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1. App description 

Two versions of image processing software were written for use with this sensor. The PC based 

version was written using the Anaconda distribution of Python 2.7 (https://www.anaconda.com/) in 

conjunction with the Python/Windows interface to the Open Source Computer Vision Library version 

3.2.0 (https://opencv.org/). The Android based version was written using Android Studio 

(https://developer.android.com/studio/index.html) in conjunction with Android/Java wrapper for the 

OpenCV library.  In the discussion that follows all functions mentioned are OpenCV functions unless 

otherwise noted.  The primary difference between the versions is that the Android app is designed to 

run natively on a variety of smartphones in real-time where the PC version is designed to work with 

recorded videos from any recorded source (including a smartphone) and to provide diagnostic data 

useful in the development of the devices. Thus, in the interest of processing speed and time resolution, 

some of the image processing steps are omitted from the final Android version. 

The OpenCV library function cvtColor was used to convert from the RGB color space to the HSV 

color space.  Note that in the Python/Windows interface to OpenCV that the Hue values of the HSV 

color space have a range of 0 to 179, but in the Java version (as with all other tristimulus values) the 

range is 0 to 255. The region of interest (ROI) was automatically identified based on their Saturation 

value in the HSV color space that is defined as RGB values (max-min) divided by the largest RGB 

value (max).  Pixels with Saturation greater than ~16% of the possible range were flagged as colored 

and included in the region of interest.  (Note that the threshold saturation is smaller and adjustable in 

the PC program, and lower values will result in earlier detection of the color forming reaction.  This 

early detection of pixels that are only slightly colored is only possible when the white balance of the 

image is correct – see later discussion.)  Red pixels, those with a Hue within ~12% of the red origin, 

were excluded from the region of interest.  Thus, in the Android app with a hue scale of 0 to 255, only 

pixels with a Hue between 31 and 224 and Saturation greater than 39 were included in the region of 

interest. The OpenCV library function inRange was used to calculate a Boolean mask of the image 

subject to these constraints.  Groups of contiguous pixels in the resulting mask were found using the 

findContours function, and the largest area group (the one with the most pixels as calculated with the 

contourArea function) was identified as the sensor region of interest.  For display in the app, the 

largest contour is outlined in red, and a green bounding rectangle is drawn around it. The unchanged 

(but rescaled by a factor of 2) frame image is displayed in the upper left quarter of the screen.  This 

frame image with non-ROI pixels masked as black is displayed in the lower left quarter of the screen.  

Only pixels inside the region of interest were used in subsequent data manipulations (Figure S1). 



 

 

Figure S1. µTPAD after the dropping 

of a whole blood sample and the ROI 

detected by the app. 

 

For a particular frame, the histograms of RGB, HSV, and absorbance ratios for pixels in the region of 

interest were calculated using the calcHist function and displayed using the functions normalize and 

line by drawing directly onto the displayed image. Absorbance ratio is defined as the negative 

common logarithm of the ratio of pairings of two color coordinates. To avoid undefined values, all 

zero value tristimulus values were first changed to a value of one. Then the three color absorbance 

values, here defined as cA1=cA(b/g), cA2=cA(g/r), and cA3=cA(b/r) were calculated and are 

hereafter referred to as cA123.   

For the Android app, designed to run on a variety of hardware and display data in real-time, the elapsed 

time of a particular video frame is defined as the current system time (as reported by the Android 

System function nanoTime) minus the system time when the camera view started. For recorded videos 

with fixed frame rate compression, this function is only called once, and a running count of the frame 

number is used along with the frame rate to calculate the elapsed time.   

While the video is being analyzed, the mean and standard deviation of all color values (RGB, HSV, 

and cA123) of pixels inside the region of interest for a single video frame are displayed on the screen 

and recorded in a text file along with the elapsed time for that frame (hereafter referred to as frame 

means).  For the glucose sensor, two analytical parameters were considered: saturation from the HSV 

color space and color absorbance for the blue/red ratio (cAb/r or cA3). Saturation is likely to be more 

robust in terms of lighting conditions, and it was selected as the default analytical parameter. A 

running plot of RGB values and the analytical parameter are plotted as a function of elapsed time.  

For the rate calculation a subset of the data from 12 s before the elapsed time up to and including the 

current frame is defined.  The mean of the frame means within this twelve second window is then 

calculated. In the Android app, this is a simple moving average that lags behind the current frame 

mean by approximately 5 s.  A least-squares linear fit to the analytical parameter versus time within 

the 12s window was also calculated using the solve function configured to use singular value 

decomposition for matrix inversion.  The slope of the best fit line was taken to be the rate of change 

in the sensor response.  Both the moving average of the analytical parameter and the rate of change 



are displayed as separate auto-scaling plots in the lower right of the display.  In the moving average 

plot, if the absolute value of the slope is less than a threshold value (e.g. less than 0.001 for cA(b/r)), 

the value is considered stable and plotted in green.  If the slope is larger than the threshold, the moving 

average is plotted in red (increasing).  The moving average is plotted in blue when the slope is less 

than the negative threshold (decreasing). 

Additionally, the processed video is stored as a separate video file.  In the Android app the raw video 

file can be stored additionally (recording both the raw and processed video does reduce the frame rate 

for both files).  The summary data for each frame, the rolling average, and the slope are also stored as 

a comma separated text file. 

 

 

 

Scheme 1. App flow diagram.  

2. White balance 

To optimize the white balance setting selected on the digital camera, we compared the signal variation 

between two different H2O2 concentrations, 10 and 500 µM. Each thread was treated with 0.35 µL of 

0.05 U/mL HRP and 0.35 µL of 20.8 mM TMB. Once the devices were dry, 10 µL of either 10 or 500 

µM H2O2 were added. The saturation was obtained from each H2O2 solution using 4 different white 



balance settings: incandescent (2800K), sun light (5500K), cloudy light (6500K) and fluorescent light 

(4000K) and the difference in signal was calculated. As expected due to the color temperature of the 

illumination used in the study, the larger signal difference was observed when incandescent white 

balance was used (Figure S2). 

 

 

 

 

Figure S2. White balance study using TMB optimization conditions. S0: 

saturation of the thread just prepared; S: saturation of the thread after 

reaction with H2O2.  

 

 

 

 

3. Devices optimization 

3.1. Detection and transduction mechanism 

The method implemented in the µTPAD is glucose oxidase (Burtis, A et al., 2008), based on two 

different reactions, detection and transduction. In the detection reaction, the GOx enzyme reacts with 

the glucose in the sample, obtaining gluconic acid and H2O2. Both are colorless, which is why the 

transduction reaction is needed, where the H2O2 generated together with the HRP enzyme reduces the 

TMB, obtaining a blue compound. The color generated throughout the entire process is proportional 

to the glucose concentration in the sample. 
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Scheme S2. Recognition and transduction mechanism 

 

3.2. TMB retention 

To retain TMB on thread the following reagents were added (in order), 0.35 µL of 0.05 U/mL HRP, 

0.35 µL of 20.8 mM TMB and, finally, 0.7 µL of chitosan solution. Chitosan concentrations tested 

were 0, 1, 5, 10 and 15 mg/mL, and three µTAD were prepared from each one. Once the devices were 

dry, 10 µL of 50 mM H2O2 was added. The color change of the thread was recorded using the Sony 

digital camera, and the length of the colored zone was measured and compared. 

 

Table S1. Average length of the ROI 

depending on the chitosan used to 

retain TMB on thread and CV (n=3). 

Chitosan 
(µg) 

Length 
(cm) 

CV (%) 
(n=3) 

0 1.4 20.3 

0.7 1.2 3.6 

3.5 1.3 11.0 

7.0 1.4 7.8 

10.5 1.3 17.5 

 

 

 



3.3. TMB and HRP optimization 

TMB and HRP were optimized simultaneously using a factorial design. Concentrations tested were: 

TMB 1.0, 2.1, 5.0, 10.0 and 20.8 mM; and HRP 1.0·10-2, 2.0·10-2, 3.0·10-2, 4.0·10-2 and 5.0·10-2 

U/mL. The µTADs were prepared by adding 0.35 µL of HRP, 0.35 µL of TMB mM and 0.7 µL of 

chitosan. All 25 different µTAD prepared with HRP and TMB were tested by adding 10 µL of 50 mM 

H2O2 solution with three replicates per µTAD composition. The color change was monitored using 

the Sony digital camera and analyzed using ImageJ software. 

 

 

Figure S3. Factorial design for TMB and HRP optimization in the 

µTAD. 

3.4. pH adjustment 

To adjust the pH of the sample in the µTAD, different volumes of 1xPBS buffer were immobilized 

by drying. After adding H2O2 standard solution and measuring the pH at the end of the thread, we 

concluded that the immobilization of 5 µL is enough to buffer the sample. Subsequently, the S value 

obtained using the immobilized buffer was compared with a buffered H2O2 solution at the working 

pH (7.4). In the first case, 5 µL of 1xPBS was added and, after waiting 10 minutes, 0.35 µL HRP 

solution, 0.35 µL of TMB of the previously optimized concentrations, and 0.7 µL of 1 mg/mL 

chitosan solution were added. On the second one, only reagents and no buffer were used. The 

prepared µTAD were tested with 5, 15, 25, 50, 100, 125, 150 and 250 µM H2O2 solutions, three 

replicates each, monitoring the color change as previously with a Sony digital camera. 
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Figure S4. Influence of buffer location on the response of the 

µTAD (n=3). Blue dots: buffer in the device; red dots: buffer in 

solution. 

3.5. GOx optimization 

The GOx concentrations assayed were 0.026, 0.029, 0.044, 0.087, 0.870, and 1.740 U/µL. Different 

µTADs were prepared by the adding (in order) 5.0 µL of 1xPBS, 1µL of GOx, 0.35 µL of 0.04 U/mL 

HRP, 0.35µL of 20.8 mM TMB, and 0.7 µL of 1 mg/mL chitosan solution. For testing the device, 

three replicates of 10 µL of 250 µM glucose solution were added, and the color change was recorded 

over time in a video file using the Sony digital camera. 

 

Figure S5. Response of the µTAD over time depending on GOx 

concentration. Blue dots: 1.740 U/µL; red dots: 0.870 U/µL; orange 

dots: 0.087 U/µL; green dots: 0.044 U/µL; yellow dots: 0.029 U/µL 

and purple dots: 0.026 U/µL.   

3.6. Volume of sample 

Volumes tested were 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 µL of 250 µM glucose using µTAD 

with 5.0 µL of 1xPBS, 1 µL of 1.740 U/µL GOx, 0.35 µL of 20.8 mM TMB and 0.35 µL of 0.04 

U/mL HRP and 0.7 µL of 1 mg/mL chitosan (n=3). 
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Figure S6. Influence of volume of sample. 

3.7. Calibration 

Ten different glucose standards (1, 5, 15, 25, 50, 100, 125, 250, 500 and 1000 µM) were used to 

calibrate the µTAD and prepared as follows: 1.0 µL of 1.74 U/µL GOx was added to the recognition 

region followed by 0.35 µL of 20.8 mM TMB in ethanol, 0.35 µL of 3.5·10-2 U/mL HRP and, after 

waiting one minute, 0.7 µL of 1 mg/mL chitosan aqueous solution were added to the transduction 

region. Finally, it was dried at room temperature in dark conditions. Then, 10 µL of sample are added 

to the sampling region and the color of the µTAD is captured and analyzed using a Smartphone and 

the custom Android-based app developed. Figure S7 shows the calibration function using S as 

analytical parameter for equilibrium signal. 

 

 

Figure S7. Calibration obtained using S as analytical parameter 

obtained 100 s after the sample addition. 
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3.8. Stability 

A stability study was performed in order to characterize the lifetime of the µTAD after its preparation. 

For this purpose, the stability was studied for 78 days in two different conditions: a) preserving the 

µTAD in the fridge and b) preserving the µTAD in a desiccator. Results obtained are shown in Figure 

S8, showing that the device is not stable over time, the signal decays to the 50% the day after the 

preparation of the µTAD. Due to the low stability of the enzymes, it may be beneficial to protect them 

in some structure such as enzyme co-embedded organic–inorganic hybrid materials (nanoflowers) 

(Ariza-Avidad et al., 2016; Zhu et al., 2017).  

 

 

Figure S8. Lifetime study of µTAD. Blue line and dots, µTAD preserved in 

fridge; orange line and dots, µTAD preserved in desiccator. 

3.9. Plasma separation 

Different volumes and concentrations of NaCl and EDTA were immobilized by drying on the thread, 

and different volumes of blood were assayed in order to perform the plasma separation with no 

successful results. (Figure S9). In all the assays performed, the RBC flow together with the plasma 

through the thread, and separation is not achieved. 

 

 
 

 
Figure S9. Assays performed using NaCl (a) and EDTA (b) to perform the RBC separation from plasma 

on thread. 
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For the LF1 membrane, different volumes of blood sample were tested: 7, 6, 5, 4, 3, 2, 1, 0.75 and 

0.5 µL. When 7 to 4 µL of blood were used, the RBC exceeded the membrane capacity and broke 

through to the thread (Figure S10). In case of volumes from 2 to 0.5 µL of whole blood, it was not 

enough to get serum on thread. Only in case of 3 µL, plasma free of RBC was drawn onto the thread. 

 

 

 

Figure S10. RBC separation using a 4 mm tear-shape membrane at different volumes of sample: 7, 6, 

5, 4, 3, 2, 1, 0.75 and 0.5 µL. 

3.10. Whole blood calibration 

For calibration the µTPAD was prepared by adding 2.5 µL of 1xPBS followed by 10 minutes of drying 

time. Then, 0.5 µL of HRP and GOx solution, 0.5 µL of TMB, and 0.7 µL of chitosan were added and 

the thread and separating membrane were located in the custom holder. Whole blood spiked samples 

used for this purpose contained 16, 25, 50, 70, 80, 90, 100, 110, 120 and 130 mg/dL of glucose using 

5 replicates per sample by adding 3 µL of whole blood to the device and recording the color change of 

the device using a smartphone running the app developed. In case of 50, 90 and 110 mg/dL, 10 

replicates were performed in order to obtain the precision of the device at different glucose 

concentrations.  

3.11. Interfering species 

The different interfering species typically found in blood that could influence the recognition or 

transduction reactions were studied. These were fructose and mannose in the recognition reaction and 

ascorbic and uric acid in the transduction reaction. To do this, µTPADs were prepared as described in 

Section 3.10 on Whole blood calibration, testing whole blood spiked samples containing the interfering 

species or a mixture of glucose and uric and ascorbic acid. Uric and aspartic acid were also studied 



together with glucose, due to its reducing properties, and it was possible to reduce the oxidize colored 

TMB to its colorless state.  

For monosaccharides, the concentration tested was 90 mg/dL, while for uric and ascorbic acid, 

different quantities were tested in the range of their contents in blood (aspartic acid 1.6, 4.4 and 8.8 

mg/dL and uric acid 3.0 and 7.0 mg/dL). 

As can be observed in Figures S11 and S12, the interfering species considered do not generate or 

modify the µTAD signal obtained. 

 

Figure S.11 Signal obtained when whole blood without glucose is spiked with 

fructose (90 mg/dL), manosse (90 mg/dL), AA (aspartic acid 1.6 mg/dL), AA2 

(aspartic acid 4.4 mg/dL), AA3 (aspartic acid 8.8 mg/dL), UA (30 mg/dL) and 

UA2 (7.0 mg/dL). 

 

Figure S.12 Signal obtained when whole blood containing 90 mg/dL in glucose is 

spiked with fructose (90 mg/dL), manosse (90 mg/dL), AA (aspartic acid 1.6 

mg/dL), AA2 (aspartic acid 4.4 mg/dL), AA3 (aspartic acid 8.8 mg/dL), UA (30 

mg/dL) and UA2 (7.0 mg/dL). 
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4. Real samples 

For real sample validation, the µTPAD was prepared adding 2.5 µL of 1xPBS followed by 10 minutes 

of drying time. Then, 0.5 µL of HRP and GOx solution, 0.5 µL of TMB and 0.7 µL of chitosan were 

added, and the thread and separating membrane were located in the custom holder. Then 3 µL aliquots 

of whole blood were added, using 5 different µTPAD per sample, while recording the color change 

using the smartphone app. A commercial glucose meter analysis was performed on the same samples, 

and the results were compared in terms of error. 

5. Sensor cost 

An estimation of the cost of the fabrication of a µTPAD was calculated and is detailed in Table S2. 

 

 

 

Table S2. Estimated cost of a µTPAD based on the price of 

the material used to its preparation. 

 

Material (cost per unit) Quantity 
used 

Assay cost 

Thread (7.7x10-4 €/cm) 1.5 cm 1.16x10-3 € 

Chitosan (1.8x10-3 €/mg) 1.00x10-3 mg 1.76x10-6 € 

HRP (4.7x10-3 €/U) 1.4x10-5 U 6.60x10-8 € 

GOx (6.4x10-3 €/U) 1.74x10-3 U 1.12x10-5 € 

TMB (0.19 €/mg) 1.75x10-3 mg 3.34x10-4 € 

Separation membrane (1.4x10-4 €/mm2) 50.00 mm2 7.21x10-3 € 

Metacrilate (6.08x10-3 €/cm2) 15.0 cm2 9.12x10-2 € 

Final cost  0.0999 € 

 

 



 

Table S3. Capillary microfluidic devices for glucose analysis. 

 

 

Measurement Support Detection based chemistry LOD Range Response time Sample Reference 

Amperometry Thread GOx/K3[Fe(CN)6] 0.3 mM 1-50 mM N/A Water 
(Gaines et al., 

2018a) 

Amperometry Thread GOx/K3[Fe(CN)6] 2.5 mM 0-15 mM N/A Water 
(Gaines et al., 

2018b) 

Amperometry Thread GOx/PTB 
22.23 

µmol/L 
75-7500 µmol/L N/A Tear 

(Agustini et al., 

2017) 

Colorimetry Thread GOx/HRP 0.2 mM 1-7.5 mM N/A Artificial urine (Li et al., 2018) 

Colorimetry Paper GOx/HRP/Cu3(PO4)2 nanoflowers 25 µM 0.1-10 mM 10 min 

Whole blood 

 

(Zhu et al., 2017) 

Chemiluminescence Cloth Luminol/GOx/HRP 9.07 µM 0.01-10 mM 5 min 

Glucose solution 

 

|(Li et al., 2017) 

Colorimetry Paper GOx/HRP 0.5 mM 1-10 mM 15 min 

Artificial serum 

and urine 

 

(Cardoso et al., 

2017) 

Bipolar electrochemiluminescence Thread Luminol/GOx 20.5 µM 0.025-10 mM N/A 

Urine and serum/ 

 

(Liu et al., 2017) 

Colorimetry Paper GOx/HRP/Cu3(PO4)2 nanoflowers 15.6 µM 0 – 300 µM 15 min Water 
(Ariza-Avidad et 

al., 2016) 

Colorimetry Cloth GOx/HRP 2.8 mM 3-50 mM 20 min Artificial urine 
(Wu and Zhang, 

2015) 

Colorimetry Thread GOx/HRP 48µM  48-1000 µM 12 s  Water This work 

Colorimetry Thread GOx/HRP 28 mg/dL 28 – 130 mg/dL ~10 s Whole blood This work 
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