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Abstract

The multivariate approach based on Principal Component Analysis (PCA) for anomaly detection received a lot of attention from the
networking community one decade ago mainly thanks to the work of Lakhina and co-workers. However, this work was criticized by
several authors that claimed a number of limitations of the approach. Neither the original proposal nor the critic publications were
completely aware of the established methodology for PCA anomaly detection, which by that time had been developed for more than
three decades in the area of industrial monitoring and chemometrics as part of the Multivariate Statistical Process Control (MSPC)
theory. In this paper, the main steps of the MSPC approach based on PCA are introduced; related networking literature is reviewed,
highlighting some differences with MSPC and drawbacks in their approaches; and specificities and challenges in the application of
MSPC to networking are analyzed. All of this is demonstrated through illustrative experimentation that supports our discussion and
reasoning.
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1. Introduction

The outstanding capability of multivariate analysis to detect
anomalies has been recognized in several domains, including
industrial monitoring [1, 2, 3, 4] and networking [5, 6, 7, 8,
9]. The use of multivariate analysis for anomaly detection is
typically referred to as Multivariate Statistical Process Control
(MSPC) [10]. A main tool in MSPC is Principal Component
Analysis (PCA).

The pioneering work by Lakhina et al. [5] introduced the
use of PCA for network anomaly detection. Their approach re-
ceived a lot of attention from the networking community one
decade ago, and thus a variety of other proposals has been de-
veloped based on it. However, the approach was also criticized
by a number of papers. Ringberg et al. [9] claimed that it is
sensitive to calibration settings. In particular, that:

(i) The false positive rate is very sensitive to small differ-
ences in the number of principal components in the nor-
mal subspace.

(ii) The effectiveness of PCA is sensitive to the level of ag-
gregation of the traffic measurements.

(iii) A large anomaly may inadvertently pollute the normal
subspace, and go undetected.

(iv) Correct diagnosis is an inherently challenging problem.

Here we argue that these supposed problems are the result of
flaws in adopting PCA to the anomaly detection field. It should
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be noted that such flaws are found not only in the original ap-
proach but also in its detractors. Although Lakhina et al. noted
that similar approaches to theirs were already developed in the
chemical engineering area, the bulk of the (by that time) well-
established theory of MSPC based on PCA was ignored in their
papers.

In this work, the theory of PCA-based MSPC is reviewed,
differences with Lakhina et al. and posterior approaches be-
ing highlighted where appropriate and illustrated with exam-
ples. We refer to as Multivariate Statistical Network Monitor-
ing (MSNM) the approach that follows the MSPC theory for
anomaly detection in communication networks. The last term
in MSNM, “monitoring”, has been preferred to control, which
is seldom used in the networking community. Furthermore, the
term “control” has a different meaning in fields other than statis-
tics, such as automatic feedback control [11, 12].

The rest of the paper is organized as follows. Section 2 re-
views the principal works on PCA-based network anomaly de-
tection. Section 3 presents fundamentals on statistical process
control, in particular on the use of PCA-based MSPC. After
that, Section 4 discusses the necessary pre-processing for net-
working data to be analyzed with PCA, while the proper pro-
cessing for dynamic modeling is subsequently described in Sec-
tion 5. The discussion and argumentation carried out until this
point are demonstrated by means of some illustrative examples
in Section 6. Finally, Section 7 summarizes the main contribu-
tions of the work and future challenges.
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2. Related Work

Supervising computer and network systems is a key topic in
the literature from several decades ago. The main purpose of
existent solutions in the filed is the early detection of potential
failures and malfunctions. From this, some recovery actions
could be taken in order to restore the normal desired operation
for the monitored environment.

The terms “failure” and “malfunction” must be interpreted
as a global concept that can be caused by a number of differ-
ent reasons, either accidental or not. One of the most studied
causes is the one deliberately carried out by malicious users
through attacks aimed at exploiting some system vulnerabil-
ity. Whichever the origin of the failure or malfunction, the goal
of the monitoring and detection systems is similar: to prevent
the environment from decreasing its performance or even from
crashing. For that, the usual procedure when determining the
occurrence of some kind of “anomaly” (i.e., a certain deviation
from the normal expected behavior of the monitored environ-
ment) is to trigger an alarm as a previous step to solve the prob-
lem.

Among several other existent anomaly detection paradigms
[13, 14], statistical solutions have been widely adopted [15]. In
particular, multivariate approaches such as PCA were adopted
several years ago [16, 17, 18, 19], their unsupervised nature be-
ing the main benefit argued in comparison with other solutions.
As previously stated, maybe the most referred work is that of
Lakina et al. [5]. Based on it, several further proposals have
been developed in the literature.

Authors in [20] introduce a network anomaly detection for
large distributed systems. It is based on a stochastic matrix per-
turbation analysis that characterizes the trade-off between the
accuracy of anomaly detection and the amount of data commu-
nicated over the network. On the other hand, [21] discusses the
problem of contaminated training data and propose to use PCA
on the basis of robust estimators to overcome the necessity of a
supervised preprocessing step for anomaly detection in the con-
text of intrusion detection systems. Also [22] and [23] highlight
the advantage of PCA in avoiding the need of labeled training
datasets in comparison with other detection schemes.

Kim et al. [24] present a higher-order singular value de-
composition (HOSVD) and higher-order orthogonal iteration
(HOOI) algorithms on network traffic anomaly detection by re-
arranging the data in tensor formats. Simulation results show
that the higher-order methods improve the detection perfor-
mance while also reduce the complexity for large-scale net-
works. The work in [25] tries to solve scalability problems of
PCA. For that, a sketch-based streaming PCA algorithm for the
network-wide traffic anomaly detection in a distributed fashion
is proposed.

Authors in [26] introduce a PCA-based methodology to de-
tect anomalies related to potential losses of data in WSNs.
Based on this, a subsequent data recovery procedure is also con-
tributed. This relies on the exploitation of the spatial correlation
inherent in WSNs. Different routing strategies to collect all the
information around the network are analyzed to evaluate the
suitability of the approach.

Reference [27] uses distributed principal component analysis
(DPCA) and fixed-width clustering (FWC) in order to establish
a global normal profile and to detect anomalies. The process
of establishing the global normal profile is distributed among
all sensor nodes. Authors also use weighted coefficients and a
forgetting curve to periodically update the established normal
profile. A similar work in obtaining user profiles in communi-
cation environments is that in [28].

In [29], the “classical” PCA approach is complemented with
the Kullback-Leibler divergence to improve detection results.
Similarly, [30] combines PCA with distance-based anomaly de-
tection (DB-AD) to reduce dimensionality. Authors in [31]
combine PCA with wavelet algorithms for network traffic
anomaly detection. References [32] and [33] study PCA vari-
ants to solve the calibration sensitivity. Like the latter, [34] uses
a entropy-based PCA.

As previously indicated, almost all of the existent works on
PCA-based anomaly detection in networking are developed tak-
ing as a base the work by Lakhina [5]. This way, all of them
present similar disadvantages. The main points in which the ap-
proach of Lakhina et al. [5] does not properly follow the MSPC
theory are:

• Lakhina et al. use PCA to divide data in two subspaces
for normal and anomalous behavior. Anomaly detection
is performed only in the latter. In MSPC, PCA is used to
split data in a structured subspace and a noisy subspace.
Detection is performed in both subspaces using different
statistics [11, 35, 36, 37].

• Lakhina et al. use data for the calibration of the anomaly
detector that may incorporate anomalies. In MSPC, a two
phases approach is performed so as to avoid this problem
[2, 38].

• Lakhina et al. select the number of Principal Components
to capture a specific amount of variance. Subsequently,
in [39] they suggest another common approach which is
equivalent to the so-called Scree plot, based on finding a
knee in a plot where the amount of variance captured by
the PCA model is represented in terms of the number of
PCs retained. These approaches are well known to be im-
practical in most MSPC set-ups [12, 40].

• Lakhina et al. use a supervised fault diagnosis system
based on the approach of [41], for which an a priori set
of common faults is necessary. Subsequently, they ex-
tended in [39] their approach for unsupervised diagnosis,
yet assuming a predefined structure in the fault. In MSPC,
contribution plots are commonly used for faults diagnosis
without the need of any set of previously defined common
faults [11, 42, 43].

In what follows, we will present the fundamentals of MSPC
and will demonstrate through experimentation that some of
the limitations highlighted in current works on PCA-based
anomaly detection are due to the incorrect use of the MSPC
theory.
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3. Statistical Process Control

Statistical Process Control (SPC) is a methodology pioneered
by Walter Andrew Shewhart and supported by Williams Ed-
wards Deming in the past century, with a tremendous impact in
the U.S. and Japan manufacturing industry [44]. A main goal
of SPC is to distinguish common causes from special causes
of variation in a system. Common causes of variation reflect
natural variability within a system, while special or assignable
causes of variation reflect anomalous events. A system is said to
be under statistical control when it is only affected by common
causes of variation [11].

The SPC theory establishes two steps or phases that need to
be fulfilled to set up an anomaly detector [10]. The first step
(phase I) is devoted to detect all special causes of variability
in the system and correct them. This is an iterative process in
which the analyst staff detects each issue, diagnoses the prob-
able root causes and reports them to whomever is responsible
for solving them. The second step (phase II) is performed on a
system that is under normal operation conditions (NOC) or sta-
tistical control. This essentially means that the system should
be free of all the anomalies detected in phase I, and that all
events that happen on a normal basis are due to the expected
functioning of the system. The main idea beneath the defini-
tion of these two phases is that an anomaly detector should be
developed only for a system under statistical control.

Traditional SPC is based on univariate statistics and univari-
ate control charts, in which just one variable is monitored and/or
visualized at a time (see Figure 1 as an example). This com-
monly happens in networking, where network analysis tools are
typically limited to univariate time series signals [45]. As the
number of variables to be monitored increases, the approach to
visualize one variable at a time reduces its performance and it
is more convenient to use multivariate statistics and charts.

Multivariate SPC (MSPC) is an extension of SPC to control
several variables at the same time. Traditional MSPC, however,
do not take into account correlation among variables, which
may lead to accuracy and computational problems due to ill-
conditioning [46]. When the number of variables is very large
and/or the variables are highly inter-related, the use of latent
variable methods such as PCA within the MSPC monitor is rec-
ommended.

3.1. Principal Component Analysis
PCA is applied to two-way data sets, where M variables or

features are measured/computed for N observations or objects.
The aim of PCA is to find the subspace of maximum variance
in the M-dimensional variable space. The original variables
are linearly transformed into the Principal Components (PCs).
These are the eigenvectors of XX := XT ·X, typically for mean
centered X and sometimes also after auto-scaling – i.e. normal-
izing to unit variability.

PCA follows the expression:

X = TA · Pt
A + EA, (1)

where TA is the N × A score matrix, PA is the M × A loading
matrix and EA is the N × M matrix of residuals.

The score of a new observation in the PCA subspace is com-
puted as follows:

tn = xn · PA (2)

where xn is a 1 × M vector representing a new observation and
tn a 1 × A vector with the corresponding scores, while:

en = xn − tn · Pt
A (3)

corresponds to the residuals. Both scores and residuals are
monitored in a MSPC system.

PCA can handle very large dimensional data sets. For in-
stance, PCA is a common analysis tool in genomic data [47],
which can have up to a million of variables. This capability
is of utmost importance for anomaly detection because a high
number of variables from multiple and variate data sources can
be taken into account at the same time [48]. Also, common
and anomalous patterns can be interpreted from the joined con-
tribution of the variables involved. The more variables in the
model, the more meaningful information about these patterns
can be extracted. In comparison, other network analysis tools
are typically limited to univariate or low dimensional time se-
ries signals [45].

3.2. Multivariate SPC based on PCA

In PCA-based MSPC, it is customary to monitor a pair of
charts: the Q-statistic or SPE, which compresses the residu-
als [49]; and the D-statistic or Hotelling’s T2 statistic [50],
computed from the scores. Although it is widely recognized
that the SPE provides of superior detection capability than the
D-statistic [37], both statistics are complementary [2]. With
the statistics computed from the calibration data, control lim-
its at a certain confidence level can be established in the charts
[38, 40, 51, 49]. Afterwards, new data are monitored using
these limits. Thus, anomalies are detected when the limits are
significantly or consistently exceeded. Also, making the most
of the nature of latent variable models, the contribution of the
variables to an anomaly signaled can be investigated with the
contribution plots [43, 46, 52, 53].

Both the D-statistic and the Q-statistic for observation n can
be computed from the following equations:

Dn =

A∑
a=1

(
tan − µta

σta

)2 (4)

Qn =

M∑
m=1

(enm)2 (5)

where tan represents the score of the observation in the a-th
component, µta and σta stand for the mean and the standard de-
viation of the scores of that component in the calibration data,
respectively, and enm represents the residual value correspond-
ing to the m-th variable.

Following the SPC approach, the analysis is performed in
two phases, as previously discussed. In phase I, available data
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are inspected for special causes of variation, which are itera-
tively solved. Once collected data are free of special causes of
variation, these are used to model the NOC for the calibration
of the MSPC system. Subsequently, new data are monitored
with that system. Thus, in phase II we should distinguish be-
tween calibration data, which should be free of anomalies, and
monitored or test data. Notice that this distinction, highly rele-
vant, is not made in the work by Lakhina et al. [5]. If this is not
done, detection and diagnosis may be affected by anomalies in
the PCA model, as reported in point iii) in Section 1 from [9]: a
large anomaly may inadvertently pollute the normal subspace.

The scores are linear combinations of the original variables
and so, according to the Central Limit Theorem, they are sup-
posed to be approximately Normal distributed [40]. As a con-
sequence, the D-statistic in phase I times a constant follows a
beta distribution [38]:

D ∼
(N − 1)2

N
BA/2,(N−A−1)/2 (6)

Therefore, the corresponding Upper Control Limit (UCL) for
the D-statistic at significance level α is given by:

UCL(D)α =
(N − 1)2

N
B(A/2,(N−A−1)/2),α (7)

For new incoming data in phase II, the D-statistic times a
constant follows an F distribution [38]:

D ∼
A · (N2 − 1)
N · (N − A)

FA,(N−A) (8)

And the corresponding UCL at significance level α is given by:

UCL(D)α =
A · (N2 − 1)
N · (N − A)

F(A,(N−A)),α (9)

Regarding the UCL for Q-statistic, several procedures can be
used. Again, the residuals can be assumed to follow a multi-
normal distribution. Jackson and Mudholkar showed in [49]
that an approximate critical value at significance level α is given
by:

UCL(Q)α = θ1 ·


zα

√
2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1


1
h 0

(10)

where θn =
∑rank(X)

a=A+1 (λa)n, with rank(X) the rank of the matrix of
data X and λa the eigenvalues of matrix 1

N−1 ·E
T
A ·EA, EA being

the matrix of residuals; h0 = 1− 2θ1θ3

3θ2
2

; and zα is the 100·(1−α)%
standardized normal percentile.

Alternatively, one can use an approximation based on the
weighted chi-squared distribution proposed by Box [51]. Con-
trol limits for Q-statistic that distinguish phase I and phase II
can also be found [10].

To achieve an adequate performance of the monitoring charts
in phase II, it is highly recommended to readjust the control
limits using the calibration data in a leave-one-out basis [54,

55]. Limits are raised or lowered so that the Overall Type I
(OTI) risk equals the imposed significance level α. Following
the definition in [40], the OTI is the percentage of faults in the
NOC calibration observations:

OT I = 100 ·
n f
N

% (11)

where n f is the total number of faults (i.e., single observations
where the statistic computed crosses the control limit) in the
NOC calibration data.

3.3. Diagnosis
Once a fault is detected, a diagnosis system capable to find its

root-causes is desired. The most generalized approach for diag-
nosis in MSPC is the contribution plots [43, 46, 52]. Contribu-
tion plots show the contribution of the variables to an anoma-
lous value of the monitoring statistics. Generally speaking,
these are bar plots where the contribution of the set of vari-
ables to a single statistic (D-st or Q-st) can be inspected. Also,
control limits can be defined to signal significant contributions,
which detect the variables related to a given fault that should
be considered for diagnosis. According to Alcala and Qin [53],
there are three main classes of contribution plots: General De-
scompositive Contributions (GDC), Reconstruction Based Con-
tributions (RBC) and Diagonal Contributions (DG). The most
extended approach is referred to as the Complete Decomposi-
tion Contribution (CDC) by [53], and belongs to the GDC class.
The CDC index for variable i is as follows [53]:

CDCi = xn ·M1/2 · ξt
i · ξi ·M

1/2 · xt
n (12)

where ξ is a 1 × M vector with zeros exception made on a one
in the i-th position, and M is defined in accordance with the
statistic diagnosed.

For the Q-statistic, M follows:

M = P−A · Pt
−A (13)

where P−A are the residual components after A PCs have been
extracted, defined as the eigenvectors of Et

A · EA.
For the D-statistic, M follows

M = PA · Λ
−1 · Pt

A (14)

where Λ is a diagonal matrix with the first A eigenvalues of
Xt · X.

The original proposal by Lakhina et al. [5] base the diag-
nosis in the approach of Dunia and Qin [41], which lies into
RBC methods. This original approach requires of a set of pre-
defined faults against which new faults in incoming data can be
diagnosed. A main limitation of this is that new faults, not pre-
viously seen in the past data, cannot be adequately diagnosed.
RBC methods have been mainly developed by Prof. Qin and
co-workers, being successfully generalized for unsupervised di-
agnosis (take for instance [56])

The RBC index for variable i is as follows [53]:

RBCi =
(ξi ·M · xt

n)2

ξi ·M · ξt
i

(15)
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An alternative to contribution plots are oMEDA plots [57].
The oMEDA algorithm was designed to identify the variables
which differ between two groups of observations in a latent sub-
space. From that point of view, it can be seen as an extension
of contribution plots to compare groups of observations. If one
of these groups is the centre of coordinates, the result is similar
to a contribution plot. The oMEDA can also be used to identify
the variables that most vary in a given direction contained in
a subspace. That way, we can also diagnosis score trends in a
projection subspace.

The oMEDA technique is employed as follows. Firstly, a
dummy variable is designed to cover the observations of in-
terest. Take the following example: a number of subsets of
observations {C1, ...,CN} form different clusters of anomalies.
One may be interested in identifying, for instance, the variables
related to the deviation of C1 from the NOC data L without
considering the rest of clusters. For that, a dummy variable d is
created so that observations in C1 are set to 1, observations in
L are set to -1, while the remaining observations are left to 0.
Similarly, C1 can be compared to the centre of coordinates (the
data average) by setting d so that observations in C1 are set to
1 and the remaining to 0. Doing this with a cluster of one sin-
gle observation is similar to issuing a contribution plot of that
observation. Finally, values other than 1 and -1 can be included
in the dummy variable if desired, which is useful for diagnos-
ing trends in the scores. oMEDA is then performed using this
dummy variable as follows:

d2
A,(i) =

1
N
· (2 · Σd

(i) − Σd
A,(i)) · |Σ

d
A,(i)| (16)

with Σd
(i) and Σd

A,(i) being the weighted sum of elements for vari-
able i in X and its projection XA according to the weights in d,
respectively.

Two main differences of oMEDA with contribution plots
are that the former has sign information while contribution are
quadratic indexes, and that oMEDA specifies a contribution in
a sub-space, not in a given specific statistic.

3.4. Model Calibration: Number of PCs and Normalization

A main matter of study is how to select the number of PCs A
in a PCA model [35]. Recent studies claim that this decision is
dependent on the application for which PCA is used [58]. For
this reason, we have intentionally located this section after Sec-
tion 3.2, since the application needs to be properly understood
before deciding a procedure to select A. The aim of PCA in
MSPC is to select the optimum division in model and residual
subspaces so that the statistical distributions of TA and EA de-
fined from the calibration data are representative of the distribu-
tions in incoming data, provided that the system under analysis
remains in control.

Some guidelines to select A for monitoring by assessing the
stability of PA were suggested in [58], but it remains as an open
and challenging issue. Generally speaking, the model subspace
should be calibrated so that the amount of variance in the struc-
tural part of the system (eigenvectors and eigenvalues) holds in
future data. The eigenvectors are imposed in the construction

of the scores, while eigenvalues are imposed in the definition of
the D-statistic. If the MSPC system is properly calibrated, the
amount of variance satisfying those constrains should be similar
in both calibration and test data. Note that the more PCs added
to the model, the more constraints are imposed on that struc-
ture. Contrarily, on the residual part no constrains are imposed
exception made on the amount of variance left in the residual
subspace, measured in the Q-statistic. It should be noted that
there is no perfect optimal A, since a certain degree of noise is
always incorporated in a PCA model no matter the value of A.
Here, noise is understood as non-structural variability captured
in the PCA model, that is, specific variability for the calibration
observations, not repeated in future data.

According to the previous discussion, it should be noted that
the underestimation of A is less harmful for the MSPC system
than its overestimation. If A is underestimated, the anomaly de-
tector is not calibrated with the optimum number of constrains.
The risk of underestimating A is that there may be a subset of
faults that would be detected in the D-statistic with A PCs and
would not be detected neither in the D-statistic nor in the Q-
statistic with A − n PCs. However, if A is overestimated, the
MSPC system includes constraints that are not generalizable to
new incoming data. This introduces a bias between the values
of the D-statistic and Q-statistic in calibration and test data. In
particular, the Q-statistic tends to be higher in test data than in
calibration data, leading to many false alarms [12]. This effect
is expected to grow with the number of parameters in the PCA
model, which is a function of A and the number of variables.

In any case, the approach to select A used in the networking
community [5, 8], so as to capture a high percentage of the vari-
ability of the data, is discouraged, especially when the number
of variables is very large [4]. A proper selection of the number
of PCs as discussed above and the readjustment of the control
limits according to the OTI risk are adequate means for avoid-
ing the problem claimed at point i) in Section 1 from [9]: the
supposed sensitivity of the anomaly detector with the parameter
A.

Another relevant choice for model calibration is that of the
data normalization [59]. Most common normalization opera-
tions in MSPC are mean-centering and auto-scaling in the ob-
servations mode. After mean-centering, PCA is focused on
variability. Lakhina et al. [5] used this normalization. The
auto-scaling operation is a mean-centering followed by a scal-
ing procedure to set the variance of the variables to 1. This
is recommended when variables with non-comparable units are
present.

As the number of variables in MSPC grows, different normal-
izations may drive to a very different set of detected anomalies.
The auto-scaling operation homogenizes the relevance of the set
of variables in the MSPC system, but at the same time may am-
plify the noise. On the other hand, mean-centering focuses the
MSPC system on variables with high variability. This approach
may not be the most interesting in network anomaly detection,
since security related variables tend to present low variability.
When it is possible to define a degree of relevance of the set of
variables by an expert, it is recommended to perform an auto-
scaling operation followed by a weighted operation where the
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relevance of the variables is considered. This allows to focus
the PCA model and monitoring statistics on the most relevant
variables.

4. Data pre-processing

Data pre-processing here is understood as the computations
needed to transform the data collected from a monitored system
into suitable input data for the supervision modules. Since PCA
is based on (co)variance, which is a quantitative measure, infor-
mation needs to be transformed into quantitative values. Notice
that, in the field of MSPC, the term pre-processing commonly
refers to data normalizing operations previously discussed.

As already defined, PCA is suited to analyze two-way data
sets, which contain a number of observations (rows) of a num-
ber of features or variables (columns) Therefore, to apply a mul-
tivariate statistical monitoring procedure to an industrial pro-
cess or a communication network, some appropriate variables
need to be measured on that process or network. Each com-
plete measurement of the vector of variables is what we call an
observation. The definition of the observations and variables is
a main difference between MSPC and MSNM, and the reason
why the latter is probably more complex than the former. In
MSPC, monitored variables, like temperatures, pressures, con-
centrations, etc. are directly measured from the process. Thus,
none or very little pre-processing is needed. Observations are
typically ordered in time, for regular or variable sampling rates,
and again with little or none pre-processing, typically interval-
wise averaging or sampling.

In MSNM we have the opposite situation. In a network, most
of the information comes in the form of logs or network traf-
fic, information that cannot be directly used in a MSNM set-
up. Rather, logs and network traffic need to be translated into
quantitative variables, and there is a bunch of possibilities to
do so. This is typically referred to as data parsing or feature
engineering [45]. Furthermore, the definition of the observa-
tions in MSNM is not straightforward. Although observations
are typically ordered in time, it may be interesting to define the
observations in terms of relevant entities in a network, such as
source or destination IPs or service ports. This makes MSNM
more challenging but also more flexible and powerful than tra-
ditional MSPC.

A main challenge in MSNM is the logs parsing, since almost
each vendor defines its own log format. Although there have
been some standardization efforts on the format, e.g., the Com-
mon Event Expression (CEE - http://cee.mitre.org/), there is a
general lack of adoption. This makes the analysts to devote a
significant percentage of time to log parsing. The key for the
selection of variables in MSNM systems is to identify general
means of translating log information into quantitative variables.

Lakhina et al. [5] proposed the definition of counters as
quantitative variables. The counters were restricted to counts of
packets and bytes arranged by origin-destination border gate-
ways of backbone networks. Camacho et al. [48] generalized
this definition to consider several sources of data. They pro-
posed the feature-as-a-counter approach, so that variables are
basically counters for the number of associated events. Each

variable is defined as the number of times, nw
i , a given event

i takes place in the logs during a given time window w. This
is a general definition suitable for most of the types of infor-
mation of interest in anomaly detection: traffic volume (e.g.,
number of incoming or outgoing packets/flows within a given
period), application-specific traffic (e.g., number of requests to
a given port or group of ports), location-specific traffic (e.g.,
number of packets from/to a specific subnet or group of ad-
dresses), specific events in the logs (e.g., number of logs with
a specific event), events severity (e.g., number of logs with a
specific event code), etc. The window size w may be defined
so that scarce measurement matrices are avoided. That is, it
should be big enough so that a given event takes place more
than once in most intervals. Furthermore, by properly selecting
w in the parsing, the combination of information from different
and variate sources of data is simplified [48]: data sources can
be combined by appending the corresponding data matrices in
the mode of the variables. If the sampling rate of a data source
s is faster than the final sampling rate, cumulative or average
values can be used to compute the corresponding variables val-
ues for the observations. If the sampling rate of a data source
is slower than the final sampling rate, proportional or repeated
values can be used instead. Also, some form of interpolation
may be used if necessary.

Another class of variables are those representing a sample
distribution. These are commonly more suitable than counters
to summarize the information in traffic data, and less sensitive
to packet sampling according to [39]. For instance, we may be
interested not only in the cumulative throughput in an access
link during a given time window w, but also in the distribution
of packets or flows sizes in that interval. Histograms are use-
ful artifacts to transform a distribution into one or more quan-
titative variables. The histogram is composed of a number of
quantitative variables (counters): Z = {ni, i = 1, ..., L}. These
variables can be directly entered into the system. However, this
approach may lead to a huge number of variables. Although
PCA can handle very large numbers of variables, this approach
may lead to very scarce data matrices and problems in the in-
terpretation of the results. Alternatively, the histograms can be
summarized, for which measures of central tendency (e.g., av-
erages) and dispersion (e.g., standard deviations) may be ade-
quate. Also, Lakhina et al. proposed [39] the use of entropy
to summarize the information in very large histograms, such as
those obtained in terms of source IPs. The entropy is defined
as:

H(Z) = −

L∑
i=1

(ni

S

)
log2

(ni

S

)
(17)

with:

S =

L∑
i=1

ni (18)

Callegari et al. [60] also proposed the use of the Kullback-
Leibler (K-L) divergence to capture dynamical information.
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The K-L divergence in time is expressed as:

Dt
KL =

L∑
i=1

n(t−1)
i log

n(t−1)
i

nt
i

(19)

where nt
i refers to the i-th counter in the t-th sampling interval.

In the next section, alternative procedures to capture dynamical
information that simplify the diagnosis of anomalies are pre-
sented.

The comparison among counters and quantitative variables
based on histograms is out of the scope of the present paper,
which is more concerned with the correct development of a
PCA-based monitoring system. The interested reader is pointed
to references [39], [48] and [60]. However, it should be noted
that the proper selection of variables for anomaly detection is an
interesting research topic, which may, by itself, deserve publi-
cation like it happens in other areas like e.g. pattern recognition
and medical research.

5. Handling Dynamics

Brauckhoof et al. [8] suggest that the supposed limitations
reported in [9] for PCA anomaly detection come from the fact
that PCA does not consider the temporal correlation in the data.
However, this claim is misled. PCA can model any type of
linear correlation provided that the data arrangement is prop-
erly chosen. Dynamics can be incorporated in a PCA model
adding Lagged Measurement Vectors (LMVs) [61, 62]. Figure
2 shows how data are arranged to incorporate LMVs in a PCA
model and the resulting covariance matrix when this is done.
This solution has been referred to as Dynamical PCA [61] or
a derivation from the Karhunen-Loeve transform for functional
analysis [8]. However, it should be noted that traditional PCA is
applied over the modified data matrix, so that no change in the
multivariate model is done but only a specific data arrangement
is performed.

From the previous figure it is easy to understand the effect
of the addition of LMVs. Dynamics of order d are built in the
model by matrices XT

t−d · Xt. The more LMVs added, the more
dynamic information included in the model. As stated in [54],
depending on the nature of the process, part of the dynamic
information may be negligible and it could be advantageous
not to incorporate it to the model for the sake of parsimony
(the use of minimum number of parameters). Furthermore, re-
search on MSPC [4] has shown that the incorporation of dy-
namical information into the PCA model does not necessarily
improve the monitoring performance: LMVs may introduce
auto-correlation that may distort the shape of the monitoring
statistics.

6. Experimental Section

In this section, two case studies are used to illustrate the
MSNM approach. In the first one, data from the VAST 2012
2nd mini challenge, online available at [63], are used to illus-
trate the main steps in the design of a MSNM system, including

the choice of normalization, number of PCs, control charts, di-
agnosis methods, the definition of the variables and the dynam-
ical order in the model.

A key issue that cannot be illustrated with a real data set is
the convenience of the statistical approach based on two phases,
since commonly the network configuration needs to be modi-
fied for solving special sources of variation. This way, in the
second case study the steps in phases I and II are shown for a
controlled scenario, where special sources of variation are iden-
tified and eliminated. Moreover, an experiment with detailed
ground-truth is performed to compare MSNM with alternative
approaches.

To illustrate the development of the MSNM system, the
MEDA Toolbox [64] for MATLAB will be employed.

6.1. Case Study I: VAST 2012 2nd mini challenge
The VAST 2012 2nd mini challenge [63] presents a corpo-

rate network where security incidents occur during two days. In
particular, some staff members report unwanted messages and
a non-legitimate anti-virus program appearing on their moni-
tors. Also, their systems seem to be running more slowly than
usual. In summary, a forensics operation is required to discover
the most relevant security events and their root causes. Around
4,000 workstations and approximately 1,000 servers operate 24
hours a day. The data provided with the VAST 2012 mini chal-
lenge 2 consist of Cisco ASA firewall logs including a total of
23,711,341 data records, and IDS logs including 35,948 data
records. The data set details are available at [63], from which
the high complexity of the problem should be concluded.

Data from the firewall and IDS logs in the VAST 2012 mini
challenge 2 have been parsed into M-dimensional vectors rep-
resenting time intervals of one minute, as the resolution of the
IDS entries prevent us from using shorter intervals. A total
of 2,350 observations, each one with the information for one
minute, are obtained.

For every sampling period of one minute, we have defined
a set of 112 variables that represent the information from the
two data sources: 69 variables for the firewall log and 43 for
the IDS log (see Table 1). By using the same sampling period,
both data sources are seamlessly combined by appending the
data matrices. Every variable is labeled as source typelabel,
where source indicates if the variable is coming from the fire-
wall (fw) or from the IDS (ids) logs, type indicates the type of
the variable (e.g., ip stands for a range of IP addresses and p

for port), and label gives some specific information. For ex-
ample, the variable ids pdns collects the number of IDS logs
related to incidents where the DNS port is present.

Data are split into a calibration set composed of the first
1,000 observations and a test set with the remaining. Although
the network cannot be considered to be under NOC, for the sake
of illustration we will approximate that situation by detecting
and discarding outliers in the calibration data. This is done us-
ing the D-statistic and the Q-statistic, and for the several nor-
malization and numbers of PCs considered afterwards. In all
the cases, a very similar set of outliers was detected. The re-
maining observations where used as a common calibration set
for the MSNM systems described below.

7



In an MSNM system, the first step is to select the number of
PCs and perform the normalization. Figure 3 shows the curve of
residual variance in terms of the number of PCs for the calibra-
tion data. It also includes a form of low-weight cross-validation
named column-wise cross-validation (ckf ) [65]. The ckf aids in
the selection of PCs, and the minimum value in the curve should
be chosen according to this criterion. However, it is not clear
that this is an adequate selection criterion for MSNM [58]. We
simply use it here as an example of PCs selection tool com-
monly used in the MEDA Toolbox [64]. Figure 3 shows both
the result after mean-centering and after auto-scaling.

Recall that Lakhina et al. [5] used a mean-centering nor-
malization. This would lead to Figure 3(a). According to their
criterion for PCs selection, one PC would be enough. This is
also supported by the ckf curve. Alternatively, if auto-scaling is
used, the number of PCs should be selected from Figure 3(b).
In this case, Lakhina et al. would select a large number of PCs
(16 PCs app.), and following the ckf criterion we may select 9
PCs. This contradicts experimental results [12] that show that
the number of PCs should be low when the number of variables
is large, also in agreement with our previous discussion in Sec-
tion 3. This is because any PC incorporates a certain degree of
noise that will not be present in future data. If the model has
too many PCs, the incorporated noise makes the MSPC sys-
tem show too many false alarms in the Q-statistic, while the D-
statistic may also be affected. In Figure 4(a) we illustrate this
effect. The figure shows the ratio between the D-statistic of test
and calibration observations and the same for the Q-statistic in
terms of the number of PCs. The ideal ratio, equal to 1 so that
the control limits computed from calibration data are valid for
test data, is also shown as a reference. Ratios are generally
high, around a value of 4, showing that in this specific division
in calibration and test, test observations show higher variability
than calibration ones on average. Also, for a high enough num-
ber of PCs the Q-statistic ratio tends to diverge. This causes
a high number of false alarms in that statistic. In Figure 4(b)
we show a re-sampling of the data, where calibration and test
observations were randomly chosen. In this example, the ra-
tios do start in 1 showing a similar variability in calibration and
test, but again for a large enough number of PCs they tend to
get unstable. These figures confirm our claim regarding that
low numbers of PCs should be preferred to high numbers, so
that the ratios remain in the stable part and a large number of
false alarms is avoided. This shows that the PCs selection pro-
cedures considered so far in networking [5] are not adequate.
However, a good procedure is still a matter of research.

In Figure 5, the D-statistic and Q-statistic charts1 for the
number of PCs that would be selected by Lakhina et al. [5]
both after mean-centering and auto-scaling are shown. Notice
that Lakhina et al. would only have used the Q-statistic in their
monitoring system. However, there are anomalies that are only
detected in the D-statistic. It is the case of observations #505

1Control limits are not shown in the figure to avoid confusion: this data
should be interpretatively analyzed with phase I control limits, and solving for
the problems found, probably performing modifications on the network config-
uration. This procedure is illustrated in the second example.

and #637 in Figure 5(a) and #480 and #271 in Figure 5(b). This
problem grows with the number of PCs incorporated into the
model, since more variability is captured by the model and so
by the D-statistic. This shows that the monitoring scheme based
only in the Q-statistic considered in [5] is not adequate.

In Table 2, the four time intervals with the highest value
of both the D-statistic and the Q-statistic for different PCA
models are compared. Following the previous discussion on
the selection of the number of PCs according to several crite-
ria, the considered models are the model with 1 PC for mean-
centered data and the models with 1 PC, 9 PCs and 16 PCs for
auto-scaled data. Recall that both statistics are complementary,
which means that the main anomalies detected by each MSNM
system are the union of those detected by each chart. The re-
sults show a certain degree of variability among the MSNM
systems. Still, there are several common detections. For in-
stance, the detections in the D-statistic in the first two models
and in the Q-statistic in the last three models are exactly equal.
However, several anomalies vary from one system to another.
We will try to elucidate the reason for that variability in the
following.

In Figure 6, oMEDA plots and CDC and RBC contribution
plots are shown in the first, second and third column, respec-
tively. Diagnosis plots were computed for both the D-statistic
and the Q-statistic, for several of the models and for a number
of anomalies selected from Table 2: namely, #418, #480, #526
and #505.

The profile of the three types of diagnosis plots for the same
anomaly coincides in most situations, except for anomalies
#526 and #505. For the latter, both oMEDA and CDC plots
yield the same relevant variables, but RBC fails to do so. In
fact, the diagnosis by RBC seems to show an artefact. Al-
though this example will be further studied in the following,
it is out of the scope of this paper to investigate statistically sig-
nificant differences among the diagnosis methods. However, it
should be noted that all methods perform adequately in most
anomalies considered here. For instance, the diagnosis plots in
Figures 6(a) and 6(b), issued for the anomaly #418 with differ-
ent models, are coherent. It is also apparent from Figures 6(c)
and 6(d) that anomalies #505 and #526 are related to the same
phenomenon.

In Tables 3, 4 and 5, the main variables according to the diag-
nosis plots for faults #418, #505, #526 and #480 are presented.
In the first and last tables, diagnosis results are equivalent re-
gardless of the method employed: O (oMEDA), C (CDC) or
R (RBC). Fault #418 is related to IDS alarms of high prior-
ity (ids prio1) reporting potential corporate privacy violation
(ids privacy) in the DNS service (ids pdns and ids ldns).
Fault #480 is related to FW logs of Syslog Severity Level 4
(fw syswarn) related to %ASA-4-1 messages (fw asa4 and
fw asa41), and the FTP service (fw pftp). A fast inspection to
interval #480 in the corresponding log showed a large number
(more than 700) of %ASA-4-106023 messages reporting the
ACL blockage of FTP connections to an outside server. These
700 logs were found among a much larger (12,000) %ASA-6
messages. However, this huge number of %ASA-6 messages
was maintained during the whole data capture, and it was un-

8



derstood by the MSNM system as part of the common varia-
tion in the network. This example illustrates the great capa-
bility of MSNM for discovering non-common events among
a much larger amount of common events. This also shows
the clear necessity of a phase I procedure in order to identify
special causes of variation that should be avoided prior to the
calibration of the final anomaly detector. Thus, this excess of
%ASA-6 messages could be understood as such special cause.
Anomalies #505 and #526 share the same highlighted vari-
ables for oMEDA and CDC, and therefore the same diagnosis:
the faults correspond to a larger than usual amount of sysinfo
logs (fw sysinfo) with ASA-6 messages (fw asa6) reflecting
outgoing (fw outbound) HTTP connections (fw phttp and
fw tcp) from the WorkStations of the network (fw ipws and
fw pnstd).

To further corroborate the diagnosis, the profiles of some of
the variables highlighted in the diagnosis plots are shown in
Figure 7. Some anomalies are annotated. For instance, time in-
terval #418 is a clear anomaly in variable ids prio1, validat-
ing the detection in the MSNM based on the PCA model with 1
PC from auto-scaled data (Table 2) and the diagnosis in Figure
6(a) and Table 3. Also, time interval #480 presents an anoma-
lous value for variable fw pftp, validating the detection in the
MSNM based on the PCA model with 9 PCs from auto-scaled
data (Table 2) and the diagnosis in Figure 6(e) and Table 5. Fi-
nally, time intervals #505 and #526 present anomalous values
for variable fw pnstp, validating the detection in the MSNM
based on the PCA model with 1 PC from mean-centered data
(Table 2) and the diagnosis by oMEDA and CDC in Figures
6(c) and 6(d) and Table 4. It is worth noting that in Figure 7(b)
time intervals #505 and #526 do not show an anomalous value,
which disagrees with the diagnosis by RBC in Figures 6(c) and
6(d). This confirms that these diagnosis plots show an artefact.

Results in Figure 7 show that the anomalies detected using
different MSNM systems are all correct and accurate. This
contradicts the criticism of [9] specified in the introduction, in
particular that corresponding to point i): the false positive rate
is very sensitive to small differences in the number of princi-
pal components in the normal subspace. This is the case if the
approach of Lakhina et al. is followed, but not for MSNM.
Rather, it should be noted that all the detections are in fact cor-
rect, though different MSNM systems focus on different types
of anomalies. Thus, in the case of the mean-centered MSNM
system, the detection is focused on variables with higher vari-
ance (see for instance the variance in Table 4) while in the
auto-scaled MSNM system, variables with low variability are
promoted to highlight anomalies in them (see for instance the
variance in Table 3). Therefore, the MSNM system should be
configured taking into account, if possible, the main targets of
detection. Anomalies detected are always correct, in the sense
that they are always motivated by some source of anomalous
behavior. However, that source might not be of interest consid-
ering the goal of the MSNM system. The proper alignment of
actual detections with detection targets is the main challenge in
the development of a MSNM system.

Finally, Figure 8 shows the monitoring charts for a dynam-
ical model with 1 LMV and 1 PC after mean-centering. The

main faults signaled (Table 6) are essentially the same as those
for the statical model with 1 PC after mean-centering (Table
2), but faults are signaled twice as a consequence of the auto-
correlation induced in the statistics. This confirms the findings
in [4]. From that reference and the work performed here, and
in disagreement with [8], we claim that the use of LMVs or dy-
namical models is not a solution to any problem that may or
may not exist in PCA-based anomaly detection, provided that
this is adequately performed. Certainly, this solution was pro-
posed for the approach of Lakhina et al., not for MSNM.

6.2. Case Study II: Controlled Scenario
The experimental setup for the controlled scenario consists

of a network of 100 virtual machines running Linux Mint 17,
with the topology shown in Fig. 9. We also include a Linux ma-
chine running Apache 2.4.7 web server, and a Netflow inspec-
tor collecting information of flows between the server and the
rest of the network. The used implementation for the Netflow
inspector is the kernel module ipt NETFLOW 2.6.x-3.x for ipt-
ables [66]. The flows are collected with the following config-
uration: active timeout=1800s; inactive timeout=15s;
netflow protocol=v5.

In order to include background normal traffic in the trace
to be analyzed, the clients generate HTTP requests against
the server following an exponential distribution for the inter-
request time, with a mean value of 40 seconds between con-
secutive requests. There are 100 URLs randomly selected by
the clients, all of them corresponding to resources of differ-
ent sizes. To illustrate the use of MSNM during phase I, an
anomaly is included in the trace: a malware located in the server
performs a stealth nmap scanning every 5 minutes to the range
192.168.56.100/28, affecting 3 active machines in the network.

Netflow information is transformed to observations with 148
variables using the feature-as-a-counter approach for a sam-
pling period of one minute. Table 7 shows a brief sum-
mary of the number of variables defined for this dataset. As
an example to clarify the choice for the variables, we see
that there are four variables defined to represent IP addresses,
e.g., number of source/destination public/private IP addresses,
i.e., src ip private, src ip public, dst ip private,

dst ip public. Most variables are related to specific
ports/services.

In Fig. 10, the control charts for phase I are shown. The D-
statistic chart shows a pattern every 5 minutes, approximately.
This pattern does not lead to the detection of anomalies if the-
oretical control limits are used in the chart. However, theo-
retical limits are based on assumptions that may not hold in
all circumstances, and clear patterns like the one presented in
the chart should be checked. If the observations with high val-
ues are compared to the average observation using oMEDA,
the plot in Fig. 11(a) is obtained. This plot shows that high
values of the D-statistic are the result of observations where
most variables obtain a larger value than usual. Since the vari-
ables highlighted are related to specific ports, the straightfor-
ward diagnosis is that a port scanning is taking place every 5
minutes. Considering that the chart in Fig. 10(a) identifies the
minutes in which the scanning took place, the security staff can
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inspect the Netflow data corresponding to that period and find
the source of scanning. With this information, the malware as-
sociated can be disabled on the infected machine, solving the
problem, i.e., the special cause of variation. In the Q-statistic
chart of Fig. 10(b), a single outlier is found at minute 30. The
diagnosis based on oMEDA in Fig. 11(b) highlights protocols
UDP, DNS and usage of public IPs. Inspecting the Netflow data
at that interval, it was found that this anomaly was related to an
excess of DNS queries to local server at IP address 127.0.1.1,
and HTTP traffic directed to the public addresses 204.45.82.194
and 91.189.92.150. We have checked that these addresses cor-
respond with public Linux Mint repositories, thus concluding
that the analyzed event is a result of automatic software update.
This was not concluded to be an anomaly. Instead, it was con-
sidered a common source of variability and no additional action
was taken in the network configuration. To avoid future false
alarms in a MSNM, DNS and HTTP flows with the specified
pattern where filtered out in the Netflow sensor.

In a second experiment, after disabling the scanning mal-
ware from the server and filtering out DNS and HTTP flows
related to software update, a trace of traffic under NOC was
obtained. The corresponding monitoring charts are shown in
Fig. 12. The highest statistics in the calibration data were diag-
nosed as common causes of variability, and no additional action
was performed. Thus, we can consider that the network is un-
der statistical control and we can proceed with phase II. The
charts show both the theoretical control limits at phase II and
the leave-one-out adjusted control limits, the latter being pre-
ferred for a reduction of false alarms in the monitoring system.

In a third experiment, additional traffic to test the monitoring
system was generated with a new anomaly, in which an intru-
sion was performed to the server by using a vulnerable appli-
cation and injecting a reverse tcp payload that automatically
connected to the hackers machine at TCP port 4444 (default
port in the Metasploit framework). This connection was used
to exfiltrate data by periodically sending server log informa-
tion about the HTTP requests received (file access.log of the
Apache server). The monitoring charts are shown in Fig. 13.
Anomalies are only detected in the Q-statistic chart. In the first
anomaly (instant t=1), we checked with oMEDA that the rele-
vant variables point out to a higher amount of traffic than ex-
pected. After inspection, this anomaly was regarded as a false
alarm, as we confirmed that the increase in the traffic was due
to the statistical nature of the HTTP requests from legitimate
clients to the server. On the contrary, the second anomaly was
related to the Metasploit port as well as a relevant increase in
the number of packets. The inspection of the corresponding
Netflow data led us to identify the source of the attack.

A final, more complex, experiment was carried out to com-
pare the MSNM system with the approaches of Lakhina et al.
[5, 39] and Brauckhoof et al. [8]. For that, the ground-truth
specified in Table 8 was defined. The experiment was carried
out with the calibration data defined for phase II. It started in a
state of NOC, with the 100 HTTP clients operating. During the
experiment, several DoS attacks were performed, which differ
in the rate of the attack and whether spoofing was defined with
prior knowledge of the network segment or not. Moreover, two

data exfiltrations with Metasploit, similar to that in the previ-
ous experiment, were implemented. Finally, there was a period
where the number of HTTP clients were reduced, which could
be a consequence of a malfunction in the network or the service.

There are some comments in due regarding the use of Net-
flow as the sensor in this experiment. First, when the high rate
DoS attack took place, the sensor got overloaded. For this rea-
son, the DoS was only detectable in Netflow data during the
first two minutes of the attack. A higher cache might have pre-
vented this problem, but then a higher DoS could also cause
this overflow. Second, during the first sampling time and the
last three sampling times, traffic was lower than in calibration
data.

Taking the ground-truth and these comments into consider-
ation, we defined the time bins in which detections should be
flagged, and metrics like recall, specificity and accuracy, the
latter the most general performance measure, can be computed.
This was done for the approaches of Lakhina et al. [5, 39],
Brauckhoof et al. [8] and the proposed MSNM system. Re-
sults are shown in Table 9. Those approaches in bold letters
in the first column are the ones in which we have scrupulously
followed the recommendations of the authors regarding the pre-
processing and the selection of the number of PCs. However,
for a wider comparison between Lakhina et al. and the MSNM
system under the same conditions, we have compared them
for different preprocessing methods (mean-centering and auto-
scaling) and numbers of PCs. Results for Lakhina et al. show
the sensitivity problem claimed by Ringberg et al. [9]. Depend-
ing on the choice (PCs or preprocessing) the performance of the
method can be degraded to a large extent. Including dynamics
in the monitoring system, as proposed by Brauckhoof et al.,
does not lead to a real improvement. However, if both the D-
statistic and Q-statistic are used, like we propose in the MSNM
system, the performance is improved in comparison to Lakhina
et al. and the sensitivity problem vanishes. In fact, MSNM de-
tection results improve up to 20 points on the Lakhina et al. and
Brauckhoof et al. proposals.

7. Conclusion

The multivariate approach based on Principal Component
Analysis (PCA) for anomaly detection in networking has been
developed during the last decade. This approach bears a num-
ber of differences to the more developed PCA-based Multivari-
ate Statistical Process Control (MSPC) approach in the indus-
trial processing and chemometric literature. In this paper, we
show with examples that these differences are not justified and
we coin the name Multivariate Statistical Network Monitoring
(MSNM) for the application of MSPC in networking, that we
support. Using MSNM, the limitations reported in the literature
for the use of PCA in networking are effectively avoided.

By inheriting the MSPC approach in networking, a large
amount of solutions from the industrial/chemometric commu-
nity can be directly translated to the network monitoring prob-
lem. Thus, there is a vast literature on missing data estimation
[67], [68], [69], data fusion [70], [71], hypothesis testing [72],
[73], data equalization [74], [75], [76], data preprocessing [59],
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three-way/n-way modelling [2, 40] and other data analysis pro-
cedures using multivariate models like PCA. All these methods
conform a powerful tool set that provides the analyst with high
capabilities for network monitoring and supervision.

Though the MSPC theory is already well-developed, there
are a number of challenges that need further study. Among oth-
ers, we highlight how to select the number of PCs to reduce the
incorporation of noise in the model and how to best incorporate
dynamics into the model in terms of detection and diagnosis
ability. Furthermore, in particular for MSNM, a lot of work on
how to define normalization, pre-processing and data arrange-
ment, depending on the data sources and according to specific
goals like network security, needs to be performed.
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[4] J. Camacho, J. Picó, A. Ferrer, On-line monitoring of batch processes
based on PCA: Does the modelling structure matter?, Analytica Chimica
Acta 642 (2009) 59–68.

[5] A. Lakhina, M. Crovella, C. Diot, Diagnosing network-wide traffic
anomalies, ACM SIGCOMM Computer Communication Review 34 (4)
(2004) 219. doi:10.1145/1030194.1015492.

[6] S. P. V. Chatzigiannakis, G. Androulidakis, Improving network anomaly
detection effectiveness via an integrated multi-metric-multi-link (M3L)
PCA-based approach, SECURITY AND COMMUNICATION NET-
WORKS 2 (2009) 289–304. doi:10.1002/sec.

[7] G. Münz, Dissertation Traffic Anomaly Detection and Cause Identifica-
tion Using Flow-Level Measurements, 2010.

[8] D. Brauckhoff, K. Salamatian, M. May, Applying PCA for traffic anomaly
detection: Problems and solutions, Proceedings - IEEE INFOCOM
(2009) 2866–2870doi:10.1109/INFCOM.2009.5062248.

[9] H. Ringberg, A. Soule, J. Rexford, C. Diot, Sensitivity of PCA for traffic
anomaly detection, ACM SIGMETRICS Performance Evaluation Review
35 (1) (2007) 109. doi:10.1145/1269899.1254895.

[10] A. Ferrer, Latent Structures-Based Multivariate Statistical Process Con-
trol: A Paradigm Shift, Quality Engineering 26 (1) (2014) 72–91.
doi:10.1080/08982112.2013.846093.

[11] J. MacGregor, T. Kourti, Statistical process control of multivari-
ate processes, Control Engineering Practice 3 (3) (1995) 403–414.
doi:10.1016/0967-0661(95)00014-L.

[12] J. Camacho, New Methods Based on the Projection to Latent Structures
for Monitoring, Prediction and Optimization of Batch Processes., PhD
Thesis, Universidad Politcnica de Valencia, Valencia, 2007.

[13] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, E. Vazquez,
Anomaly-based network intrusion detection: Techniques, systems and
challenges, Computers & Security 28 (2009) 18–28.

[14] M. Bhuyan, D. Bhattacharyya, J. Kalita, Network anomaly detection:
Methods, systems and tools, IEEE Communications Surveys & Tutori-
als 16 (1) (2014) 303–336.

[15] H. Om, T. Hazra, Statistical techniques in anomaly intrusion detection
system, International Journal of Advances in Engineering & Technology
5 (1) (2012) 387–398.

[16] A. Kanaoka, E. Okamoto, Multivariate statistical analysis of network traf-
fic for intrusion detection, in: 14th. International Workshop on Database
and Expert Systems Applications (DEXA’03), 2003, pp. 1–5.

[17] M. Shyu, S. Chen, K. Sarinnapakorn, L. Chang, A novel anomaly detec-
tion scheme based on principal component classifier, in: IEEE Founda-
tions and New Directions of Data Mining Workshop (ICDM’03), 2003,
pp. 171–179.

[18] G. Qu, S. Hariri, M. Yousif, Multivariate statistical analysis for network
attacks detection, in: 3rd. ACS/IEEE International Conference on Com-
puter Systems and Applications, 2005, pp. 1–6.

[19] D. Bodenham, N. Adams, Continuous monitoring of a computer network
using multivariate adaptive estimation, in: 13th. International Conference
on Data Mining Workshops, 2013, pp. 311–318.

[20] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, N. Taft, In-
Network PCA and anomaly detection, in: Neural Information Processing
Systems (NIPS), 2006, pp. 617–624.

[21] R. Kwitt, U. Hofmann, Unsupervised anomaly detection in network traffic
by means of robust PCA, in: International Multi-Conference on Comput-
ing in the Global Information Technology (ICCGI’07), 2007, pp. 1–4.

[22] S. Hakami, Z. Zaidi, B. Landfeldt, T. Moors, Detection and identifica-
tion of anomalies in wireless mesh networks using Principal Component
Analysis (PCA), in: International Symposium on Parallel Architectures,
Algorithms, and Networks, 2008, pp. 266–271.

[23] B. Rubinstein, B. Melson, L. Huang, A. Joseph, S. lau, N. Taft, D. Tygar,
Compromising PCA-based anomaly detectors for network-wide traffic,
Tech. rep. (2008).

[24] H. Kim, S. Lee, X. Ma, C. Wang, Higher-order PCA for anomaly de-
tection in large-scale networks, in: 3rd. IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing, 2009, pp.
85–88.

[25] Y. Liu, L. Zhang, Y. Guan, Sketch-based streaming PCA algorithm for
network-wide traffic anomaly aetection, in: International Conference on
Distributed Computing Systems, 2010, pp. 807–816.

[26] R. Magan-Carrion, J. Camacho, P. Garcia-Teodoro, Multivariate statis-
tical approach for anomaly detection and lost data recovery in wireless
sensor networks, International Journal of Distributed Sensor Networks In
press (2015) 1–40.

[27] M. Livani, M. Abadi, Distributed PCA-based anomaly detection in wire-
less sensor networks, in: International Conference for Internet Technol-
ogy and Secured Transactions (ICITST), 2010, pp. 1–8.

[28] M. Dusi, C. Vitale, S. Niccolini, C. Callegari, Distributed PCA-based
anomaly detection in telephone networks through legitimate-user profil-
ing, in: IEEE International Conference on Communications (ICC), 2012,
pp. 1107–1112.

[29] C. Callegari, L. Gazzarini, S. Giordano, M. Pagano, T. Pepe, A novel
PCA-based network anomaly detection, in: IEEE International Confer-
ence on Communications (ICC’11), 2011, pp. 1–5.

[30] M. Xie, S. Han, B. Tian, Highly efficient distance-based anomaly detec-
tion through univariate with PCA in wireless sensor networks, in: IEEE
International Conference on Communications (ICC’11), 2011, pp. 564–
571.

[31] S. Novakov, C. Lung, I. Lambadaris, N. Seddigh, Studies in applying
PCA and wavelet algorithms for network traffic anomaly detection, in:
IEEE 14th. International Conference on High Performance Switching and
Routing, 2013, pp. 185–190.

[32] A. Delimargas, E. Skevakis, H. Halabian, I. Lambadaris, N. Seddigh,
B. Nandy, R. Makkar, Evaluating a modified PCA approach on network
anomaly detection, in: 5th. International Conference on Next Generation
Networks and Services (NGNS), 2014, pp. 124–131.

[33] D. Liu, C. Lung, N. Seddigh, B. Nandyu, Entropy-based robust PCA for
communication network anomaly detection, in: IEEE/CIC International
Conference on Communications in China (ICCC), 2014, pp. 171–175.

[34] Y. Kanda, R. Fontugne, K. Fukuda, T. Sugawara, ADMIRE: Anomaly de-
tection method using entropy-based PCA with three-step sketches, Com-
puter Communications 36 (2013) 575–588.

11



[35] J. E. Jackson, A user’s guide to principal components, Wiley series
in probability and mathematical statistics. Probability and mathematical
statistics, Wiley-Interscience, 2003.

[36] J. V. Kresta, J. F. Macgregor, T. E. Marlin, Multivariate statistical monitor-
ing of process operating performance, The Canadian Journal of Chemical
Engineering 69 (1) (1991) 35–47. doi:10.1002/cjce.5450690105.

[37] B. M. Wise, N. L. Ricker, D. F. Veltkamp, B. R. Kowalski, Theoretical ba-
sis for the use of principal component models for monitoring multivariate
processes, Process Control and Quality 1 (1) (1990) 41–51.

[38] N. D. Tracy, J. C. Young, R. L. Mason, Multivariate Control Charts for
Individual Observations, Journal of Quality Technology 24 (2) (1992) 88–
95.

[39] A. Lakhina, M. Crovella, C. Diot, Mining anomalies using traffic feature
distributions, ACM SIGCOMM Computer Communication Review 35 (4)
(2005) 217. doi:10.1145/1090191.1080118.

[40] P. Nomikos, J. MacGregor, Multivariate Statistical Process Control
Charts for Montoting Batch Processes (1995). doi:doi:10.1016/0967-
0661(95)00014-L.

[41] R. Dunia, S. Joe Qin, Subspace approach to multidimensional fault iden-
tification and reconstruction, AIChE Journal 44 (8) (1998) 1813–1831.

[42] T. Kourti, P. Nomikos, J. F. MacGregor, Analysis, monitoring and
fault diagnosis of batch processes using multiblock and multiway PLS,
Journal of Process Control 5 (4) (1995) 277–284. doi:10.1016/0959-
1524(95)00019-M.

[43] J. A. Westerhuis, S. P. Gurden, A. K. Smilde, Generalized contribution
plots in multivariate statistical process monitoring, Chemometrics and In-
telligent Laboratory Systems 51 (2000) 95–114.

[44] T. J. Boardman, The Statistician Who Changed the World: W. Edwards
Deming, 1900-1993, The American Statistician 48 (3) (1994) 179–187.

[45] R. Marty, Applied Security Visualization, Pearson Education, USA, 2008.
[46] T. Kourti, J. F. MacGregor, Multivariate SPC methods for process and

product monitoring, Journal of Quality Technology 28 (4).
[47] H. Milting, A. Kassner, C. Oezpeker, M. Morhuis, B. Bohms,

J. Boergermann, J. Gummert, Genomics of Myocardial Recovery
in Patients with Mechanical Circulatory Support, The Journal of
Heart and Lung Transplantation 32 (4, Supplement) (2013) 229.
doi:http://dx.doi.org/10.1016/j.healun.2013.01.582.

[48] J. Camacho, G. Macia-Fernandez, J. Diaz-Verdejo, P. Garcia-Teodoro,
Tackling the big data 4 vs for anomaly detection, Proceedings - IEEE
INFOCOM (1) (2014) 500–505. doi:10.1109/INFCOMW.2014.6849282.

[49] J. E. Jackson, G. S. Mudholkar, Control procedures for residuals associ-
ated with Principal Component Analysis., Technometrics 21 (1979) 331–
349.

[50] H. Hotelling, Multivariate Quality Control. Techniques of Statistical
Analysis, MacGraw-Hill, New York, 1947.

[51] G. E. P. Box, Some Theorems on Quadratic Forms Applied in the Study
of Analysis of Variance Problems: Effect of Inequality of Variance in
One-Way Classification, The Annals of Mathematical Statistics 25 (1954)
290–302.

[52] J. F. MacGregor, C. Jaeckle, C. Kiparissides, M. Koutoudi, Process mon-
itoring and diagnosis by multiblock PLS methods, AIChE Journal 40 (5)
(1994) 826–838.

[53] C. F. Alcala, S. Joe Qin, Analysis and generalization of fault diagnosis
methods for process monitoring, Journal of Process Control 21 (3) (2011)
322–330.
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Figure 1: Sample control chart of a networking variable. Control limits are presented for a 95% (dashed line) and for a 99% (solid line) confidence levels.

(a) PCA model incorporating one LMV (order 1). (b) Covariance matrices of the model.

Figure 2: Scheme of a PCA model incorporating dynamics.
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Figure 3: Percentage of residual variance (blue line) and column-wise k-fold (ckf) curve (red dashed line).
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Figure 4: Ratio of statistics between calibration data and test data.
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Figure 5: Multivariate statistical charts.
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(a) #418, Residuals in 1 PC (auto-scaling)
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(b) #418, Residuals in 16 PCs (auto-scaling)
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(c) #505, Model in 1 PC (mean-centring)
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(d) #526, Model in 1 PC (mean-centring)
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Figure 6: Diagnosis plots.
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Figure 8: Multivariate statistical charts for the MSNM based on a PCA model with one LMV and 1 PC (mean-centring).
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Figure 9: Topology of the controlled scenario.
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Figure 10: Control charts in phase I.
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Figure 11: oMEDA plots in phase I.
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Figure 12: Control charts in phase II for calibration data.
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Figure 13: Control charts in phase II for test data.
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Tables

Table 1: Number of variables defined for every feature class in VAST 2012.

Feature class #Variables

Fi
re

w
al

ll
og

Syslog priority 5
Operation 6
Message code 25
Protocol 3
IP address 9
Port number 17
Direction 2
Conn. built/teardown 2
Subtotal 69

ID
S

lo
g

IP address 9
Port number 17
Alert class 5
Priority 3
Text label 9
Subtotal 43

Table 2: Temporal intervals with highest D- and Q- statistics.

1 PC (mean-centring) 1 PC (auto-scaling) 9 PCs (auto-scaling) 16 PCs (auto-scaling)

D-st Q-st
505 411
637 637
526 526
928 599

D-st Q-st
505 418
637 417
526 419
928 435

D-st Q-st
480 418
486 417
526 419
445 435

D-st Q-st
480 418
271 417
411 419
845 435
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Table 3: Variables with the highest contribution in anomaly #418, residuals in 1 PC for auto-scaling.

Variable Description Variance Source Method
’ids prio1’ IDS Priority 1 Alarms 0 IDS logs O C R
’ids pdns’ DNS port 0 IDS logs O C R

’ids privacy’ Privacy warning 0 IDS logs O C R
’ids ldns’ DNS 0 IDS logs O C R

Table 4: Variables with the highest contribution in anomalies #505 and #526, model in 1 PC for mean-centering.

Variable Description Variance Source Method
’fw phttp’ HTTP port 4.8 · 106 FW logs O C

’fw sysinfo’ SYSINFO (Syslog priority 6) 4.9 · 106 FW logs O C
’fw asa6’ ASA-6 messages 5.7 · 106 FW logs O C
’fw tcp’ TCP connections 5.7 · 106 FW logs O C

’fw ipws’ connections from/to WorkStations 5.7 · 106 FW logs O C
’fw outbound’ outbounds connections 5.6 · 106 FW logs O C

’fw pnstd’ ports>1024 6.9 · 106 FW logs O C

Table 5: Variables with the highest contribution in anomaly #480, model in 9 PCs for auto-scaling.

Variable Description Variance Source Method
’fw pftp’ FTP port 79.5 FW logs O C R

’fw syswarn’ SYSWARN (Syslog priority 4) 79.5 FW logs O C R
’fw asa4’ ASA-4 messages 79.5 FW logs O C R
’fw asa41’ ASA-41 messages 79.5 FW logs O C R

Table 6: Temporal intervals with highest statistics.

1 LMV and 1 PC (mean-centring)

D-st Q-st
636 411
504 410
505 637
637 636

Table 7: Number of variables defined for every feature class in the controlled scenario.

Feature class #Variables

N
et

flo
w

IP address 4
Port number 102
Protocol 5
TCP flags 6
Type of service 3
Number of packets 10
Number of bytes 10
Interface 8
Total 148
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Table 8: Ground-truth specification for the last experiment.

Relative time Time-stamp Description
00:00 [10:14:48] Initialize 100 HTTP clients
00:20 [10:34:53] High rate DoS for 5 min – spoofing within network segment
00:30 [10:44:49] Data exfiltration 1
00:40 [10:54:53] Low rate DoS for 5 min – spoofing within network segment
00:50 [11:04:53] Low rate DoS for 5 min – spoofing to any IP address
01:00 [11:14:45] Data exfiltration 2
01:05 [11:19:48] Reduce to 50 HTTP clients
01:25 [11:39:48] Increase to 100 HTTP clients
01:50 [12:04:48] Stop HTTP clients
01:52 [12:06:48] Stop experiment

Table 9: Results.

Approach Preprocessing #PCs #LMVs TP TN FP FN Recall Specificity Accuracy
Lakhina et al. [5, 39] MC 2 0 11 73 0 29 0.28 1.00 0.74
Lakhina et al. AS 1 0 22 50 23 18 0.55 0.68 0.64
Lakhina et al. AS 4 0 37 71 2 3 0.93 0.97 0.96
Brauckhoof et al. [8] MC 3 1 14 72 1 26 0.35 0.99 0.76
MSNM MC 2 0 34 73 0 6 0.85 1.00 0.95
MSNM AS 1 0 37 68 5 3 0.93 0.93 0.93
MSNM AS 4 0 37 71 2 3 0.93 0.97 0.96
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