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Abstract The controlled preparation of well-defined distorted nano-
graphenes by a bottom-up approach based on organic synthesis per-
mits the direct establishment of unprecedented structure–property re-
lationships in carbon nanostructures. The simultaneous incorporation
of various defects in nanographenes affords highly curved structures
with novel or enhanced photophysical properties. In this sense, we re-
cently reported a fully helical and saddle-shaped nanographene ribbon
containing the first undecabenzo[7]helicene unit. Both its linear and
nonlinear optical properties are enhanced in comparison with those of
other partially π-extended [7]helicenes. Moreover, the new superheli-
cene exhibits the highest emission dissymmetry factor (glum) reported
to date for a homochiral nanographene. The combination of both non-
linear and chiroptical properties in nanographenes opens up new possi-
ble future applications for those distorted nanostructures.
1 Introduction
2 Synthesis of Embedded Seven-Membered Rings
3 Combination of Defects: Seven-Membered Rings and π-Extend-

ed Helicenes
4 Conclusions and Outlook

Key words nanographenes, helicenes, chirality, polycyclic aromatic
hydrocarbons, optical properties, chiroptical properties

1 Introduction

Over the last two decades there has been intensive re-

search into the design and synthesis of well-defined struc-

tures based on planar polycyclic aromatic hydrocarbons

(PAHs) as benchmarks for the study of graphene.1 However,

moving out from flatland opens the opportunity to explore

new properties derived from the introduction of distortive

elements that prompt a three-dimensional (3D) structural

arrangement. One of the most frequently employed strate-

gies for inducing nonplanarity in PAHs is the insertion of

nonhexagonal rings. In this sense, the introduction of a

five-membered ring induces a bowl-shaped positive curva-

ture, whereas the presence of a seven- or eight-membered

ring favors negative folding.2 Various groups, including

ours, have applied this concept to develop novel structures

and have studied their properties, so that it is now well es-

tablished that the physical and chemical characteristics of

PAHs are altered by the presence of such imperfections, and

that these properties can be tuned by synthetic design.3 The

existence of curved architectures broadens the spectrum of

applications of PAHs, and is appealing in a variety of fields,

from wearable electronics to biological sensors.4
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A second option for pushing π-systems toward 3D space

is the introduction of carbo[n]helicenes. These structures

are PAHs constituted by contiguous ortho-fused benzene

rings that adopt a helical arrangement due to a conforma-

tional distortion imposed by steric strain.5 This motif not

only affects the topology of the molecule, but also confers

chirality and, thereby, chiroptical properties.6 In this re-

spect, enantiopure helically twisted nanographenes have

been proposed as excellent candidates for the development

of chiral optoelectronic devices. By exploring properties as-

sociated with chirality, such as circularly polarized lumines-

cence (CPL),7 new materials with potential applications in

organic electronics can be identified. This fact has brought

the synthesis of homochiral nanographenes to the forefront

in the field of organic materials, and new examples of mul-

tiple helicenes8 or novel hexa-peri-hexabenzocoronene

(HBC)-based helicenes have been developed.9 Particular

emphasis has been placed on the design of more sophisti-

cated structures incorporating laterally π-extended heli-

cenes to widen π-conjugation (Figure 1).10 Moreover, a com-

bination of ring-size defects and homohelicity within a sin-

gle molecule might be an interesting prospect, as superior

or new properties might appear from the combination of

the individual properties associated with each motif. Some

examples have already been reported that combine enan-

tiopure carbohelicenes with pentagonal carbocycles,11 but

combinations containing saddle-shape heptagonal ones

have received much less attention.12

Figure 1  Previously reported enantiopure π-extended carbo[7]heli-
cene derivatives. R = 4-Tol or 4-iPr-C6H4

2 Synthesis of Embedded Seven-Membered 
Rings

The design of well-defined distorted nanographenes re-

quires reliable and efficient synthetic methods that permit

the introduction of defects in selected positions. With re-

gard to ring-size defects and, more precisely, seven-mem-

bered rings, several bottom-up approaches have been de-

veloped in recent years, which have boosted the synthesis

of structures containing heptagonal carbocycles. The strate-

gies developed so far are based on three different approach-

es (Scheme 1). The first approach relies on the use of start-

ing materials that contain seven-membered rings, with

subsequent construction of the surrounding aromatic scaf-

fold [Scheme 1(a)].13 The second approach involves intra-

molecular cyclization reactions. One classic example is the

Scholl reaction,14 a dehydrogenative intramolecular cou-

pling of nonfunctionalized arenes mediated by a combina-

tion of a Lewis acid and an oxidant [Scheme 1(b); left]. Al-

though this strategy has been widely applied in the synthesis

Scheme 1  Suitable synthetic approaches for the introduction of seven-
membered rings into PAHs
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2019, 30, A–F
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of PAHs,12a,15 there are some cases in which the reaction is

not fully predictable and/or controllable, as undesired rear-

rangements can occur. To avoid those issues, alternative

strategies have been developed involving, for example,

Friedel–Crafts reactions13b or palladium-catalyzed C–H ary-

lations16 [Scheme 1(b); right and bottom]; although both

strategies require prefunctionalized precursors, the out-

come of the reaction is better controlled. A third approach,

introduced recently, involves ring expansion of cyclohex-

anones to form cycloheptanones17 [Scheme 2(c)]. Our group

has also contributed to this field with the development of a

versatile and convergent strategy based on an intermolecu-

lar cobalt-catalyzed cyclotrimerization reaction,18 which

permits not only the formation of the heptagonal ring, but

also the installation of the polyphenylene aromatic core

[Scheme 1(d)].19 Adequate functionalization of the precur-

sors provides further reactive sites for the enlargement of

the sp2 carbon network. By following this strategy, we have

synthesized various structures containing seven-mem-

bered rings, such as nanoribbons12c or [3]cumulenes deriva-

tives.20

3 Combinations of Defects: Seven-Mem-
bered Rings and π -Extended Helicenes

In pursuit of the induction of strong chiroptical proper-

ties in π-extended nanographenes, we designed a strategy

for synthesizing a ribbon-shaped nanographene fully ar-

ranged in a helicoidal shape. The best structural design

would offer the advantage of incorporating both main fea-

tures, namely a ribbon-extended PAH and a chiral helical

arrangement, in one operation.21

One of our principal concerns when designing this ex-

tended nanographene was the solubility of the final com-

pound, necessary for its adequate characterization. Un-

equivocal structural characterization of a nanographene is

mandatory if its optical properties are to be studied, as mi-

nor impurities might falsify the results. We were aware that

other promising, purely hexagonal, PAHs reported in this

field had been barely characterized and that their proper-

ties had been scarcely studied due to difficulties in manipu-

lation. In this sense, the application of our above-men-

tioned method for inducing bending of the polyaromatic

surface by introducing seven-membered rings into the

structure would induce an extra curvature thereby enhanc-

ing the solubility and processability of the product. More-

over, the distortion caused by the heptagonal rings was ex-

pected to affect the optoelectronic properties of the final

PAH and, together with the incorporation of bulky tert-bu-

tyl groups, would hinder π–π stacking interactions, pre-

venting spontaneous precipitation of the products.

On the basis of our previous experience and reported

results from other authors, we designed a straightforward

synthetic route to a fully π-extended helical ribbon 1
(Scheme 2). The creation of the π-extended polyaromatic

surface of our superhelicene was based on the attachment

of three (HBC) units, two of which bearing seven-mem-

bered rings constituting the edges of the nanohelicoid, with

the other quasi-flat HBC forming the middle part. The

building of the central HBC by means of a Diels–Alder reac-

tion (Scheme 2; Step d) forced the heptagon-containing

HBCs on the edges to move closer, so that they were partial-

ly superimposed, driving the formation of a central car-

bo[7]helicene moiety totally surrounded by aromatic rings.

This is the first fully π-extended carbo[7]helicene, or in oth-

Scheme 2  Synthesis of compound 1. Reagents and conditions: (a) DDQ, F3CSO3H, CH2Cl2, 0 °C, 10 min, 86%; (b) TMSC≡CH, PdCl2(PPh3)2, CuI, Et3N, THF, 
r.t., 16 h, 99%; (c) 3, PdCl2(PPh3), CuI, Et3N, DBU, THF, H2O, reflux, 24 h, 84%; (d) 2,3,4,5-tetrakis(4-tert-butylphenyl)cyclopenta-2,4-dien-1-one, Ph2O, 
reflux, 10 h, 75%; (e) DDQ, F3CSO3H, CH2Cl2, 0 °C, 10 min, 7%.
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2019, 30, A–F
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er words, the first reported undecabenzo[7]helicene (see

Figure 1 for previously reported enantiopure π-extended

carbo[7]helicenes).

Once we had obtained the desired product and were

satisfied that it was highly soluble in a range of organic sol-

vents that would permit its unequivocal structural charac-

terization, we proceeded to study its photophysical proper-

ties. On one hand, we had expected to obtain interesting

linear and nonlinear optical properties derived from the ex-

tended aromatic surface forming the ribbon nanographene

1. Thus, one- and two-photon absorption (OPA and TPA)

and one- and two-photon emission (OPE and TPE) spectra

were recorded (Figure 2; right). Remarkably, the fluores-

cence emission maximum was considerably red-shifted

(606 nm) in comparison with that of other [7]helicenes (Ta-

ble 1; λem), as expected from a fully π-extended structure.

Furthermore, independently of the excitation wavelength,

overlapping of the upconverted emission (TPE) with the

one-photon-induced emission (OPE) was observed. The TPA

cross-section reached 870 Goeppert Mayer (GM) units at

about 800 nm. This high TPA value represents the first suc-

cess in the improvement of the tailored structure, a remark-

able 6.7-fold increase in comparison with that of carbon

nanodots22 or with that of our previous synthesized distort-

Figure 2  Left: ECD and CPL spectra of (M)-1 (blue and red, respectively) and (P)-1 (navy and magenta, respectively). Middle: DFT-CAMB3LYP-6-31G 
(d,p)-optimized geometry of (M)-1. Right: UV–vis (blue), two-photon absorption (navy squares), one-photon emission (red), and two-photon emission 
(magenta squares) spectra of 1.

Table 1  Main Photophysical Properties of 1, [7]Helicene and Structurally Related π-Extended Carbo[7]helicenes

Undecabenzo[7]helicene 121

[7]helicene10a,23 Dibenzo
[7]helicenea10a Double dibenzo

[7]helicene10b

Hexabenzo
[7]helicene10c

Hexapole [7]helicene10d

φb 27.8 22.0 22.8 23.6, 21.8 27 23.8–25.3

ε (λabs, nm) 160,000 (472) 85,114 (268) ~70,000 (324) n.r. 40,000 (459)
4,700 (675)

92,000 (618)

λem (nm) 606 454 494 565 –c –c

ϕF 0.098 0.021 0.060 0.340 – –

τ (ns) 18.0 ± 2 13.8 n.r.d n.r. – –

gabs (λ, nm) 2.0 × 10–3 (400)
2.5 × 10–3 (580)

~5.0 × 10–3 
(268)

1.2 × 10–3 (400) n.r. 5.0 × 10–3 (459)
1.6 × 10–2 (680)

n.r.

glum (λ, nm) 2.0 × 10–3 (610) n.r. 2.2 × 10–3 (494) n.r. – –

[α]D –5695e +5900f +1773f n.r. n.r. +500f

a Data refer to R = 4-Tol.
b Mean torsion angle in degrees along the helical inner rim (highlighted in red), measured from either the X-ray structures published by the Cambridge Crystallo-
graphic Data Centre or from the DFT-optimized structure (compound 1).
c Nonfluorescent.
d n.r. = not reported.
e (M)-enantiomer.
f (P)-enantiomer.
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2019, 30, A–F



E

C. M. Cruz et al. SynpactsSyn  lett

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
id

ad
 d

e 
G

ra
na

da
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.
ed ribbon nanographene with push–pull character (130 GM

at ~760 nm).12c In this sense, the OPA absorption coefficient

was also markedly higher than those of structurally related

π-extended [7]helicenes (Table 1; ε). The luminescence

quantum yield (Table 1; φF) of 1 (9.8% in CH2Cl2) showed an

intense increase compared with those of other π-extended

[7]helicenes, and its value was almost five times that of

heptahelicene,23 which led to about a ninefold increase in

brightness (ε × φF). We attribute these outstanding values to

the particular aromatic backbone of nanographene 1, in

which electrons can easily move and can even be accommo-

dated, as also suggested by the nine reduction potentials

observed during voltammetry experiments (down to –3 V

versus Fc/Fc+).

The presence of the disubstituted central helicene moi-

ety24 induces a large torsion angle (Table 1, φ) resulting in

two possible enantiomers of 1 and, consequently, potential

chiroptical properties. Therefore, we subjected 1 to chiral

resolution by HPLC, followed by measurements of the emis-

sion and absorption chiroptical properties of the enantio-

mers (Figure 2; left). The two separated samples were con-

figurationally stable and presented intense mirror-image

electronic circular dichroism (ECD) spectra with a gabs value

of 2.0 × 10–3 at the highest Cotton-effect band (400 nm)

and, more importantly, a gabs value of 2.5 × 10–3 at the low-

est absorption band (580 nm), which is related to the emis-

sion properties. The circularly polarized luminescence (CPL)

spectra of both enantiomers of 1 were also mirror images,

presenting an emission dissymmetry factor (glum) of 2.0 ×

10–3, which is in the same range of that of the absorption

mode. This value represents an increase of one order of

magnitude over that of the sole reported example of a

nanographene with a CPL-emission capability.12c

As mentioned above, the overall doubly distorted

nanographene 1 exhibits improved (chir)optical properties

in comparison with previously described structurally relat-

ed π-extended carbo[7]helicenes (see Table 1). In particular,

1 showed a high fluorescence at low energy (606 nm) with

a remarkable long lifetime (18 ns) and a high dissymmetry

factor (glum ≈ 2 × 10–3). Moreover, the excited state responsi-

ble for the chiral emission can also be reached by excitation

with two photons of low energy (800 nm), which consti-

tutes a fundamental basis for the future development of

two-photon circularly polarized luminescence, the emis-

sion analogue to known two-photon circular dichroism

(TPCD).25

4 Conclusions and Outlook

Moving from planarity in the field of nanographenes

broadens the range of opportunities for using these new

distorted architectures as organic functional materials. The

combination of ring-size defects and fully π-extended heli-

cenes induces the appearance of several interesting proper-

ties in a single molecule, which could pave the way toward

the development of new applications related to spintronics,

photonics, and optoelectronics. For instance, as demon-

strated by our structure 1, nonlinear optics and chiroptical

properties can be merged in a single structure, which could

give rise to the development of new approaches based on

two-photon CPL, as an absorption analogue to TPCD; this

could combine the advantages of both responses with a re-

duced linear absorption and scattering in near-infrared ex-

citation wavelengths. The linear and nonlinear optical char-

acterization provide detailed structural and conformational

information about the homochiral skeletons. In this sense,

the introduction of multiple extended helical and ring-size

defects in nanographenes might lead to further improve-

ments in their linear, nonlinear, and chiroptical properties.

Moreover, to facilitate the ultimate applicability of dis-

torted nanographenes, it is crucial to predict their proper-

ties fully from their structures. Although outstanding and

intense work has been carried out in attempts to pursue

this aim, it is not yet possible. This challenge provides a mo-

tivation for the construction and study of new well-defined

distorted and curved PAHs that could expand the wide

range of architectures available and would help to shed

light on the rationalization of their structure–property rela-

tionships.
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