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ABSTRACT

In this article, we propose a new framework for matrix factorization based on principal component analysis
(PCA) where sparsity is imposed. The structure to impose sparsity is defined in terms of groups of corre-
lated variables found in correlation matrices or maps. The framework is based on three new contributions:
an algorithm to identify the groups of variables in correlation maps, a visualization for the resulting groups,
and a matrix factorization. Together with a method to compute correlation maps with minimum noise level,
referred to as missing-data for exploratory data analysis (MEDA), these three contributions constitute a com-
plete matrix factorization framework. Two real examples are used to illustrate the approach and compare
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it with PCA, sparse PCA, and structured sparse PCA. Supplementary materials for this article are available

online.

1. Introduction

Exploratory data analysis (EDA) has been employed for decades
in many research fields, including social and life sciences,
psychology, education, medicine, and chemometrics (Han and
Kamber 2006). Information to understand complex data can be
obtained through matrix factorization methods and associated
visualization tools. Factorization methods decompose data into
a product of matrices able to highlight special observations
(outliers), clusters of similar observations, groups of related
variables, and crossed relationships between observations and
variables.

Principal component analysis (PCA; Jolliffe 2002; Jackson
2003) is a valuable tool within EDA. PCA provides a factoriza-
tion based on the criterion of maximizing variance. For data
understanding, however, PCA presents two main shortcomings:
(i) PCA does not distinguish between unique variance in each
variable and shared variance, that is, the variance that is com-
mon among a set of variables. This proved to be a serious limi-
tation to unveil relationships among variables (Jolliffe 2002). For
this task, a factorization method that focuses on shared variance
rather than on any type of variance, like factor analysis (FA; Fab-
rigar et al. 1999; Costello and Osborne 2005), can be used. (ii)
The PCA factorization is often poorly interpretable because the
principal components (PCs) are linear combinations of all the
variables simultaneously. To overcome this limitation, easier-to-
interpret factorizations can be obtained imposing a simple struc-
ture on the loadings so that they are combinations of a limited
number of variables. This can be achieved by means of rotation
(Jolliffe 2002) or sparse methods like sparse principal compo-
nent analysis (SPCA; Jolliffe et al. 2003; Zou et al. 2006).

Rotation and sparse methods search for an optimum trade-
off between simplicity and the amount of variance captured by

the factorization model. This is of clear benefit in a predictive
context, where well-defined strategies, such as cross-validation
(Zhang 1993), can be implemented to infer the optimum trade-
off between variance and model complexity in terms of predic-
tive error. Still, this operation is computationally intensive since
a complete space of possible solutions needs to be inspected. The
applicability of rotation and sparse methods in the context of
EDA, however, is not straightforward. This is because the opti-
mality of the model in the exploratory set-up does not have an
explicit definition, like it does in the predictive set-up with the
predictive error. Consequently, the same strategy as the predic-
tive set-up is often used in EDA: this is not always fully suit-
able, since prediction and interpretation are very different goals.
Moreover, imposing sparsity to arrive at simplicity brings the
risk of simplifying the true relationships in the data, missing part
or the whole structure (Camacho 2010).

To overcome this problem, Camacho (2010) proposed the
missing-data for exploratory data analysis (MEDA) approach.
MEDA consists in the application of a post-processing step after
factorization through PCA or partial least square (PLS) to infer
the structure among variables. With MEDA, a map of vari-
ables, similar to a correlation matrix, is computed. In contrast
with standard correlations, the degree of relationship between
each pair of variables is estimated using missing data imputa-
tion (Nelson, Taylor, and MacGregor 1996; Arteaga and Ferrer
2002, 2005). This has the substantial advantage of filtering out
the noise in the computation of correlations (see Camacho 2010,
for a comparison), reducing the risk of including spurious or
chance associations among variables as often is the case in high-
dimensional data (Saccenti et al. 2011a,b).

In this article, we propose a new framework for matrix fac-
torization based on the identification of groups of correlated
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variables starting from a correlation map. The framework
includes the following methods:

o MEDA, which is used to compute the correlation maps

with minimum noise level.
® A new algorithm termed the Group Identification Algo-
rithm (GIA) for the identification of (possibly overlapping)
groups of variables in the correlation map (MEDA map).

® A new matrix factorization approach referred to as group-
wise PCA (GPCA) defined from the identified groups of
variables, where loading vectors are restricted to present
nonzero values for a single group of variables.

® A new visualization proposed to inspect the groups of

variables.

This framework has a number of advantages in the context of
EDA. First, parameter setting can be easily made through inter-
active data visualization and analysis, and datasets for which the
assumption of sparsity does not hold can be easily identified. We
claim that this is a main advantage over SPCA, where parame-
ter setting is complex, computationally intensive, and may lead
to missing part of the structure in the data. Second, the matrix
factorization and visualization are fully interpretable. Third, the
fitting algorithm of GPCA is fast and simple, since it consists
of a set of nested PCA together with a suitable deflation pro-
cedure. Our approach is applicable on a wide range of different
datasets, ranging from network security to biological omics data,
for which the proposed factorization greatly improves under-
standing.

The remaining of the article is organized as follows. Section
2 contains an introduction to matrix factorization approaches,
with special focus on the sparse PCA approaches. Section
3 introduces the MEDA approach. Section 4 introduces the
new group-wise PCA approach, including the GIA algorithm
to identify the groups of variables in correlation maps. The
new associated visualization, the Treemap plot, is included
in supplementary materials. Two experimental datasets are
analyzed in Section 5. Section 6 presents some concluding
remarks.

2. Exploring Relationships Among Variables Using
PCA

PCA is one of the most used tools to explore relationships among
variables (Fabrigar et al. 1999; Costello and Osborne 2005). PCA
is applied to two-way datasets, where M variables (or features)
are measured/computed for N observations (or objects). The
goal of PCA is to find the subspace of maximum variance in
the M-dimensional variable space. This is done by finding lin-
ear transformations of the original variables, called principal
components (PCs), which are orthogonal and explain decreas-
ing amounts of variance in the original data. The PCA model
follows the expression:

X = T4P} + Ey4, (1)

where X is an N x M data matrix, T, is the N x A score matrix
containing the projection of the objects onto the A principal
components (PCs) subspace, P, is the M x A loading matrix
containing the linear combination of the variables represented
in each of the PCs, and E, is the N x M matrix of residuals.

PCA has several limitations that may hamper the retrieval
of the structure among variables. In particular (i) it does not
distinguish between unique and shared variance (Jolliffe 2002),
and (ii) the principal components are a linear combination
of all the variables simultaneously (Jolliffe, Trendafilov, and
Uddin 2003). Hence, every component typically compresses
variance for several and interindependent groups of related vari-
ables. This greatly complicates interpretation especially for high-
dimensional data (Camacho 2010). Moreover, outliers, that is,
observations with large scores, need to be investigated with non-
trivial tools (Alcala and Joe Qin 2011; Camacho 2011).

To overcome the limitation of PCA making no distinction
between shared and unique variance in the data, factor analysis
(FA) has been proposed. FA focuses on the shared variability
by several variables, referred to as the communalities. Still, it
shares with PCA the same limitation that the loading vectors
may be difficult to interpret because they are linear combina-
tions of all the variables. For this reason, when PCA or FA are
used to explore the relationships among variables, a two-step
procedure is typically followed (Jolliffe 2002; Jackson 2003).
First, the model is calibrated from the available data, second, the
loadings are rotated to facilitate the interpretation of the model.
The transformation matrix is usually found using a particular
rotation criterion such as the varimax criterion (Kaiser 1958),
which is a member of the orthomax family (Crawford and Fer-
guson 1970) (see Browne 2001 for a review). In general, oblique
transformations are preferred to more simple orthogonal trans-
formations (Fabrigar et al. 1999; Costello and Osborne 2005),
although in many situations the results are similar (Jolliffe 2002).
The transformation criteria aim at a particular form of simplicity
of the rotated loading matrix, either in terms of a predetermined,
fixed rotation criterion or in terms of optimal interpretability.
Usually, a combination of both high and low loadings within
each component is perceived as a simple structure (Timmer-
man, Kiers, and Smilde 2007). Alternatively, Procrustes rotation
of the loading matrix toward a given target matrix can be used,
for which different approaches exist (Cliff 1966).

Jolliffe (1995) listed a number of drawbacks of rotation meth-
ods, including the fact that the rotated model depends greatly on
the normalization of the data and the number of components
used to fit the model. To overcome these limitations, alternative
approaches have been suggested (Jolliffe 2002) to define a cal-
ibration algorithm for factorization where a trade-off between
variance explained and model simplicity is pursued. A subset of
these techniques that constitutes the state-of-the-art are the so-
called SPCA methods.

2.1 Sparse Principal Component Analysis

SPCA (Jolliffe, Trendafilov, and Uddin 2003; Zou, Hastie, and
Tibshirani 2006) is an extension of PCA where the loss func-
tion is modified to incorporate constraints similarly to what is
done in nonnegative matrix factorization (Lin 2007) and multi-
variate curve resolution (de Juan and Tauler 2006). Commonly,
constraints are imposed by means of regularization terms lead-
ing to a simple structure, so that the number of nonzero load-
ings in a single PC is reduced or constrained. Jolliffe, Trendafilov,
and Uddin (2003) incorporated the LASSO constraint (Tibshi-
rani 1994) in the PCA calibration. In the LASSO, the [; norm



(absolute values) of the loadings is penalized. The LASSO crite-
rion to be minimized in the regression paradigm is

M M
Bisso = argmin [y = Y " XpBul> + 2 Y [Bul. ()
B

m=1 m=1

where B,, are the coefficients in f# and x,, correspond to the
columns of X.

Zou et al. (2006) introduced an alternative formulation,
which was actually referred to as the sparse PCA algorithm,
redefining PCA as a regression problem with the ridge penalty,
where y equals the PCA scores. In particular, they showed that

ridge

wher
MBragell” VW IRETE

the ath loading vector of PCA, p,, equals

M M
Brgge = argmin [[t, — > xBull® + 22 Y _ [Bul>  (3)
B m=1 m=1
and t, is the ath score vector. Using this redefinition, the LASSO
can be implemented using a criterion close to the (naive) elastic
net (Zou and Hastie 2005), which is a combination of both the
LASSO and ridge constraint:

M M
Bspca = argmin [t, — > XuBull® + 22 Y 1Bul’
B m=1 m=1

M
+h ) 1Bl 4)
m=1

In the SPCA algorithm, loadings and the corresponding scores
are obtained using an alternating approach, where Bgpc, terms
are obtained from the scores T, and the latter are recomputed
from the singular value decomposition (SVD) of the covariance
matrix post-multiplied by Bspc,, that is, X XBspca-

Several alternative constraints have been proposed to incor-
porate other types of a priori information in the matrix factor-
ization. Of special interest for this article are those based on the
group LASSO (Bach 2007; Jacob, Obozinski, and Vert 2009),
where groups of variables are set to 0 together. SPCA on the
group LASSO applies to a predefined set of groups of variables
rather than to individual variables. Further extensions (Jenatton,
Audibert, and Bach 2009) allow the definition of a prespecified
structure (or set of shapes) within the SPCA formulation (Jenat-
ton, Obozinski, and Bach 2009). This approach is referred to as
structured SPCA (SSPCA). Following the notation of this article,
the SSPCA approach follows:

M M
Bsseca = argmin [[ta— > XpuBul>+42 Y [ Bull>+112% (B),
B

m=1

(5)
where Q¢ are a set of quasi-norms for « € (0, 1) and the /; norm
for o = 1 as defined in Jenatton, Audibert, and Bach (2009) and
Jenatton, Obozinski, and Bach (2009). The SSPCA approach is
suitable for analyzing datasets with a certain ordering among
variables, for instance, the grid of pixels in a multivariate image,
so that a set of possible grouping structures among the variables
can be defined a priori. Thus, a main limitation of the SSPCA
approach for exploratory analysis is the need to define a pri-
ori this grouping structure. This predefinition requires domain
knowledge, so that it is not generally applicable in the context

m=1
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of EDA. However, we can follow the same approach proposed
in this article, that is, defining this structure from correlation, to
use SSPCA in EDA. This will be shown in the experimental part
of the article.

It should be noted that neither SPCA nor SSPCA were devel-
oped for EDA. However, at least the former has been used for
that purpose by Rasmussen and Bro (2012) and they are, essen-
tially, the most similar approaches to the one proposed in this
article.

3. Missing-Data for Exploratory Data Analysis

As explained in the introduction, an alternative to sparse matrix
factorization for EDA is the MEDA approach, where standard
factorizations are post-processed to construct correlation matri-
ces that can be used to unveil the relationships among variables.
The procedure to create the MEDA map M consists of the
following steps:
Step 1: Factorize the data matrix X such that

X = T4P} + Ey4, (6)

where T, is the N x A matrix of scores containing
the projection of the objects in the A latent variables
sub-space, P4 is the M x A matrix of loadings con-
taining the linear combination of the original vari-

ables, and E,4 is the N x M matrix of residuals.
The factorization in Equation (6) is general, and can

be obtained, for instance, via PCA, FA, or PLS.

Step 2: For each variable i from 1 to M

Step 2.1: Build X;, an N x M matrix with all zeros except
in the ith column containing the ith column of

X
X;=1[0..0X;0..0] 7)
Step 2.2: Estimate the scores T, with A latent variables
from X; using a missing data approach MD
Ty = MD(X). ®)
Step 2.3: Reconstruct the original measurements
X, = T,PL, 9)
and estimate the error:
R, =X —X,. (10)
Step 2.4: For each variable i different to j, m;; (where we
drop the subscript A for simplicity) is computed
as
my—1- 2l gy

ij:l (anj)z

where the right term of Equation (11) is the
goodness-of-prediction index proposed by Wold
(1978). The closer the value the index is to 1, the
more related the ith and jth variables are.

Step 3: The MEDA map M is built from elements m1;;.
The diagonal elements m;; are set to the square
of the variance in each variable captured by the
first A components in model (6).
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Figure1. Comparison of the MEDA map M (a) and the correlation map (b) for the pipeline system simulated data. The PCA model is fitted with six components. The structure

underlying the data is clearly visible.

The calibration method in Equation (6) provides the com-
ponent structure used to estimate the missing data in Step
2.2. There is a number of possibilities to perform this step.
The known data regression method is the default method to
construct MEDA in the MEDA toolbox (The MEDA toolbox
is available at https://github.com/josecamachop/MEDA-Toolbox)
(Camacho et al. 2015). This method is statistically superior to
the other approaches (Arteaga and Ferrer 2002) and it is equiv-
alent to the conditional mean replacement method (Nelson,
Taylor, and MacGregor 1996).

Let us now illustrate the use of MEDA with a simulated exam-
ple, which we will use as guiding example through the article. We
consider a pipeline system where six different input liquids are
mixed into two output pipes. For each pipeline, data are simu-
lated according to the following rules:

F12 =F1+F2 (12)

F123 = F12+ F3
F45 = F4+ F5
F456 = F45 + F6,

where F1, F2,...F6 represent input liquid flows that are
randomly and independently generated following a normal
N (0, 1) distribution. The pipelines system is shown in supple-
mentary Figure S5. Additionally, a 30% Gaussian NV (0, 1) noise
is added to each variable Fx to simulate measurement noise:

_ (Fx++03-%)
- =

where Fx' is the contaminated variable, Fx is the noise-free vari-
able generated according to Equation (12) and X is the noise
generated.

The input flows (F1, F2, ... F6), the intermediate (F12 and
F45), and the output flows F123 and F456 are monitored each
by a single variable labeled with the name of the corresponding
pipe, for a total of 10 variables built from six common factors
(input pipelines, F1, F2, ... F6).

To create an MEDA map M from the data X, we factorized
the data using PCA as for step 1 in Section 3. The optimal num-
ber of components (which resulted to be 6) is chosen by means
of cross-validation using the column-wise k-fold (ckf) algorithm
that has shown to be an adequate choice when the PCA model is
used for exploratory data analysis (Saccenti and Camacho 2015).

Fx (13)

The ckfis available in the MEDA toolbox (Camacho et al. 2015).
Once the MEDA algorithm is run, the resulting MEDA map
can be easily visualized as a color map as shown in Figure 1(a).
Inspecting the MEDA map, the structure underlying the data
can be easily observed. For example, the independence of the
input flows variables F1, F2, and F3 from the input flows F4,
F5, and F6 is evident, as well as the correlation of F12 with
the inputs F1 and F2. Although the structure in the data is eas-
ily predictable in this simple example, it serves to illustrate the
usefulness of the MEDA plot in the first stage of data explo-
ration. Figure 1(b) shows the standard correlation map, where
several spurious correlations that are filtered out by MEDA are
observed.

4. Group-Wise Principal Component Analysis

In this section, we propose a sparse factorization method based
on PCA where sparsity is defined in terms of groups of (corre-
lated) variables identified from the MEDA map. We refer to this
approach as group-wise PCA (GPCA). In the GPCA, the factor-
ization of the data matrix X is such that every component has
loadings different from zero only for a group of variables. Thus,
here sparsity is different to the one used in the regularization
setting, where it is obtained by forcing to zero the loadings cor-
responding to variables or groups of variables.

4.1 Identification of Groups of Correlated Variables

GPCA is based on the identification of K (possibly overlapping)
groups Sy, Sz, . .. Sk, . . . Sk of correlated variables in the MEDA
map (or in any correlation matrix). To create the groups S, we
propose a new algorithm, referred to as the group identification
algorithm (GIA) for which we give here the general idea: details
are given in the supplementary materials.

Let M (M x M) be an MEDA map or a correlation matrix
with elements m; ; € [—1,1] and let 0 < ¥ < 1 be a threshold
on the correlation values. The group Sy is built in such a way that
variables satisfy the conditions

Vi, je S — Imijl >y, (14)

and

VjigS/die S — |mj| <y (15)


https://github.com/josecamachop/MEDA-Toolbox

so that if the jth variable is not in group Sy, it has a correlation
< y with at least one of the other variables in the group. This
is equivalent to define groups of variables with maximum cardi-
nality where all variables within the group present a correlation
larger than y.

The user-defined threshold y can be interactively adjusted
by inspecting the visualization of MEDA and the output of the
GIA. This is coherent with the EDA philosophy, and it is easier
to tune than the regularization parameters in the SPCA imple-
mentation. The GIA algorithm is available in the MEDA toolbox
(Camacho et al. 2015).

4.2 The GPCA Algorithm

The algorithm to arrive at the GPCA model consists of a set of
nested PCAs together with a suitable deflation procedure. Given
the data matrix X, the procedure is as follows:

Step 1: Initialize the following matrices:

c=Xx
B=1,

(16)
(17)

where I is the identity matrix.
Step 2: For each component a from 1 to A
Step 2.1: For each group S in the set of groups S
Step 2.1.1: Create C* from C and setting elements out of

Sk to zero.
ck=c (18)
C;(m =0,VligS orVm¢gS. (19)

Step 2.1.2: Compute the eigendecomposition of C* and

select the first eigenvector.
Cct=pt@’ O +EL o)

Step 2.2: Choose the loadings and scores of component a
from the group capturing the most variance.

Pa = argmin ||E"| (21)
Pk
Step 2.3: Perform the deflation according to Mackey
(2008).
q = Bp, (23)
C=d-qq")Cd-qq") (29
B=B(I-qq). (25)

The GPCA algorithm first computes K loading vectors, each
of them considering only the set of variables corresponding to
group Si. From these, it chooses the one with the highest vari-
ance, discarding the rest. Using this loading vector, the complete
Gram matrix C s deflated following Mackey (2008). To select the
number of PCs in group-wise PCA, the ckf algorithm (Saccenti
and Camacho 2015) can be directly employed.

When in the correlation map there is a clear structure in
groups, the metaparameter y can be easily set, and the GIA
yields the set of groups of variables Si. In accordance with Equa-
tions (14) and (15), and with the restatement of the definition of
sparsity in PCA proposed here, the GPCA yields PCs with load-
ing vectors different to 0 for a single group of related variables.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS . 5
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Figure 2. MEDA of a random matrix obtained with ADICOV (Camacho et al. 2011).

The GPCA approach resembles to some extent the goal
of the SPCA using the group LASSO regularization (Jacob,
Obozinski, and Vert 2009) or similar structure-based regular-
ization (Jenatton, Obozinski, and Bach 2009), but differs in
how the structure is defined. The GPCA method has a num-
ber of advantages in the context of EDA referred in the intro-
duction. The most important is the fact that datasets where
the application of sparse models is not admissible can be eas-
ily detected from the MEDA plot. Take for instance the MEDA
plot in Figure 2, computed from a random dataset simulated
with the ADICOV tool (Camacho et al. 2011), also available in
the MEDA Toolbox. There is scarce structure in the data, and
groups are limited to two variables at most. Therefore, in this
dataset the use of GPCA is not recommended. Another advan-
tage of GPCA is that adequate values for the metaparameter
y can be inferred from the MEDA visualization. The GPCA
algorithm is available in the MEDA toolbox (Camacho et al.
2015).

Figure 3 shows the GPCA loadings for the six PCs of the
model in the pipelines example. We can see the influence of the
different variables to the components of the model. In this case,
the groups observed in the visualization can be easily identified

PC1 PC2
1 1
0.5 I II 0.5 I II
0 0
123456788910 12345678910
PC3 PC4
1 1
0.5 0.5
0 0
12345678910 123456782910
PC5 PC#6
1 1
0.5 0.5

12345678910 12345678910

Figure 3. GPCA loadings for the first six principal components of the simulated
pipeline example.
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in the loadings. In our simple example, each component cap-
tures the variability corresponding to a single group.

5. Experimental Examples

In this section, we compare the proposed framework based on
GPCA with the standard PCA, the SPCA (Zou, Hastie, and
Tibshirani 2006) and the SSPCA (Jenatton, Obozinski, and
Bach 2009) approaches. The results are compared in terms of
visualization and, following Jolliffe et al. (2003), in terms of
captured variance (Zou, Hastie, and Tibshirani 2006) and sim-
plicity, the latter using the Varimax index (Jolliffe, Trendafilov,
and Uddin 2003):

A M Rl 2
V=>"1> b~ o (Z bfm) , (26)
a=1 m=1 m=1

where b,,, is the loading of the mth variable in the ath compo-
nent.

PCA and GPCA are computed using the MEDA toolbox
(Camacho et al. 2015). The SPCA results are computed with
the SpaSM toolbox (http://www2.imm.dtu.dk/projects/spasm/)
(Sjostrand and Clemmensen 2012). In that implementation,
input arguments for SPCA are the value for A, in Equation (4)
and either a bound u for the ; norm of the loading vectors or the
number of nonzero elements in those vectors. It is well known
(Zou and Hastie 2005) that such a definition is equivalent to
the use of the regularization term with A; in Equation (4). The
SSPCA results are computed with the toolbox supplied with
(Jenatton et al. 2009) http://rodolphejenatton.com/software/
SparseStructuredPCA_MatlabToolbox_V1.0_rjenatton.tar.  In
absence of grouping structure, this was identified using MEDA
and GIA and the weights of the variables in the group were set
to 1. Input arguments for SSPCA are y in GIA and « and A, in
Equation (5).

Two datasets of very different nature are analyzed. In both
cases, the general goal is to understand/investigate the data.
However, the specific findings that are looked for are very dif-
ferent. The first dataset corresponds to data collected from a
communication network, where the goal is to find cyberse-
curity issues in the network during the data collection inter-
val. The second dataset originates from a plant metabolomics
study where the goal is to investigate the response of the plant
metabolome to a chemical toxin.
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Figure 4. Scatterplots for the first two PCs in PCA for the Network security example.

5.1 Network Security Data

The VAST 2012 2nd mini challenge is a benchmark for visu-
alization in cybersecurity. The goal is to identify cybersecurity
issues in the data collected during 2 days from a computer net-
work. During those days, a number of nonlegitimate programs
were found to be running on several computers, slowing them
down. A cyber-forensics operation is required to discover the
root causes for this strange behavior.

Two typical sources of data are collected from the network:
firewall and Intrusion Detection System (IDS) logs. The fire-
wall analyzes the incoming and outgoing data traffic in the net-
work, and records in a log file all connection attempts that are
blocked according to security policies. The IDS employs higher
level intelligence to identify cybersecurity incidents in data traf-
fic. It also stores the results in a log file, though it does not block
any traffic connection. Also, typically, it only analyzes a sub-set
(sample) of the total traffic.

A total of 2350 observations, each one with the informa-
tion for 1 min, are obtained. For every sampling period of 1
min, we defined a set of 112 variables that represent the infor-
mation from the two data sources: 69 variables for the fire-
wall log and 43 for the IDS log (see supplementary Table S1).
The number of variables was reduced to 95 by discarding those
with constant value throughout the capture period. The result-
ing dataset with 2350 observations and 95 variables has been
previously used for Multivariate Statistical Network Monitoring
(MSNM) in Camacho et al. (2014, 2016) where standard PCA is
used.

Let us start the exploration of the data with PCA. For the
sake of simplicity in the comparison between methods, we will
restrict ourselves to the first two PCs. Figure 4 shows the score
plot and loading plot of the model, using a typical bi-plot (or
scatterplot) visualization. To improve visualization and for the
sake of easy comparison with the other methods, the variables
have been reordered using MEDA. Thus, correlated variables are
arranged together. According to Figure 4(a), the first PC cap-
tures a general trend in the data while the second PC reflects
the excursion of a number of outliers. Inspecting the load-
ing plot in Figure 4(b), we can hypothesize that the trend is
related to the group of variables at the left (vars #40-57) and
the excursion to the group of variables at the bottom (vars
#66-79). However, care should be taken to double-check these
hypotheses extracted from PCA bi-plots, as shown in Camacho
(2010).
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Figure 5. Line/bar plots for the first two PCs in PCA for the Network security example: scores are shown on the top, between 99% control limits, and loadings are shown

on the bottom.

An alternative visualization of the problem is presented in
Figure 5, in which each subfigure shows a line/bar plot of scores
and loadings of a single component. On the top, the scores cor-
responding to the PCs are shown between 99% control limits
(Nomikos and MacGregor 1995). The limits help identify out-
liers and trends in the observations. On the bottom, the load-
ings are shown. This visualization is very useful in this example,
because the patterns described by the PCs (trend and excursion)
are not interrelated. In the figure, we can easily identify outliers,
shifts, etc., with better detail than in bi-plots. However, bi-plots
are by far more popular for PCA inspection, especially because
some patterns in the data are more apparent in the sub-space
defined by a few PCs and not just one PC. This is a consequence
of the problem stated in Section 2 according to which one PC
captures information for several and interindependent groups
of related variables, which in turn means that a specific data pat-
tern may span several PCs, a problem that makes EDA with PCA
a hard task for some datasets.

Let us continue with the EDA performed using GPCA. The
MEDA plot of the data for 15 PCs (selected using ckf) is shown
in Figure 6(a). The plot shows a clear group-wise pattern of cor-
relation, which tell us that GPCA can be a useful analysis tool.
From the inspection, we can see that setting y between 0.6 and
0.8 could be a good choice to capture the information in the
squares with the GIA algorithm. If y = 0.7 is selected, the corre-
sponding treemap visualization (details in supplementary mate-
rials) is shown in Figure 6(b). A total of 21 states are identified
in the plot by GIA and shown as colored rectangles. Relevant

(a) MEDA

(security-related) variables are enclosed in red-color states, to
focus the inspection. For that, the color information is indepen-
dently introduced in the visualization. Expert knowledge on the
data is needed for that. For datasets where the relevance of the
variables cannot be established a priori, like in the metabolomics
example, the treemap visualization cannot be used.

The first two PCs of the GPCA model for y = 0.7 are shown
in Figure 7. We can use independent plots for each PC since we
know that PCs are not interrelated in GPCA. In this example, the
GPCA loadings of the first two PCs are a direct simplification of
the corresponding in the PCA model. However, in the GPCA
PCs, low loadings out of the groups are filtered out.

In the network security problem, for which the current
dataset is an example, the combination of the treemap and
GPCA is very powerful: the treemap visualization leads the ana-
lyst to the events of interest, represented by the groups of vari-
ables in red color and/or of large size, and the GPCA provides
a description of the distribution (scores) of those events in the
observations, to see whether this group is the consequence of a
general trend in the data or of anomalous observations. As an
illustrating example, take group number 19 in the treemap of
Figure 6(b). This group, among others, is marked in red color
due to its relevance to attract the attention of the cybersecu-
rity analyst. The group includes variables numbered from #73
to #79. These variables are counters of specific cybersecurity
events detected by the firewall. The correlation in time of sev-
eral cybersecurity events, correlation that conform groups in
MEDA, help understanding what is happening in the network.

STATES
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20 16
18 '8 17 14
12 3 10 8
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(b) Treemap Visualization

Figure 6. MEDA plot of the data for PCA with 15 PCs (a) and corresponding treemap visualization for GIA to y = 0.7 and a relevance qualification of the variables for the

Network security example.



8 (& J.CAMACHOETAL.

(a) First PC

0 500 1000 1500 2000

0 10 20 30 40 50 &0 70 BO 20

(b) Second PC

Figure 7. Line/bar plots for the first two PCs in GPCA for the Network security example: scores are shown on the top, between 99% control limits, and loadings are shown

on the bottom.

To obtain more information, the analyst may inspect the PC in
GPCA related to group 19, which corresponds to the PC shown
in Figure 7(b). The scores plot shows that the cybersecurity
events corresponding to variables in group 19 occur in two spe-
cific time intervals, one at the beginning and one close to obser-
vation #1500. Indeed, this is confirmed by directly inspecting the
data: all the variables in the group remain to 0 during the whole
measured interval, except for the specific intervals highlighted in
the score plot of the second PC of GPCA. Thus, a large amount of
rich security information, including which cybersecurity events
take place at the same time and when does this happen, has been
provided with just two plots, the treemap visualization and a line
score plot, which are easily interpretable.

To compare the results with that of SPCA, we set A, to 0o and
restricted the first PC to 14 nonzero loadings (NZLs) and the
second PC to 7 NZLs, just like in the GPCA results of Figure 7.
Results are shown in Figure 8. Interestingly, the loadings selected
by SPCA exactly match those identified in GPCA. This shows
an interesting connection between GPCA and SPCA. However,
it should be noted that the shape of SPCA loadings is some-
how affected by the regularization. In particular in the sec-
ond PC, the shape of NZL in GPCA (Figure 7(b), constant
loadings) closely resembles the corresponding loadings of PCA
(Figure 5(b), quasi-constant loadings for the same variables).
This is not the case in SPCA (Figure 8(b), some loadings attain
half the value than others). Apart from that, it should be high-
lighted that a main difference of GPCA and SPCA in this exam-
ple is that while the solution by GPCA is driven from the MEDA
result, there is no clue to select 14 or 7 NZLs in SPCA, and

=
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therefore a full exploration of the parameters space is necessary
in the latter (see Zou and Hastie 2005).

In Figure 9, we show the result, in terms of variance and Vari-
max, of such an exploration of SPCA parameters. For simplicity,
we set A, to infinity and make a 2D grid for different values of
the number of NZLs in the first two PCs. Notice that such an
experiment gets more complex with an increasing number of
PCs. The surface of variance is shown in Figure 9(a) and the sur-
face on (inverse) Varimax in Figure 9(b). The flat region on top
of both figures corresponds to SPCA models very close to PCA.
As the number of NZLs in either PC 1 or PC 2 gets very restric-
tive (below 20), there is a noticeable decrement of variance and
increment of Varimax, reaching the extreme lowest value in the
figures for both loading vectors restricted to one single NZL.

On top of surfaces in Figure 9(a), we have added the result
(again in terms of variance and Varimax) of GPCA models for
values of y from 0 to 0.99. Blue large dots represent GPCA
where the structure is captured from the MEDA matrix. Red
circles represent GPCA where the structure is captured from
the (standard) correlation matrix. GPCAs models for y = 0 are
located at the top corner of the plot, being equivalent to stan-
dard PCA (no simplicity imposed). Slight modifications of y
lead GPCA very quickly to improve simplicity. However, sim-
plicity in GPCA does not actually destroy structure to the same
extent as in SPCA. This is seen in the fact that with GPCA we
do not reach to the extreme values in the bottom corner. Stated
otherwise, GPCA does not lead to over-simplifying the reality
like SPCA does. Furthermore, GPCA provides a feedback on
the choice of y by visually comparing the MEDA plot and the
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(b) Second PC

Figure 8. Line/bar plots for the first two PCs in SPCA for the Network security example: scores are shown on the top, between 99% control limits, and loadings are shown

on the bottom.
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Figure 9. Variance (a) and simplicity (Varimax) (b) surfaces for different values of nonzero loadings (NZLs) in the first two PCs in SPCA for the Network security example. On
top, the same for GPCA models from MEDA (large dots) and the correlation matrix (circles) and y from 0 to 0.99.

treemap visualization. Therefore, we conclude that the GPCA
approach is more suitable for EDA, more simple to use and does
not have the risk of over-simplifying reality like SPCA. Finally,
comparing the GPCA from the correlation matrix and MEDA,
we can see some slight differences, motivated by the level of noise
in the former. However, for this present example, differences are
not of practical relevance.

Let us compare now the results with those obtained for
SSPCA. Recall that SSPCA needs of a predefined set of possible
groups of variables to perform the matrix factorization. We will
use the groups obtained as part of our approach from MEDA
and GIA. Still, unlike GPCA, SSPCA requires to set parameters
« and A; in Equation (5). To choose reasonable values for these
parameters, a grid of values needs to be computed. This is shown
in Figure 10. This figure should be compared to that of SPCA in
Figure 9. Notice that Figures 9(a) and 10(a) have the same z-
scale, but Figures 9(b) and 10(b) have not for the sake of proper
visualization. Comparing the figures we can see that, using the
groups information, SSPCA spans the same range of variance
values than SPCA but does not reach to Varimax values above
0.5, which in turns means that SSPCA, like GPCA, does not lead
to oversimplifying the structure in the data. This is the result of
imposing the group structure identified from MEDA and GIA.

In Figure 11, the first two PCs for SSPCA are shown. The
first one is similar to that for PCA, SPCA, and GPCA. SSPCA,
unlike GPCA, tends to move the loadings of some of the groups
of variables to zero, but the loading vector is not focused on a
single group of variables. As a result, the loadings are not as eas-
ily interpretable as in GPCA. If simplicity is imposed further, by

Variance
o

o 04 S
0.2 o112

(a) Variance

Table 1. Comparison of several models in terms of variance and simplicity
(Varimax).

% Captured variance

Method PC1 PC2 PC1&2
PCA 18.41% 11.64% 30.05%
GPCA (y =0.7) 14.54% 7.24% 21.78%
SPCA (4, 7]) 13.87% 6.07% 19.93%
SSPCA 13.93% 7.35% 21.29%
(y =07, =0521=27)
Simplicity (Varimax)
Method PC1 PC2 PC1&2
PCA 0.0385 0.0569 0.0955
GPCA (y =0.7) 0.0610 01323 0.1933
SPCA (4, 7]) 0.0666 0.2027 0.2693
SSPCA 0.0510 0.1204 01714

— — —»—16
(y =070 =051 =279

incrementing the value of A; or reducing «, the amount of vari-
ance drops significantly. Stated otherwise, the result is very sen-
sitive to the parameters setting with SSPCA. Also, we can see
that the second PC in SSPCA is completely different to that for
the other models.

To end the example, Table 1 compares the numerical results
in terms of variance and simplicity (Varimax) for the models in
Figures 5, 7, 8, and 11. As expected, the PCA model is the one
with the highest variance and lowest Varimax index. Regarding
the others, SPCA attains a higher Varimax. However, we know
from the figures that the number of NZLs, and therefore the
simplicity of the models, is the same for SPCA and GPCA, so

(b) Varimax

Figure 10. Variance (a) and simplicity (Varimax) (b) surfaces for different values of & and 1, in the first two PCs in SSPCA for the network security example.
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Figure 11. Line/bar plots for the first two PCs in SSPCA for the network security example: scores are shown on the top, between 99% control limits, and loadings are shown

on the bottom.

these differences in Varimax are not of practical use from the
perspective of EDA. On the other hand, GPCA does a better job
in capturing variance. SSPCA attains comparable results to that
of GPCA, but we needed to set three parameters in the former
for one in the latter.

5.2 Wheat Metabolomics Data

Experiments aimed at identifying changes in the metabolome of
wheat (Triticum aestivum) induced by deoxynivalenol (DON),
a mycotxin produced by the infestant Fusarium graminearum
and related species causing the devastating plant disease Fusar-
ium head blight. In the study, six wheat genotypes with known
varying resistance to Fusarium were treated with either DON
or water control and harvested after 0, 12, 24, 48, and 96 hr
after treatment. Target GC-MS profiling was used to quantify an
array of 57 metabolites. The resulting data matrix X has dimen-
sions 296 x 57. Results are presented for the full dataset and not
restricted to data collected at time 48 hr as in the original publi-
cation (Warth et al. 2014), to which we refer the reader for more
details on the study design and experimental techniques. Data
were downloaded from the MetaboLights metabolomics pub-
lic data repository (www.ebi.ac.uk/metabolights, with accession
number MTBLS112).

To show the potential of the GPCA for the explo-
ration/analysis of biological data, we start by first exploring with
a conventional PCA. The scores for the first four components
and associated loadings are given in Figure 12. A separation
between water mock control- and DON-treated samples appears
along the first two components but the loadings are of diffi-
cult interpretation. In contrast to the security network example,
where some sort of sparsity was inherent to the data and could
be observed in the PCA loadings (see Figure 4), here, as typ-
ically happens with complex biological data, all variables have
(almost) similar loadings resulting in poorly interpretable com-
ponents. This problem can be alleviated by using the GPCA
approach.

Scores and loadings for the first four GPCA components are
given in Figure 13(a). Details on the definition of the MEDA
map are in the supplementary material. In the first and in the
third components the DON and the mock water control treat-
ments are clearly visible together with effects due to the dif-
ferent harvesting time after treatment with DON. It should be

noted that the score plots are similar (although not identical)
to those obtained by the standard PCA but the loading struc-
ture is much more simple with a large amount of zero loadings.
This greatly facilitates interpretation: the nonzero loadings cor-
respond mainly to amino acids (isoleucine, valine, threonine,
tryptophan, tyrosine, phenylalanine, lysine, proline, methion-
ine, glutamate, aspartate), ampholytic amino acids (phospho-
ric acid), or derivatives (putrescine), indicating that dysregu-
lation of metabolic pathways in which these compounds are
involved may be affected by the DON treatment. It is interesting
to note that in the fourth component (and, at a less extent, in the
second one) a time effect appears also for sample treated with
water mock control, which cannot be attributed to DON. The
nonzero loadings show contribution of amino-acids and other
compounds and quinic acid in particular which could point to
response to some sort of abiotic stress. In Figure 13(b), we rep-
resent the GPCA model obtained from the covariance matrix,
instead of from MEDA. Due to the higher noise level in the
covarjance matrix, we can see that some of the groups are com-
bined in the first PC, hardening interpretation.

Detailed analysis of this dataset using SPCA and SSPCA
and comparison with GPCA is provided in the supplementary
material. Results confirm the findings in the previous example.
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Figure 12. Scores and loadings for the first four components of a conventional PCA
model for the wheat dataset. Different symbols relate to the DON (triangles) and
water mock control (dots) treatments. Scores are shown on the left, between 99%
control limits, and loadings are shown on the right.
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Figure 13. Scores and loadings for the first four components of the GPCA model
for the wheat dataset: (a) groups obtained from MEDA and (b) from the covariance
matrix. Different symbols relate to the DON (triangles) and water mock control (dots)
treatments. Scores are shown on the left, between 99% control limits, and loadings
are shown on the right.

6. Conclusion

In this article, we propose a new framework for matrix factor-
ization in the context of exploratory data analysis (EDA). This
framework imposes sparsity on a matrix factorization based on
principal component analysis (PCA). Rather than using regular-
ization terms, with the corresponding calibration problem in the
EDA context, the structure to impose sparsity is defined in terms
of correlated groups of variables found in correlation matrices or
maps. With this idea, the framework is based on three new con-
tributions: an algorithm to identify the groups of variables in
correlation maps, a visualization for the resulting groups, and a
matrix factorization based on PCA. Together with a method to
compute correlation maps with minimum noise level, referred
to as missing-data for exploratory data analysis (MEDA), these
three contributions constitute a complete analysis framework.
This approach has a number of advantages in the context of
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EDA. First, choices during data processing can be easily made
through interactive data visualization and analysis. This simpli-
fies the application of the approach in real problems. In particu-
lar, regularization terms are avoided, and datasets for which the
approach is not suitable, for instance because sparsity hypothe-
ses are not adequate, can be identified. Second, the resulting PCs
are fully interpretable in terms of scores and loadings. Finally,
the fitting algorithm is straightforward, since it can be defined
as a set of nested PCA iterations and a suitable deflation proce-
dure. Using two real examples, it was shown that this approach is
seamlessly applicable to certain datasets, for which the proposed
factorization improves their understanding to a large extent.

Supplementary Materials

Supplementary materials contain a description of the Group Identification
Algorithm, additional information on the experiments of the paper and the
code for reproducibility of results.
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