
of the property, all the sub-images of Ipi should be classified in the same class
as Ipi . Thus, a partition2 of IpW in Rp classes is obtained, that we will note
PartIpW = {C1, C2, . . . , CRp}.

In this paper, for each image Ipi ∈ Ip, W = 200 sub-images of size 32 × 32
have been considered3, so IpW is formed by 16000 sub-images for each property
p ∈ P. We propose to randomly select 75% of them for the distinguishability
analysis, and the rest will be used for testing the obtained fuzzy partitions. From
now on, we will note Ip,analysisW the set of the selected sub-images from IW , and

we will note Ip,testW the set of the rest of sub-images. The partitions of these
two sets in the Rp classes, noted as PartIp,analysis

W
and PartIp,testW

respectively,

are obtained immediately from PartIpW .

6 Distinguishability analysis of the measures

At this point, the aim is to obtain the number of classes that can be discrim-
inated by a given measure F pk ∈ Fp of a property p ∈ P. To do this, we
propose to analyze each measure by following the iterative method detailed in
the Algorithm 1. This algorithm starts with a initial partition Part0p,k (that in

2Note that this is not a fuzzy partition but a crisp one.
3As mentioned in Section 4, the measures used in this study are not size dependent. There-

fore, the models obtained by means of the fitting process don’t depend on the window size.
Sub-images smaller than 32 × 32 are not considered because they would break texture primi-
tives.
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Algorithm 1 Distinguishable clusters selection

Input:
Part0p,k = C1, C2, . . . , Cn: Initial Partition
δ: distance function between clusters
φ: Set of multiple comparison tests
NT : Number of positive tests to accept distinguishability

1.-Initialization
m = 0
distinguishable = false

2.- While (distinguishable = false) and (m < n)
Apply the multiple comparison tests φ to Partmp,k
If for each pair Ci, Cj ∈ Partmp,k more than NT of the
multiple comparison tests φ show distinguishability

distinguishable = true
Else

Search for the pair of clusters Cr, Cr+1, satisfying
δ(Cr, Cr+1) = min{δ(Ci, Ci+1), Ci, Ci+1 ∈ Partmp,k}
Join Cr and Cr+1 on a cluster Cu = Cr ∪ Cr+1

Partm+1
p,k = (Partmp,k\{Cr, Cr+1}) ∪ {Cu}

m = m+ 1
3.- Output: Partmp,k = C1, C2, . . . , Cn−m

our approach is PartIp,analysis
W

) and iteratively joins clusters until a partition

in which all classes are distinguishable is achieved. For this purpose, in each
iteration a set of multiple comparison tests φ is applied to the corresponding
partition in order to analyze the distinguishability of the classes. If the num-
ber of positive tests is less than NT for any pair of classes, a distance between
classes is computed by means of a function δ, joining the pair with the mini-
mum distance. The obtained partition is analyzed in the next iteration and this
process continues until the number of positive tests is equal or greater than NT
for all the pair of classes. In this case, we consider that all the classes in the
partition are distinguishable, obtaining the number of classes that can be dis-
criminated by the analyzed measure. Note that the proposed iterative method
follows a classical agglomerative hierarchical clustering algorithm, where the
distance metric is given by the function δ, but in this case the merging pro-
cess stops when all the clusters are distinguishable instead of building all the
hierarchy.

In our proposal, the following input parameters for Algorithm 1 have been
selected:

• φ is a set of 5 multiple comparison tests listed below [71]:

– Scheffé test

– Bonferroni test
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Table 1: Result obtained from the distinguishability analysis for the properties
of fineness (a), contrast (b) and directionality (c).

Fineness
Np
k

Grouped
rpk,5 ±Ψp

k,5 rpk,4 ±Ψp
k,4 rpk,3 ±Ψp

k,3 rpk,2 ±Ψp
k,2 rpk,1 ±Ψp

k,1measure classes
Correlation 5 {1,2-4,5-6,7-8,9} 0.1145±0.0378 0.4066±0.0282 0.4988±0.0238 0.6112±0.0135 0.7747±0.0202
ED 5 {1,2,3-5,6-8,9} 0.3531±0.0091 0.2914±0.0067 0.2707±0.0070 0.2462±0.0084 0.1796±0.0066
Amadasun 4 {1,2-4,5-8,9} - 0.1936±0.0073 0.3439±0.0113 0.4165±0.0102 0.8000±0.0571
Contrast 4 {1,2-5,6-8,9} - 3325±282.3 2572±308 1866±98.83 796.6±132.7
FD 4 {1,2,3-8,9} - 3.3857±0.0360 3.1640±0.0282 2.9763±0.0518 2.5713±0.0394
Tamura 4 {1,2-6,7-8,9} - 1.540±0.0634 1.864±0.0722 2.125±0.0420 3.045±0766
Weszka 4 {1,2-6,7-8,9} - 0.153±0.0064 0.113±0.0093 0.099±0.0036 0.051±0.0041
Abbadeni 3 {1,2-8,9} - - 5.9054±0.3070 10.791±0.2814 25.899±2.7423
DGD 3 {1,2-8,9} - - 0.0237±0.0014 0.0419±0.0017 0.0947±0.0076
LH 3 {1,2-8,9} - - 0.0216±0.0013 0.0514±0.0026 0.1285±0.0112
SNE 3 {1,2-8,9} - - 0.8781±0.0188 0.7752±0.0092 0.5668±0.0251
SRE 3 {1,2-8,9} - - 0.9962±0.0004 0.9885±0.0007 0.9665±0.0037

(a)

Contrast
Np
k

Grouped
rpk,5 ±Ψp

k,5 rpk,4 ±Ψp
k,4 rpk,3 ±Ψp

k,3 rpk,2 ±Ψp
k,2 rpk,1 ±Ψp

k,1measure classes
Tamura 5 {1,2,3,4,5} 0.1294±0.0116 0.2398±0.0109 0.4590±0.0184 0.6508±0.0225 1.2379±0.0286
Amadasun 5 {1,2,3,4,5} 0.2727±0.0284 0.4449±0.0397 0.8362±0.0665 1.1792±0.0818 2.6313±0.1454
Abbadeni 4 {1,2,3-4,5} - 0.5343±0.0392 0.9796±0.0586 1.7591±0.0936 3.4674±0.2687
Haralick 4 {1-2,3,4,5} - 0.5375±0.0383 0.9735±0.0755 1.6307±0.1633 3.0789±0.2472

(b)

Directionality
Np
k

Grouped
rpk,5 ±Ψp

k,5 rpk,4 ±Ψp
k,4 rpk,3 ±Ψp

k,3 rpk,2 ±Ψp
k,2 rpk,1 ±Ψp

k,1measure classes
Tamura 5 {1,2-3,4,5,6} 0.8423±0.0049 0.9070±0.0043 0.9398±0.0047 0.9643±0.0039 0.9846±0.0038
Fourier 5 {1,2,3-4,5,6} 0.0535±0.0060 0.1283±0.0139 0.2099±0.0131 0.2778±0.0189 0.3672±0.0198
Abbadeni 4 {1,2-3,4-5,6} - 0.2516±0.0391 0.6380±0.0298 0.8026±0.0189 0.9638±0.0077

(c)

– Duncan test

– Tukey’s least significant difference test

– Tukey’s honestly significant difference test

• The number of positive tests to accept distinguishability will be fixed to
NT = 3.

• The distance function δ is defined as δ = 1/p, where p is the p-value
computed from the analysis of variance (ANOVA) [72, 73] of the involved
classes: the more overlapped the classes, the shorter the obtained distance.

From now on, we shall note as Υp
k = Cpk,1, C

p
k,2, , . . . , C

p
k,Np

k
the Np

k classes

that can be discriminated by the measure F pk ∈ Fp associated to the property
p ∈ P. For each class Cpk,i, we will note as rpk,i the class representative value.

In this paper, we propose to compute rpk,i as the mean of the measure values in

the class Cpk,i.
Table 1 shows the results obtained by applying the proposed algorithm with

the different measures considered in this paper. The second column of this

14



table shows the Np
k classes that can discriminate each measure and the third

column shows how the initial classes have been grouped. The columns from
fourth to eighth show the representative values rpk,i associated to each cluster.
It can be noticed that, for the property of fineness, the measures of Correlation
and ED are able to discriminate five different classes of this property, the mea-
sures of Amadasun, Contrast, FD, Tamura and Weszka can discriminate four
classes, while the other measures are not able to discriminate more than three
classes of fineness. In the case of the contrast property, we can see that the
measures of Tamura and Amadasun can distinguish five different classes of this
property, while the measures of Abbadeni and Haralick are able to discriminate
four. Finally, with regard to the directionality property, five classes can be dis-
tinguishable for the measures of Tamura and Fourier, and four for the measure
of Abbadeni.

7 The fuzzy partitions

In this section we will deal with the problem of obtaining, for each fuzzy set
T pk,i in the partition Πp

k, the parameters of the membership function T pk,i(x),
which is defined by using the trapezoidal function given by equation (1). As
it was commented in section 3, the number of fuzzy sets Np

k of the partition
will be given by the number of categories that each measure can discriminate
(shown in Table 1). In addition, we propose to obtain the parameters of the
corresponding membership functions on the basis of the information given by
the multiple comparison tests used in the previous section.

As it is known, in these tests confidence intervals around the representative
value of each class are calculated, being accomplished that these intervals do not
overlap for distinguishable classes. The interpretation of the confidence interval
associated to a class is that all values belonging to them are considered as
plausible values for the estimated mean of this class. These confidence intervals
are defined by the following parameter

Ψp
k,i = 1.96σ̄pk,i/

√∣∣∣∣∣∣Cpk,i∣∣∣∣∣∣ (3)

with σ̄pk,i and
∣∣∣∣∣∣Cpk,i∣∣∣∣∣∣ being the estimated standard deviation and the cardinality

of the class Cpk,i, respectively. Table 1 shows the values Ψp
k,i for each class

associated to each measure F pk ∈ Fp.
Based on this idea, we propose to set the center of the kernel of the member-

ship function T pk,i(x) as the representative value rpk,i of the corresponding i-th
class, using the information of the confidence interval to obtain the value of the
parameters bpk,i and cpk,i:

bpk,i = rpk,i −Ψp
k,i cpk,i = rpk,i + Ψp

k,i (4)

Since a fuzzy partition in the sense of Ruspini is proposed, the value of the
parameters apk,i and dpk,i is obtained as
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Table 2: Performance evaluation and goodness measure of the proposed parti-
tions for the properties of fineness (a), contrast (b) and directionality (c).

Fineness
precision recall fpk gpkmeasure

Amadasun 0.7486 0.7744 0.7613 0.6852
Abbadeni 0.7643 0.8006 0.7820 0.6256
Correlation 0.6129 0.5948 0.6037 0.6037
SRE 0.7009 0.8092 0.7512 0.6009
LH 0.6844 0.8041 0.7394 0.5915
DGD 0.6809 0.7890 0.7310 0.5848
FD 0.6025 0.6821 0.6399 0.5759
SNE 0.6285 0.7423 0.6807 0.5446
Tamura 0.5497 0.5600 0.5548 0.4993
Weszka 0.5424 0.5652 0.5536 0.4982
ED 0.5031 0.5245 0.5135 0.4622
Contrast 0.4776 0.5235 0.4995 0.4496

(a)

Contrast
precision recall fpk gpkmeasure

Tamura 0.9109 0.8989 0.9048 0.9048
Amadasun 0.7771 0.7248 0.7500 0.7500
Abbadeni 0.8409 0.8223 0.8315 0.7484
Haralick 0.7231 0.6710 0.6961 0.6265

(b)

Directionality
precision recall fpk gpkmeasure

Tamura 0.7972 0.7636 0.7800 0.7800
Abbadeni 0.8146 0.8192 0.8169 0.7361
Fourier 0.6715 0.6633 0.6674 0.6674

(c)

apk,i = cpk,i−1 dpk,i = bpk,i+1 (5)

In addition, it should be noticed that apk,1 = bpk,1 = −∞ and cp
k,Np

k
= dp

k,Np
k

=
∞.

At this point, once a fuzzy partition has been defined for each computational
measure, the aim is to obtain a goodness measure that allows us to compare
the ability of each partition to model the corresponding texture property. In
our approach, given a partition Πp

k, we propose to define a goodness measure
gpk associated to it as:

gpk = fpk · h
p
k (6)

This goodness measure will take into account two factors:

• fpk ∈ [0, 1], that measures whether the results given by the partition are
in accordance with what a human would expect.

• hpk ∈ [0, 1], which is a factor that will depend on the number of classes Np
k

that can be discriminated by the measure.

Thus, the highest goodness will be obtained for the partition that maximizes
the product of both factors, i.e. a good partition must be able to discriminate
as many different classes of the property as possible providing results that are
in accordance with what a human would expect. In order to evaluate the re-
lationship between the results given by Πp

k and the human perception, a test

using the sub-images in Ip,testW will be applied. This test will study whether
the class in which each sub-image is classified according to the poll matches the
corresponding class in the proposed partition. The metrics precision and recall
will be used, as will be shown below.

Given an image Ipi,w ∈ I
p,test
W , first we will identify the initial class Cj ∈

PartIpW , j = 1, . . . , Rp in which this image has been classified according to
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the poll. Then, we will obtain the class Cpk,n ∈ Υp
k, n = 1, . . . , Np

k in which
Algorithm 1 has grouped the initial class Cj . Thus, the test with the image

Ipi,w will be considered as a success if mp,k
i,w ∈ (T pk,n)α, with mp,k

i,w being the result

of applying the measure F pk to the sub-image Ipi,w, and with (T pk,n)α being the

α-cut at level α of T pk,n (i.e. (T pk,n)α = {x | T pk,n(x) ≥ α}), where T pk,n is the

fuzzy set associated to the class Cpk,n. The test will be considered as a failure
otherwise. In this paper, we have considered the value α = 0.2 in order to avoid
the outliers of each class. This implies that, for a test image, the membership
degree to the corresponding fuzzy set must be at least 0.2 to be considered as a
success.

We shall use the metrics precision and recall, widely used in classification
tasks, for assessing the goodness of the proposed partitions. Let true positives(Cpk,i),

false positives(Cpk,i) and false negatives(Cpk,i) be the true positives, false pos-

itives and false negatives for the class Cpk,i, respectively. The metrics precision

and recall can be computed for each class Cpk,i ∈ Υp
k as:

precision(Cpk,i) =
true positives

(
Cpk,i)true positives(C

p
k,i)+false positives(C

p
k,i)

(7)

recall(Cpk,i) =
true positives

(
Cpk,i)true positives(C

p
k,i) + false negatives(Cpk,i)

(8)
The global metrics precisionpk and recallpk for the measure F pk associated to

the partition Πp
k will be computed as the average of the corresponding metrics

for all the classes Cpk,i ∈ Υp
k, i = 1, . . . , Np

k . The second and third columns of
tables 2(a), 2(b) and 2(c) show the obtained metrics for the proposed fuzzy par-
titions corresponding to the properties of fineness, contrast and directionality,
respectively.

In order to give a single value to evaluate the performance of each partition,
it is usual to combine both metrics into a single measure called f-measure or
balanced f-score, defined as [74]:

fpk = 2 ·
precisionpk · recall

p
k

precisionpk + recallpk
(9)

The obtained fpk value for each fuzzy partition is shown in the fourth column
of tables 2(a), 2(b) and 2(c). Thus, this value fpk will be used in gpk to measure
the relationship between the results given by Πp

k and the human perception of
the property. The other component considered in gpk, noted as hpk, will take into
account the number of classes Np

k that can be discriminated by the measure,
and we propose to define it as follows:
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Fineness (Amadasun)
i aik bik cik dik
1 −∞ −∞ 0.2008 0.3326
2 0.2008 0.3326 0.3551 0.4062
3 0.3551 0.4062 0.4267 0.7430
4 0.4267 0.7430 ∞ ∞

Linguistic labels:

VF: “very fine”, F: “fine”, C: “coarse”, VC: “very coarse”

(a)

Contrast (Tamura)
i aik bik cik dik
1 −∞ −∞ 0.1410 0.2289
2 0.1410 0.2289 0.2507 0.4405
3 0.2507 0.4405 0.4774 0.6282
4 0.4774 0.6282 0.6733 1.2093
5 0.6733 1.2093 ∞ ∞

Linguistic labels:

VLC: “very low contrasted”, LC: “low contrasted”, MC:
“medium contrasted”, HC: “high contrasted”, VHC: “very
high contrasted”

(b)

Directionality (Tamura)
i aik bik cik dik
1 −∞ −∞ 0.8471 0.9027
2 0.8471 0.9027 0.9113 0.9350
3 0.9113 0.9350 0.9445 0.9604
4 0.9445 0.9604 0.9682 0.9807
5 0.9682 0.9807 ∞ ∞

Linguistic labels:

VLD: “very low directional”, LD: “low directional”, MD:
“medium directional”, HD: “high directional”, VHD: “very
high directional”

(c)

Figure 4: Proposed fuzzy partitions Πp
k corresponding to the properties of fine-

ness (a), contrast (b) and directionality (c).
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hpk =


1 if Np

k = MAXNp
k

1− ρ · (MAXNp
k
−Np

k ) if 1 < Np
k < MAXNp

k

0 if Np
k = 1

(10)

with MAXNp
k

= max{Np
k , k = 1, . . . ,Kp}. Thus, the maximum value of this

component, which is hpk = 1, will correspond to the partitions with the maximum
number of fuzzy sets among all the analyzed partitions (in this paper MAXNp

k
=

5). The value of hpk will be reduced by a factor ρ as Np
k decreases, and it will be

0 if Np
k = 1, since in this case the partition contains a unique fuzzy set, which is

not useful. In our approach, a factor ρ = 0.1 has been considered, so hpk = 1 for
Np
k = 5, hpk = 0.9 for Np

k = 4 and hpk = 0.8 for Np
k = 3 (there are no partitions

with Np
k ≤ 3).

The fifth column of tables 2(a), 2(b) and 2(c) shows the goodness measure
gpk for the fuzzy partitions corresponding to the properties of fineness, contrast
and directionality, respectively. Note that these tables have been sorted in
decreasing order of this value. In our experiments, the fuzzy partitions with
the highest goodness value are obtained by using the measure of Amadasun in
the case of fineness, and the measures of Tamura in the case of contrast and
directionality. The parameters corresponding to these fuzzy partitions, as well
as their graphical representation, are shown in Figure 4.

Regarding the linguistic labels associated to each fuzzy set, we propose to
combine the terms related to the texture property (‘fine/coarse’, ‘contrasted’,
‘directional’) with linguistic hedges such as ‘very’, ‘medium’, ‘low’, etc., that are
usually employed by humans to describe the gradual presence of a given concept
[4, 75]. This way, linguistic labels such as ‘very fine’, ‘medium contrasted’ or
‘very low directional’ have been proposed, as it is shown in Figure 4.

Let us remark that, when applying our approach for different random choices
of learning and test examples, the obtained parameters for the fuzzy partitions
vary less than 0.5% of the size of the support of the label in all cases. Hence,
our approach is robust in the estimation of the parameters. This was expected
because of our use of average value and confidence interval for calculating the
kernel of the linguistic labels.

8 Results

In this section, the goodness of the fuzzy sets proposed for fineness, contrast and
directionality properties will be analyzed. First, in section 8.1, we will compare
them with the state of the art in the fuzzy modelling of visual texture properties.
Then, the proposed fuzzy sets will be applied to several examples with images in
order to analyze their performance. In particular, the fuzzy partitions Πp

k with
the highest goodness value (shown in Figure 4) will be employed. The results for
fineness, contrast and directionality properties are shown in sections 8.2, 8.3 and
8.4, respectively. In addition, in section 8.5 we will show an example where the
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proposed fuzzy sets are applied for content-based image retrieval using linguistic
labels.

8.1 Comparison with the state of the art

At this point, the aim is to compare the fuzzy sets proposed in this paper (the
fuzzy partitions obtained in the previous section) with the state of the art in the
fuzzy modelling of visual texture properties. As we have commented in section
2, two different group of fuzzy approaches can be found in the literature. In
the first group, each texture property is modeled as a whole by means of a
unique fuzzy set defined on the domain of different computational measures,
that directly represents the presence degree of the property [51, 52]. As only
one label is used in this type of techniques (the label associated to the unique
fuzzy set), in order to compare these techniques with our approach, we need a
strategy to generate Np

k different labels. For this purpose, a crisp partition of
Np
k equi-spaced intervals has been performed in the membership degree domain,

with Np
k being the number of classes in the fuzzy partition that it is compared

with. This way, each interval can be associated to the corresponding fuzzy set
in the partition on the basis of its position in the membership degree domain.

The second group of fuzzy approaches in the literature is based on fuzzy
partitions. The majority of these techniques [10, 54, 4, 55, 56] propose a similar
solution: for each texture property, a fuzzy partition with five linguistic terms
is defined on the domain of the corresponding measure of Tamura. In these
approaches, each fuzzy partition is generated through an unsupervised fuzzy
clustering algorithm on the basis of the measure values obtained from a set of
texture images. In order to include the fuzzy partitions proposed in those works
in our comparative study, we have generated them by performing a fuzzy clus-
tering on the subset of images Ip,analysisW commented in the previous sections.
In this comparative study, the items “Unique fuzzy set” and “Fuzzy clustering”
refer to the first and the second type of fuzzy approaches in the literature, re-
spectively, while the item “Ours” refers to the fuzzy partition proposed in this
paper.

The statistic fpk proposed in equation (6), that measures whether the results
given by the partition are in accordance with what a human would expect,
has been employed in this comparative study. As it has been commented in
section 7, in order to evaluate the relationship between the fuzzy partitions and
the human perception, we have to study whether the class in which each sub-
image is classified according to the poll matches the corresponding class using
the fuzzy partition. Thus, in the case of the “Fuzzy clustering” approach, we
have to associate the fuzzy sets in each partition with the classes obtained by
applying the Algorithm 1 for the measure of Tamura. In a similar way, the
intervals in the membership degree domain of the “Unique fuzzy set” approach
should be associated with the classes obtained by applying this algorithm for
the measure used as reference set.

If the number of classes proposed in the literature approach match with the
corresponding number of classes obtained in the distinguishability analysis, we
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Table 3: Comparative study between the “Fuzzy clustering” approach (“FC
(Tamura)”), the “Unique fuzzy set” approach using the measure of Tamura
(“UFS (Tamura)”) and using the measure with the highest goodness value
(“UFS (best)”), our approach using the measure of Tamura (“Ours (Tamura)”)
and our approach using the measure with the highest goodness value (“Ours
(best)”).

Fineness Contrast Directionality
Fuzzy model precision recall fpk precision recall fpk precision recall fpk
FC (Tamura) 0.5766 0.5028 0.5372 0.5838 0.5216 0.5509 0.7869 0.7200 0.7520
UFS (Tamura) 0.5127 0.4780 0.4948 0.7156 0.6991 0.7072 0.6073 0.5922 0.5997
UFS (best) 0.5308 0.6213 0.5725 0.7156 0.6991 0.7072 0.6073 0.5922 0.5997
Ours (Tamura) 0.5497 0.5600 0.5548 0.9109 0.8989 0.9048 0.7972 0.7636 0.7800
Ours (best) 0.7486 0.7744 0.7613 0.9109 0.8989 0.9048 0.7972 0.7636 0.7800

can establish a direct correspondence. This way, we can assume that each class
in the partition of the literature approach is associated to the corresponding
class Cpk,n, where p is the texture property, k is the measure used as reference

set, and n is the order of the class in the partition4. If, on the contrary, the
number of classes does not match, Algorithm 1 should be properly applied in
order to obtain the number of classes proposed in the literature. For example, in
the case of the fineness property, five linguistic labels have been proposed in the
“Fuzzy clustering” approach, but, as it was commented in section 6, only four
classes can be discriminated by the measure of Tamura. This way, we propose
to apply Algorithm 1, but in this case the iterative grouping process is stopped
when five classes are achieved, although they are not distinguishable.

Table 3 shows the results obtained in this comparative study for the prop-
erties of fineness, contrast and directionality according to the statistic fpk . We
have compared the “Fuzzy clustering” approach (“Fuzzy clustering (Tamura)”),
the approach based on a unique fuzzy set using the measure of Tamura (“Unique
fuzzy set (Tamura)”) and using the measure with the highest goodness value
(“Unique fuzzy set (best)”), and our approach using the measure of Tamura
(“Ours (Tamura)”) and using the measure with the highest goodness value
(“Ours (best)”). As it has been shown in section 7, in the case of contrast
and directionality properties, the partition with the highest goodness value is
obtained for the measure of Tamura, so “Ours (best)” and “Ours (Tamura)”
correspond to the same fuzzy model. A similar situation has happened in the
case of the “Unique fuzzy set” approach. We can see that, for both properties,
a higher value of fpk is obtained with our approach, which implies that the fuzzy
partitions proposed in this paper for the measure of Tamura improves the par-
titions in the literature. In the case of the fineness property, our fuzzy partition
for the measure of Tamura also improves the literature approaches, but, in ad-

4Note that each fuzzy set can be ordered semantically in a partition according to its
linguistic label.
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“very fine” “fine” “coarse” “very coarse”

(a) (b) (c) (d) (e)

Figure 5: Result for a collection of texture images. (a) Original images. (b)-
(e) Mapping from the original images to the membership degree corresponding
to the fuzzy sets with labels “very fine”, “fine”, “coarse” and “very coarse”,
respectively, obtained by applying the proposed fuzzy partition for the fineness
property.

dition, we have proposed a fuzzy model using the measure of Amadasun that is
more suitable to represent the fineness property.

When applying our approach for different random choices of learning and test
examples, as commented in the previous section, the obtained parameters for
the fuzzy partitions do not vary significantly, and consequently the comparison
with other techniques shown in Table 3 remains the same, with differences in
the statistic of less than 0.01 in all cases. Hence, our approach is also robust
regarding comparison with other techniques.

In order to assess the ability of our fuzzy models to represent the presence
degree of a texture property, the results obtained by applying these models to
experiments with different images will be shown in next sections.

8.2 Fineness results

In this section, two experiments using the proposed fuzzy partition for the fine-
ness property are shown. For the first one, we have considered Figure 5(a), cor-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Pattern recognition. (a) Original image (b) Binary image obtained
by thresholding the original one. (c) Region outlines of b superimposed on the
original image. (d)-(g) Mapping from the original image to the membership
degree corresponding to the fuzzy sets “very fine”, “fine”, “coarse” and “very
coarse”, respectively. (h) Region outlines obtained by thresholding g (“very
coarse” texture) superimposed on the original image.

responding to a collection of texture images, each one with a different decreasing
perception degree of fineness. Figures 5(b)-(e) show a mapping from the original
texture images to the membership degree corresponding to the fuzzy sets with
labels “very fine”, “fine”, “coarse” and “very coarse”, respectively, obtained by
applying the proposed fuzzy partition. In order to obtain these mappings, for
each pixel in the original images, a centered window of size 32 × 32 has been
analyzed and its membership degree to each fuzzy set has been calculated. This
degree have been mapped into a gray level from 0 to 255. Thus, for example,
Figure 5(b) represents the degree in which the texture is perceived as “very
fine”, with a white level meaning degree 1, and a dark one meaning degree 0. It
can be noticed that our model captures the evolution of the perception degrees
of fineness, and the obtained mappings can be directly interpreted by humans.

The second experiment, where the proposed fineness model has been em-
ployed for pattern recognition, is presented in Figure 6. In this case, the mi-
croscopy image shown in Figure 6(a), corresponding to the microstructure of a
metal sample, has been used. The lamellae indicates islands of eutectic, which
are to be separated from the uniform light regions. The brightness values in
regions of the original image are not distinct, so texture information is needed
for extracting the uniform areas. This fact is showed in figures 6(b) and 6(c),
where a thresholding on the original image is displayed (homogeneous regions
cannot be separated from the textured ones as they “share” brightness values).

As in the previous experiment, the proposed fuzzy partition is used to obtain
the membership degree to the fuzzy sets with labels “very fine”, “fine”, “coarse”
and “very coarse”, and the corresponding mappings are shown in figures 6(d)-
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(g), respectively. It can be noticed that uniform light regions correspond to areas
with high membership degrees to the fuzzy set “very coarse” (Figure 6(g)), and
low membership degrees to the others. Thus, these regions can be extracted
with ease by selecting the pixels of Figure 6(g) with a degree higher than 0.9
(i.e. an α-cut of the fuzzy set “very coarse” with α = 0.9), as it is shown in
Figure 6(h). In addition, we can conclude from the obtained mappings that the
eutectic mixture surrounding these regions is mostly a “fine” texture (Figure
6(e)).

Note that, if there are neighbouring regions in the image with a fineness
presence corresponding to non-adjacent fuzzy sets, the boundary between these
regions will appear in the mappings associated to the intermediate fuzzy sets,
as can be seen in Figure 6(f). This happens because in the mapping process,
windows that contain both textures are analyzed for pixels near the boundary,
so the fineness measure gives an intermediate value.

8.3 Contrast results

In this section, two experiments using the proposed fuzzy partition for the con-
trast property are performed. For the first one, we have considered the collection
of texture images shown in Figure 7(a), each one with a different decreasing per-
ception degree of contrast. Figures 7(b)-(f) show a mapping from the original
images to the membership degree corresponding to the fuzzy sets with labels
“very high contrasted”, “high contrasted”, “medium contrasted”, “low con-
trasted” and “very low contrasted”, respectively. These mappings are obtained
in a similar way to the fineness ones, by applying the proposed fuzzy partition
for the contrast property. Thus, for example, Figure 7(b) represents the degree
to which the texture is perceived as “very high contrasted”, with a white level
meaning maximum degree, and a dark one meaning zero degree. It can be no-
ticed that the result obtained with our model matches what a human would
expect, capturing the evolution of the perception degrees of contrast.

For the second experiment, let us consider Figure 8(a), corresponding to a
natural image where several textures with different perception degrees of con-
trast are present. As in the previous experiment, the proposed fuzzy partition
is used to obtain the membership degree to the fuzzy sets with labels “very
high contrasted”, “high contrasted”, “medium contrasted”, “low contrasted”
and “very low contrasted”, and the corresponding mappings are shown in fig-
ures 8(b)-(f), respectively. It can be noticed that, as it was expected, the region
corresponding to the leopard skin has high membership degrees to the fuzzy set
“very high contrasted” (Figure 8(b)), and very low for the rest. In addition, we
can conclude that the branch of the tree can be considered as a low contrasted
texture (Figure 8(e)), and that the background is very low contrasted (Figure
8(f)).

Note that the boundary between different textures appears in the mappings
associated to several fuzzy sets (figures 8(c)-(e)). This happens because in the
mapping process, windows that contain both textures are analyzed for pixels
near the boundary, so the value given by the contrast measure depends on the
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Figure 7: Result for a collection of texture images. (a) Original images. (b)-(f)
Mapping from the original image to the membership degree corresponding to
the fuzzy sets with labels “very high contrasted”, “high contrasted”, “medium
contrasted”, “low contrasted” and “very low contrasted”, respectively, obtained
by applying the proposed fuzzy partition for the contrast property.

contrast of each texture separately, as well as the contrast between them.

8.4 Directionality results

In the case of directionality, two experiments using the proposed fuzzy partition
are also shown. For the first one, we have considered the collection of texture
images shown in Figure 9(a), each one with a different decreasing perception
degree of directionality. Figures 9(b)-(f) show a mapping from the original im-
ages to the membership degree corresponding to the fuzzy sets with labels “very
high directional”, “high directional”, “medium directional”, “low directional”
and “very low directional”, respectively. These mappings are obtained in a
similar way to the previous ones, by applying the proposed fuzzy partition for
the directionality property. It can be noticed that the proposed fuzzy partition
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Figure 8: Result for a natural image. (a) Original image. (b)-(f) Mapping from
the original image to the membership degree corresponding to the fuzzy sets
with labels “very high contrasted”, “high contrasted”, “medium contrasted”,
“low contrasted” and “very low contrasted”, respectively.

captures the evolution of the perception degrees of directionality.
For the second experiment, Figure 10(a) has been considered, corresponding

to a natural image where several textures with different perception degrees of
directionality are present. The proposed fuzzy partition is used to obtain the
membership degree to the fuzzy sets “very high directional”, “high directional”,
“medium directional”, “low directional” and “very low directional”, and the
corresponding mappings are shown in figures 10(b)-(f). As can be seen, these
mappings represents the directionality of the different textures in the image:
the region corresponding to the door has high membership degrees to the fuzzy
set “very high directional” (Figure 10(b)), and very low for the rest; the region
of the brick wall has high membership degrees to the fuzzy set “low directional”
(Figure 10(e)), while the region corresponding to the vine on the right side of
the image can be considered as a very low directional texture (Figure 10(f)).
Therefore, we can say that the obtained mappings are directly interpretable by
humans.

Note that pixels near the boundary of adjacent textures have high member-
ship degrees to the fuzzy set “very low directional” (Figure 9(f)). This happens
because each texture has a different orientation, so windows that contain both
textures in the mapping process are considered as non-directional textures. The
boundary between different textures also appears in the mappings associated
to the intermediate fuzzy sets (figures 9(c)-(e)) as the directionality decreases
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Figure 9: Result for a collection of texture images. (a) Original images. (b)-(f)
Mapping from the original image to the membership degree corresponding to
the fuzzy sets with labels “very high directional”, “high directional”, “medium
directional”, “low directional” and “very low directional”, respectively, obtained
by applying the proposed fuzzy partition for the directionality property.

gradually. This phenomenon will always appear, except in the case of adjacent
textures with exactly the same orientation.

8.5 Content-based image retrieval example

In this section, the fuzzy partitions proposed in this paper are used for pre-
liminary results on content-based image retrieval. In classical image retrieval
systems, images are represented by vectors of features, and queries need to be
defined as an image or sketch. In our approach, however, the proposed fuzzy
sets can be used to describe images in terms of their texture fineness, contrast
and directionality, allowing to perform queries on the basis of linguistic terms.

For this purpose, fuzzy dominant descriptors have been defined for each
texture property in a similar way as the descriptors introduced in [76]. Let
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Figure 10: Result for a natural image. (a) Original image. (b)-(f) Mapping from
the original image to the membership degree corresponding to the fuzzy sets with
labels “very high directional”, “high directional”, “medium directional”, “low
directional” and “very low directional”, respectively.
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(c)

Figure 11: Retrieval results for the inclusion query with the labels Very high di-
rectional and Coarse (a), Very high directional, Coarse and Very high contrasted
(b), and Very high directional, Coarse and Very low contrasted (c).
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P = T a finite reference universe of texture fuzzy sets which model fineness,
directionality and contrast properties. We define the Fuzzy Dominant Texture
Descriptor as the fuzzy set

FDTD =
∑
T∈T

Dom(T )/T (11)

with Dom(T ) being the dominance degree of a texture property T as it is defined
in [76]. For example, a Fuzzy Dominant Texture Descriptor FDTD = 1.0/fine
+ 0.8/V eryDirectional + 0.2/MediumContrast could be interpreted as the
texture properties fine dominates with degree 1, V eryDirectional with degree
0.8 and MediumContrast with degree 0.2.

Moreover, fuzzy operators over this descriptors are proposed to define con-
ditions in image retrieval queries. In this example, the fuzzy inclusion operator
proposed in [77] is employed. Let FDi and FDj be two fuzzy descriptors de-
fined over a finite reference universe of fuzzy sets P , let S be a similarity relation
defined over the elements of P , ⊗ a t-norm, and J a fuzzy implication operator.
The inclusion degree of FDi in FDj driven by the similarity relation S, the
t-norm ⊗ and the fuzzy implication operator J is calculated as follows:

ΘS,⊗,J(FDj , FDi) = min
x̃∈P

max
ỹ∈P

θi,jS,⊗,J(x̃, ỹ) (12)

where
θi,jS,⊗,J(x̃, ỹ) = ⊗(J(FDi(x̃), FDj(ỹ)), S(x̃, ỹ)) (13)

In this proposal, the minimum as t-norm ⊗, the similarity relation S defined
in equation 14 and the Lukasiewicz operator [78] as implication operator J are
used since by using them, equation (13) satisfies all the Sinha-Dougherty axioms
for inclusion measures [79].

S(x̃, ỹ) =

{
1 if x̃ = ỹ
0 otherwise

(14)

The database used in this retrieval system is an extension of the standard
VisTex database [80], where new texture images have been incorporated in order
to introduce more variety in the presence degree of the properties. In the first
example, Figure 11(a) shows the retrieval results for the inclusion query with
the linguistic labels Very high directional and Coarse (specifically, the query
descriptor is FDquery

TD = 1/veryHighDirectional + 1/Coarse). Retrieved images
are shown in decreasing order of the inclusion degree, that is shown below each
image. Only the images with an inclusion degree higher than 0.9 are shown in
this figure. It can be noticed that these images match the perception of very
high directional and coarse textures.

More specific retrieval results can be obtained by adding contrast informa-
tion, as it is shown in figures 11(b) and 11(c). In the first case, the linguistic
label Very high contrasted has been added to the query. As in Figure 11(a),
only the images with an inclusion degree higher than 0.9 are shown. It can
be noticed that “reeds” images are retrieved with the highest inclusion degree,
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because their textures are perceives as very high directional, coarse and very
high contrasted. On the other hand, if the label Very low contrasted is added
to query, “wood” images are retrieved with the highest inclusion degree, as it is
shown in Figure 11(c).

9 Conclusions and future works

In this paper, a perception-based fuzzy approach for texture modelling has been
proposed. In this approach, texture properties have been modelled by means of
fuzzy partitions defined on the domain of computational measures of the cor-
responding property. Such solution achieves a double objective. On the one
hand, fuzzy models that allow to represent the imprecision related to texture
properties and to describe it in natural language have been obtained. In order
to set the number of linguistic labels in the partition, the capability of each
measure to discriminate between different presence degrees of the property has
been studied, taking into account the relationship between the computational
values given by the measures and the human perception of the corresponding
property. This way, we ensure that the measure is able to provide significantly
different values for all the proposed categories. The parameters of the mem-
bership functions have been also calculated using the information given by the
distinguishability analysis, obtaining fuzzy partitions adapted to the human
perception of the property. This way, the obtained results match what a human
would expect, as shown in the experiments of section 8.

On the other hand, the second objective achieved in our approach is the
identification of the most appropriate computational measure for each property.
In the proposed modelling, some of the most representative measures in the
literature have been employed. We have concluded that, from all the measures
used in this paper, the measure of Amadasun in the case of fineness, and the
measures of Tamura for contrast and directionality, are the most suitable ones
to represent the corresponding properties; moreover, the model that better fits
each one is shown in Figure 4.

Regarding future works, as it was pointed out, the fuzzy sets proposed in
this paper have been obtained by using the assessments given by a group of
subjects in the polls, so they are representing the average perception of each
property. Thus, these fuzzy sets can be considered as the default models for the
corresponding properties, because they can be used if additional information is
not available (user’s profile, context, etc.). However, a particular user may have
a different perception of these properties, and, moreover, the image context may
influence the global perception. In order to take into account these considera-
tions, an approach that allows to adapt the default models to each particular
case is needed. In this sense, we are working on a methodology to automati-
cally adapt the membership function associated to each fuzzy set according to
the information given by an user to represent his particular perception, or the
information about the context extracted from the textures present in the image.

In addition, as it was pointed out, in the fuzzy partitions proposed in this
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paper only one crisp measure is used as reference set, which implies that only
the ability of this measure to capture the corresponding property is considered
in the modelling. In some of our previous works [51], we have concluded that the
combination of different computational measures improves the characterization
of texture properties [51]. In this sense, we are working on a methodology to
define the fuzzy partitions on the domain of a combination of several measures.
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