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A n essential characteristic for the accurate simulation 
of wideband antenna systems is the modeling of their 
intricate geometrical details, including the feeding 
ports. In this article, we describe a leap-frog (LF) dis-

continuous Galerkin (DG) time-domain (TD) method com-
bined with an efficient local time-stepping (LTS) strategy to 
deal with the high contrast in the element sizes for the elec-
tromagnetic modeling of these kinds 
of structures. The traditional delta-gap 
source model and a realistic coaxial 
port model are revisited. Numerical 
examples are presented and validated 
with measurements and commercial 
software simulations to demonstrate the 
applicability of the proposed approach.

Methods Used for Modeling and 
Their Applicability 
Wideband antennas are key compo-
nents in many different applications 
such as short-range and indoor ultra-
wideband communication systems, 
sensors for electronic countermeasure, 
and high-performance radar military 
systems. In these kinds of structures, 
an accurate modeling is critical in 
zones with small geometrical details, 
such as feeding ports. Frequency-
domain (FD) methods, such as the 
method of moments and the finite-
element method (FEM), are the usual 
choices for their ability to accurately 
model fine geometrical details. How-

ever, FD methods may become computationally inefficient 
for ultrawideband analysis since each frequency needs a 
complete simulation, typically involving a linear system 
resolution. TD methods are a natural alternative for these 
purposes. Advances in the TD formulations of FEMs have 
been made [1], but they still remain unaffordable for elec-
trically large problems, such as those also requiring the 

Digital Object Identifier 10.1109/MAP.2015.2437279 
Date of publication: 17 July 2015

Efficient Antenna 
Modeling by DGTD

Jesus Alvarez, Luis Diaz Angulo, Amelia Rubio Bretones,  
Carlos M. de Jong van Coevorden, and Salvador G. Garcia

Leap-frog discontinuous Galerkin time-domain method.

ReviewerS
Texto escrito a máquina
Published in IEEE Antennas and Propagation Magazine, Vol 58, pp 95-106, 2015



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3IEEE Antennas & Propagation Magazine  j u n e  2 0 1 5

modeling of the antenna’s surroundings (e.g., for onboard 
antennas), which has a strong influence on the antenna 
performance. Therefore, differential-based methods, such 
as the finite-difference TD (FDTD) and transmission-line-
matrix method, are the usual choices in TD because of their 
computational simplicity. However, they all require some 
cube-based space partitioning, which imposes significant 
constraints on the geometrical discretization of complex 
objects that have arbitrary curvatures and intricate details. 
Techniques such as adaptive mesh refinement [2] and par-
tially filled cells [3] exist to address this issue. 

Recently, DG formulations of FEM have enabled afford-
able TD solvers (DGTD) to be built [4], [5]. These have most 
of the advantages of FDTD: spatially explicit algorithm, sim-
plicity, easy parallelization, memory, and computational cost 
only growing linearly with the number of elements. At the 
same time, DGTD methods retain most of the benefits of 
FEM, specifically, adaptability of the unstructured meshes 
and spatial high-order convergence, thus enabling us to deal 
with problems where the required precision varies over the 
entire domain or when the solution lacks smoothness. In some 
cases, these methods have been applied to specific or canoni-
cal antenna problems for validation [6] and also for the analysis 
of wideband antennas with complex features [7]. In this article, 
the practical applicability of the method in terms of excita-
tion, setup of the simulation, and truncation of the computa-
tional domain is described in detail based on real and complex 
antenna problems.

Two explicit time-integration schemes are commonly 
found in the DGTD literature: fourth-order Runge–Kutta 
(RK4) [4], [6] and second-order LF [8]. Both are condition-
ally stable and impose an upper bound for the maximum time 
step [9]. When DGTD is applied to antennas with small geo-
metrical details, such as the feeding port, strong disparities 
among elements are found in the unstructured mesh and, 
hence, in the local time steps required for stability. This 
leads to a global time step constrained by the smallest one to 
ensure global stability and to a major waste of computational 
time in updating elements at a rate much higher than its own 
maximum time step. To avoid this problem, LTS strategies are 
employed [9]–[11].

Several alternatives have been proposed to find efficient 
DG schemes exploiting the versatility of the DG technique. 
Some of them are the use of different mesh elements, such 
as tetrahedral or hexahedral [12] or even hybrid meshes con-
nected with pyramidal elements [13]. Another efficient tech-
nique to locally refine the mesh is the introduction of hanging 
nodes, resulting in nonconforming DG schemes [14], [15]. The 
schemes aimed to obtain hp-adaptability in the TD [16]–[18], 
where the use of high-order time integrators must be consid-
ered, deserve a special mention.

In this article, we present a new LTS scheme inspired by 
[9] for a second-order LF DGTD method (LFDG), and we 
demonstrate its applicability to the accurate simulation of 
wideband antennas. We revisit the basics of this method in 
the context of antenna simulation, paying special attention 

to the feed modeling. We analyze the classical 
delta-gap model and a realistic coaxial-port 
model whose excitation and truncation are 
easily accomplished in DGTD through the 
flux terms. Several examples serve to validate 
and show the accuracy and affordability of this 
approach for real antenna problems.

LFDG Formulation
The DGTD method is based on a geometrical 
discretization of the space into M  nonoverlap-
ping elements ,Vm  where we define element by 
element a local continuous basis of vector test 
functions ( { , , ..., })Bm m m

Q
m

1 2U U U=  and enforce 
the residue of Maxwell’s curl equations to be 
orthogonal to each basis function. For instance, 
for source-free lossless linear isotropic homoge-
neous media
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where , ,E H , ,f n  and m are the electric and 
magnetic field strength in Cartesian coordi-
nates, permittivity, and permeability, respec-
tively. After some algebraic computations, we 
can write (1) as
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and similarly (2). The volume integral on the left-hand side of 
(3) is related to a numerical-flux integral on the right-hand side, 
which is enforced to be continuous across elements. A robust 
and efficient choice of the numerical flux is the so-called par-
tially penalized flux [4], [9], [19]–[21], which has been proven to 
provide accurate and free of spurious mode solutions [22]
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where x  is a stabilization parameter that penalizes the discon-
tinuities in the tangential components, / /Z Y1m m m mn f= =  
the intrinsic impedance of the element ,m  and /Z Y1m m=+ +  
the intrinsic impedance of the adjacent one. We have included 
in (4) possible surface currents required for the implementa-
tion of Huygen’s sources [23] and used to excite the antenna 
feeding points.

Using a Faedo–Galerkin method
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a final semidiscrete algorithm is found
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where Hm  and Em  are column vectors with the degrees of free-
dom (dofs); Hm+  and Em+  are the dofs of the adjacent elements; 

, , ,M M Js s sl o l  and Jso  are column vectors with the weak form 

of the surface source terms; M  is the mass; S  is the stiffness; 
and F  is the flux matrices given in [22]. 

For the TD integration, several approaches can be cho-
sen. The most commonly employed ones are the RK4 [4] and 
the second-order LF [8] schemes. Both are conditionally 
stable and impose an upper bound on the maximum time 
step, which depends on each element characteristic: size, 
aspect ratio, and curvature (for quadratic elements), order 
of the local basis functions, material of adjacent elements, 
and boundary conditions on its faces [9]. The LF scheme 
selected in this article samples the unknown fields in a stag-
gered way. Thus, the electric field is evaluated at t n tn D=  
and the magnetic field at .t n t1 2n 2

1 D= ++ ^ h  In the same 
way, (8a) is evaluated at tn  and (8b) at .tn 2

1+  The first-order 
time derivatives are approximated by a central difference 
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globally implicit scheme due to the coupling terms from the 
adjacent elements [22], [24].

The resulting fully explicit LFDG algorithm is [22]
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LTS Algorithm
A new LTS algorithm is proposed in this section. It is inspired by 
the recursive LF (R-LF) algorithm by Montseny et al. [9], with 
modifications to avoid the use of magnitudes at unknown times 
by others evaluated at different time instants, as detailed below. 
This algorithm starts by arranging the mesh elements into L  
levels. The time step for level l  is , witht k t k2 1l

l 1
1D D= + -^ h  

being a positive real integer and t1D  the effective time step for 
the first level .l 1=^ h  All the elements of level l  must fulfill 
the condition t t< MAXl

mD D  (where tMAX
mD  is the maximum tD  

for stability at the element ).m  For instance, k 1=  means that 
there is a factor 3 between the time steps of consecutive levels.

At the preprocess stage, we classify all the mesh elements 
into L2 1-^ h  possible sets requiring a special treatment: L  
different levels plus the L 1-^ h  interfaces. Let us illustrate the 
procedure for simplicity for the two-dimensional (2-D) example 
shown in Figure 1, with two LTS levels .L 2=^ h  We first define 
two updating expressions, one for the electric field and the other 
for the magnetic field, from the LFDG algorithm of (9)
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where p  is an integer value that allows us to use the updat-
ing functions to compute samples of the fields at any mul-
tiple of .t1D

Level 1

Level 2

Interface

Figure 1. A 2-D classification example of two LTS levels and 
the interface.
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The starting state for the full sequence is shown in Figure 2. 
The sequence of the proposed LTS algorithm based on (10) con-
tinues as follows (see also Figure 3).

■■ Step 1. Update the magnetic field, ,fH  for level 1 ,Hn 2
1+^ h  

the interface, and level 2 .Hn 2
3+^ h  In the case of level 1, 

p 1=  must be used, and for level 2 and the interface, 
.p 3=  All En  needed are all available.

■■ Step 2. Update electric field, ,fE  for level 1 and interface 
.En 1+^ h  In both cases, p 1=  must be used. We need ;Hn 2

1+  
this information is available in level 1 but has to be evalu-
ated in the interface by averaging Hn 2

3+  and ,Hn 2
1-  and in 

level 2 by interpolating .H H H2 3 1 3n n n2
1

2
3

2
3= ++ + -

■■ Step 3. Update the magnetic field, ,fH  for level 1 ( ).Hn 2
3+  

Clearly, p 1=  must be used. En 1+  is needed in level 1 and 
in the interface, both of which are available. 

■■ Step 4. Update the electric field, ,fE  for level 1 ,En 2+^ h  
interface, and level 2 .En 3+^ h  In the case of level 1, p 1=  
must be used, and for level 2 and the interface, .p 3=  We 
need ,Hn 2

3+  which are available.
■■ Step 5. Update the magnetic field, ,fH  for level 1 and 

for the interface .Hn 2
5+^ h  In both cases, p 1=  must be 

used. We need ;En 2+  this information is available in 
level 1 but has to be evaluated in the interface by aver-
aging En 1+  and ,En 3+  and in level 2 by interpolating 

.E E E2 3 1 3n n n2 3= ++ +

■■ Step 6. Update electric field, ,fE  for level 1 .En 3+^ h  
Obviously, p 1=  must be used. Hn 2

5+  is needed, both in 
level 1 and in the interface, both of which are available. 

This algorithm retains most of the advantages of the R-LF 
method (i.e., full explicitness and simplicity) but avoids the use 
of magnitudes at unknown times. Instead, they are calculated 
from the previous dofs, either by means of averages and inter-
polations or by the additional computation of certain states. The 
specific differences appear in Steps 2 and 5, where we make the 
averaging operation at the interface and compute the fields, thus 
requiring an interpolation on the upper level and also in Steps 
3 and 6, where we use samples at known times since they have 
been computed in the previous steps. Note that the algorithm 
requires storing the electric and magnetic fields at two time lev-
els around the level interfaces.

Concerning the stability of the scheme, as has been report-
ed in [9] and [25], the stability condition must be strengthened 
in general. From our experience, we also need to apply a mul-
tiplicative factor of 0.8 to the estimated tMAX

mT  of the non-LTS 
case, but only at the interface and its neighboring elements. 
This means that an extra stability condition is required for 
those elements. The algorithm has been tested in long and 
complex simulations in [22] and [24] without apparent instabili-
ties. No additional dissipation (or spurious solutions) has been 
observed apart from that reported in [22].

The implementation of this scheme in a general multilevel 
L 2>^ h  case can be performed just by enforcing the interface 

elements of different levels not to be in contact. This is a minor 
requirement for practical meshes and avoids the use of a more 
restrictive multiplicative factor in the heuristic stability condi-
tion at the interfaces. It bears noting that the application of the 

LTS will drive to highly refined meshes. It has been confirmed 
that the convergence of the spatial dicretization of the fields is 
maintained in these cases [20].

Antenna Feeding Models in DG
The modeling of a coaxial port feed in DG can be carried out 
easily by making use of the flux terms, both for excitation and 
for absorption. For this, the first transverse electromagnetic 
(TEM) mode is injected into the coaxial port, in a weak manner 
through the flux terms, by introducing surface electric and mag-
netic current-density sources of the form

	 EM n inc
s p #= t � (11a)

	 ,J n H inc
s p #=- t � (11b)

where npt  is the unit vector normal to the port along the 
direction of propagation of the injected TEM mode. The inci-
dent fields are in cylindrical coordinates t  and z
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where a  and b  are the inner and outer radii of the concentric 
conductors, respectively, with the space between them filled 
with a dielectric of impedance .h n f=  The time variation 
of the excitation signal is ( ).V tinc

The coaxial port, considered in single mode, is accurately 
truncated with a Silver–Müller impedance boundary condi-
tion, making it unnecessary to use perfectly matched layers 
(PMLs). In addition, the absorbing boundary condition can 
be located in the same surface as the port. The Silver–Müller 
condition is easily applied by using the following coefficients 
in the computation of the f lux at the port surface:

	 , , .k k 2
1

2 2
1

e
m

h
m

h
m

e
mo

h
o

h
= = = = � (13)

Time Level 1

E

H

H

H H

H

E E E

Level 2Interface

(n-3/2)Dt1

(n-1)Dt1

(n-1/2)Dt1

(n)Dt1

(n+1/2)Dt1

(n+1)Dt1

(n+3/2)Dt1

(n+2)Dt1

(n+5/2)Dt1
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Figure 2. The initial state of the electromagnetic fields for 
the three different sets of the scenario of Figure 1 .L 2=^ h
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Figure 3. The sequence of the LTS algorithm for the scenario of Figure 1 .L 2=^ h  The LF steps are drawn in solid lines and 
interpolation in dashed format. The required samples for an updating step appear inside a circle and the computed samples in 
bold. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4. (e) Step 5. (f ) Step 6. 
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We can evaluate the antenna impedance and the S11  
parameter from the computation of the total voltage V tot  from 
the fields at the port surface. Notice that the space and time 
dependencies are separated in (12), and once the TEM mode 
is projected on the basis functions, all the source-term col-
umn vectors , , , andM M J Jsk s sk so o^ h  remain unchanged over 
the simulation, except for a time-dependent common factor 
depending on the time instant.

A simple alternative to the coaxial port is the well-known 
delta-gap feed model that is computationally less costly than 
the first one and can be accurate in some situations. Many 
implementations can be found in [26]. In this article, we chose 
to establish the given excitation voltage V tinc ^ h  across the 
points of a surface gap [assumed to be a perfect electric con-
ductor (PEC, commonly referred to as a hard source [26], 
[27]; a similar approach could be applied to 
the soft source)] through surface magnetic 
currents (coupled into the DG equations in 
the usual weak form). These are found from 

,E lV t 1inc inc
gD= t^ h  where D  is the gap 

width and l g
t  is the unit vector following the 

gap orientation (see Figure 4), according to

,EM n n lV t 1inc inc
s g g g# #

D
= =t t t^ _h i � (14)

where ngt  is the unit vector normal to the 
gap. Notice that the space and time depen-
dencies are also separated in (14). The flux 
coefficients take the values

, , .k Z k1 0e
m

e
m

m h
m

h
mo x o= = = = � (15)

To evaluate the antenna impedance, we 
only need to compute the current flowing 
through the delta gap and divide it over the 
incident voltage.

To illustrate the differences between 
the two feeding techniques, we computed 
the input impedance and radiation patterns 
for some frequencies of a wideband conical 
antenna over an infinite ground plane, with 
the flare angle tuned for an asymptotic input 
impedance of .50+ X  Figure 5(a) shows the 
setup and dimensions of the two simulated 
cases, excited by a coaxial port and a delta 
gap. Figure 5(b) compares both impedances 
(the impedance is not calculated at the same 
physical point since, between the radiating 
element and the coaxial port, there is a sec-
tion of coaxial waveguide of 9.6 mm, which is 
not considered in the delta-gap case), show-
ing differences along the entire band, while 
no significant differences are detectable in 
the radiation patterns [Figure 5(c)]. We can 
conclude that the simplified delta-gap model 
can be used as an alternative to the coaxial 

one to predict the antenna radiation performance (in some 
cases, also its input impedance, e.g., if the antenna is fed by a 
matching network [28]), while a realistic model of the feeding 
should be employed for impedance prediction [26], [27] when 
the actual geometry of the port has a strong influence on the 
antenna behavior.

Delta-Gap

D Einc MS
lg^

Figure 4. The delta-gap source model.
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Figure 5. The conical antenna simulation case: (a) the simulation antenna 
setups with all dimensions in millimeters, (b) the input impedance results, and 
(c) the radiation pattern results. 
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Application
In this section, we illustrate the application of the LFDG to two 
cases: a typical biconical antenna (validated with measurements) 

and a monopole antenna integrated on a large structure (vali-
dated with the HFSS commercial package). In both cases, the 
high contrast in the elements’ sizes makes the advantages of the 
LTS technique clear. The conformal uniaxial PML (C-UPML) 
[24], [29] is used to truncate the open free space.

Biconical Antenna
A biconical antenna was manufactured and measured to be 
used as a field sensor for low-level swept field (LLSF) mea-
surements. The main objective of an LLSF test is to evaluate 
the transfer function between external and internal fields in a 
structure. This is a typical test in the aerospace electromagnetic 
compatibility sector to assess the shielding effectiveness inside 
the fuselage in the equipment bays. The key requirements for 
these antennas are small size, since they must fit inside any kind 
of cavity, and a wide frequency band. The biconical antenna 
shown in Figure 6 fulfills these requirements. It is formed by 
two cones connected by two sections of coaxial waveguides.  
Figure 7 shows the geometry and the simulation setup, where 
the high contrast of the elements’ sizes in the mesh is evidenced. 
Figure 8 and Table 1 show the distribution of tMAXD  with the 
elements and the different LTS levels for this simulation case.

The following aspects have been considered in the antenna 
modeling.

■■ The antenna is meshed with quadratically curved tetrahe-
drons. This is a key point because the geometry has revolution 
symmetry so that all the surfaces are curved (e.g., coaxial 
waveguide) and some of them doubly curved. Second-order 
finite elements significantly improve the spatial discretization 
and, consequently, the accuracy of the simulation.

■■ The order p  of basis functions to expand the electric and 
magnetic field has been chosen depending on the element 
size to maintain uniform accuracy throughout the spatial 
domain with a reasonable amount of computational effort. 
We combined gradient spaces of reduced order p 1-  
with rotational spaces of complete order p  [30]. The num-
bers of elements and dofs per basis function set are shown 
in Table 2.

(a) (b)

Figure 6. The wideband biconical antenna. 

Symmetry Plane
PMC

C-UPML

Air

Radome
fr = 2.1

Dielectric of the
SMA Connector
fr = 1.98 

Coaxial Port

PEC

Screw

Near-to-Far
Surface

Figure 7. The simulation setup of the wideband bicone 
antenna. The antenna is fed through a subminiature version A 
(SMA) connector. PMC: perfect magnetic conductor. 

Element Index

M
ax

im
um

 T
im

e 
S

te
p 

(f
s)

0

25
,0

00

50
,0

00

75
,0

00

10
0,

00
0

12
5,

00
0

15
0,

00
0

17
5,

00
0

20
0,

00
0

22
5,

00
0

101

102

103

Level 1

Level 2

Level 3

Level 4

Level 5

6.2

18.8

56.3

169.0

506.9

Figure 8. The distribution of the tMAXT  with the elements.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9IEEE Antennas & Propagation Magazine  j u n e  2 0 1 5

■■ A conformal UPML [24], [29] technique has been used to 
truncate the computation space. This technique is shown 
to be reflectionless for any angle of incidence, polariza-
tion, and frequency. The conformity is used to reduce the 
buffer space and, thus, the time and memory require-
ments of each simulation.

■■ Due to the symmetry of the antenna, we have simulated 
one-quarter of the antenna, considering perfect magnetic 
conductor boundary conditions in the symmetry planes. 
This reduces the simulation times by a factor of four.

The coaxial port is excited with a Gaussian pulse time 
signal, with a 12-dB bandwidth at 20 GHz. The problem 
has been simulated until a physical time of 1.0 ns. Some 
screenshots of the simulation appear in Figure 9. The 
simulation time was 8.9 min for 20 AMD OPTERON dual-
core 1.8-GHz processors. A reduction of 32 times in the 

central processing unit computational time is achieved by 
using the LTS algorithm compared with the time required 
without employing LTS.

The computed and measured S11  and input impedances 
are shown in Figure 10, where excellent agreement between 
them can be observed. The radiation patterns for different 
frequencies were evaluated and are shown in Figure 11.

OnBoard Antenna Modeling
In the last example, we will use the LFDG method to analyze 
the effect on the radiation performance of an antenna designed 

Table 1. the Number of elements (M) in each LTS level and interface for the  
biconical simulation case. 

L1 (L1/L2) L2 (L2/L3) L3 (L3/L4) L4 (L4/L5) L5

M 5 19 96 166 10,338 5,839 44,728 35,732 123,093

M (%) 0.002 0.01 0.04 0.08 4.7 2.65 20.33 16.24 55.95

tT  (fs) 6.2 18.8 18.8 56.3 56.3 169 169 506.9 506.9

Table 2. the Number of elements (M)  
for each set of basis functions for  
the biconical simulation case. GxRy  
stands for x order for the gradient 
space and y order for the curl space.

G1R1 G1R2 G2R2 Total

M 177,933 41,906 177 220,016

M (%) 80.87 19.05 0.08 100

dofs 5,260,368 2,392,560 14,220 7,667,148
dofs (%) 68.61 31.21 0.18 100

t = 368.9 pst = 141.8 ps t = 254.6 ps

(c)(a) (b)

Figure 9. Screenshots of the simulation of the wideband 
biconical antenna.
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Figure 10. S11  and input impedance of the wideband bicone 
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included for validation purposes. 
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to work in the very high-frequency (VHF) and ultrahigh-
frequency (UHF) bands, installed in the leading edge of an 
aircraft fin, in comparison with its behavior with the antenna 
installed on an infinite ground plane (Figure 12), assuming 
a delta-gap model for the feeding. To keep the antenna size 
small, these onboard aircraft antennas are typically fed by a 
network matching. Figure 13 shows the radiation pattern of the 
ground-plane configuration. As expected, the loading structure 
on the top of the radiating element causes some energy to be 
radiated in the cross-polar component, which slightly reduces 
the antenna gain in the copolar component. This effect is more 
discernible in the UHF band.

The integration of this antenna in a leading edge of a 
generic aircraft fin is shown in Figure 14. As a preliminary 
approach, we simulated only a piece of the metallic tail [in 
blue in Figures 15(c) and 16(c)]. The antenna impedance and 
radiation patterns for two frequencies [132 MHz (VHF) and 
312 MHz (UHF)] are shown in Figures 15–17. We find a rela-
tively low degradation of the adaptation parameter compared 
with the infinite ground case. However, as expected, major 
differences due to the masking effect of the fin are found in 
the radiation patterns. For validation, we have included the 
impedance results in Figure 17 computed with the HFSS 
commercial software. A good agreement is found.

Conclusions
In this article, we have shown the applicability of an LTS-
LFDG TD method to the accurate modeling of antenna 
structures. A new robust LTS strategy has been described in 
some detail, demonstrating its computational affordability. 
The classical delta-gap technique to model the antenna feed-
ing has been revisited and compared with a more realistic 
coaxial equivalent model. Several realistic antennas used for 
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aircraft testing or by onboard communication systems have 
been simulated to validate our approach by comparing them 
to measurements or HFSS results.
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