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Abstract—This paper presents a numerically efficient approach
for simulating nanowires at infrared and long optical wavelengths.
A computationally efficient circuit-equivalent modeling approach
based on the electric-field integral-equation (EFIE) formulation is
employed to simulate the highly dispersive behavior of nanowires
at short wavelengths. The proposed approach can be used both
for frequency-domain and for time-domain EFIE formulations. In
comparison with widely used full-wave solutions achieved through
the finite-difference time-domain method, the circuit-based EFIE
formulation results in a sharp reduction of the computational re-
sources while retaining high accuracy.

Index Terms—Computational nanotechnology, integral equa-
tions, time-domain analysis.

I. INTRODUCTION

THE development of experimental techniques for manu-
facturing nanoscale-diameter wires [1] has garnered a lot

of recent interest in their use as antennas at optical wave-
lengths [2]–[6]. The unique performance of these nanoscale
structures has also been demonstrated through numerical sim-
ulations of metal nanowires [7], [8], which usually involve in-
corporating experimental measurements of the optical material
parameters at a discrete set ofwavelengths [9], [10]. Carbon nan-
otubes [11] have also been explored, based either on circuital
circuit models inferred through a quantum approach [12] or on
accurate descriptions of the interband and intraband motion of
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electrons in nanostructures [13]. Metal-nanowire antennas have
been predicted to outperform carbon-nanotube antennas in the
optical range [11] while the opposite is true at far-infrared and
terahertz frequencies [14], [15]. Numerical simulations of other
optical structures have been performed for cylindrical waveg-
uides [16], metal nanoparticles [17], and nanostructured metal
films [18]. Furthermore, optical antennas have been studied us-
ing both analytical [19] and experimental [20] approaches and
a technique for tuning the performance of optical nanodipoles
has even been proposed in [21] and [22] through the insertion
of nanorods [23], [24].
Several numerical methods for analyzing metal nanowires

have been successfully used in previous papers. Among these
methods, full-wave solutions of arrays of silver nanowires were
achieved by using finite-difference time-domain (FDTD) [25],
[26], and metal nanodipoles were simulated by the finite-
element approach [7]. On the other hand, integral-equation so-
lutions were reached by means of volumetric integral equations
applied to silver nanowires [27], or by using surface impedance
integral equations (SI-IE) [8] for infinitely long cylinders con-
sisting of silica nanowires [28] and dielectric-coated nanowires
[29]. Despite the accuracy of the finite-difference and finite-
element techniques, the considerable computational resources
required even for the simulation of relatively simple nanostruc-
tures constitute a serious drawback when more complex struc-
tures are considered, such as arrays or bundles of nanowires. For
this reason, there has been recent interest in developing integral-
equation-based methods that offer solutions many orders of
magnitude faster than FDTD or finite-element techniques. The
application of SI-IE, compared with volumetric integral equa-
tions, is advantageous in terms of computational resources, its
main drawback being that only a handful of nanostructures can
be studied under this approach.
In this paper, we propose an efficient scheme to simulate

metal nanowires at near-infrared and longer optical regimes by
using an SI-IE approach, which applies a thin-wire approx-
imation that avoids the use of volumetric integral equations.
Other foundations of this technique are based on Lorentz–Drude
phenomenological models that were developed experimentally
for the characterization of the optical properties of optoelec-
tronic devices [30]. These characterizations are used to infer
equivalent electric models, both in frequency-domain [31], [32]
and in time-domain [33] electric-field integral-equation (EFIE)
formulations, which allow a fast simulation of different metal
nanowires.
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II. COMPUTATIONAL MODEL OF NANOWIRES

The numerical simulation of nanowires in the optical regime
(400–790 THz) requires the accurate incorporation of the ap-
propriate electromagnetic constitutive parameters. In this paper,
we use phenomenological models based on a Lorentz–Drude-
damped oscillator for describing the optical properties of dif-
ferent metal solids [30]. A computationally efficient method of
including these constitutive parameters in an electromagnetic
solver is presented through the use of equivalent circuit mod-
els. Integral equation solvers that employ these models are very
efficient in terms of memory and computational time in compar-
ison with other full-wave solvers such as the FDTD method. It
was demonstrated in [8] that nanowires at near infrared and the
lower part of the visible spectrum can be accurately simulated
using numerical methods based on integral equations.

A. Lorentz–Drude Model for Metals at Optical Wavelengths

The optical constants of metals can be represented by us-
ing a Lorentz–Drude material model that accounts for both
intraband (related to the movement of free electrons in the
conduction band) and interband (associated with transitions
between valence and conduction bands) effects [10]. Thus,
the complex dielectric function can be expressed in the form
εr (ω) = εib

r (ω) + εeb
r (ω), where the intraband contribution is

described by the free-electron Drude model

εib
r (ω) = 1 − f0ω

2
p

ω (ω − iΓ0)
(1)

with ωp corresponding to the plasma frequency associated with
themetal. Intraband transitions are characterized by an oscillator
strength f0 and a damping constant Γ0 . The term corresponding
to the interband contribution obeys a simple semiquantummodel
expressed in a Lorentz form given by

εeb
r (ω) =

K∑
j=1

fjω
2
p

(ω2
j − ω2) + iωΓj

(2)

whereK represents the number of oscillators needed to achieve
a reasonable fit to the experimental data. Each of these oscil-
lators is described by three parameters corresponding to their
frequency ωj , strength fj , and damping constant Γj . Numeri-
cal values of these modeling parameters for different metals at
optical wavelengths can be found in [30].

B. Circuit-Equivalent Representation of the
Lorentz–Drude Model

The dispersive dielectric permittivity can be represented as a
frequency-dependent impedance per unit length. In the case of
the Lorentz–Drude model, intraband- and interband-equivalent
conductivities (σib and σeb , respectively) can be derived from
the generic formula

σ(ω) = iωε0 [εr (ω) − 1] . (3)

Therefore, the equivalent resistivity ρ (ω) can be specified as
impedance per unit length for any metal. If we let iω = s, then

Fig. 1. Circuit equivalent (per unit length) of the Lorentz–Drude model.

TABLE I
RESISTANCES, INDUCTANCES, AND CAPACITANCES (IN Ω·m, H·m, AND F/m,

RESPECTIVELY) OF SOME TYPICAL METALS

the resistivity ρ (ω) may be expressed as follows:

1
ρ(ω)

= σib(ω) + σeb(ω) =
f0ω

2
p

s + Γ0
+

K∑
j=1

sε0fjω
2
p

s2 + sΓj + ω2
j

.

(4)
By defining a set of inductances Lj , capacitances Cj , and

resistances Rj , per unit length, such that

Lj =
1

ε0fjω2
p

(5)

Cj =
1

ω2
j Lj

(6)

Rj = ΓjLj (7)

then (4) can be cast in the form

1
ρ(ω)

=
1

R0 + sL0
+

K∑
j=1

1
Rj + sLj + 1

sCj

. (8)

Fig. 1 shows a schematic representation of the input
impedanceZin (ω) of the circuit model that can be derived from
the equivalent resistivity ρ (ω) of the metal by considering the
length of any piece of the wire. Table I shows the corresponding
parameters for four different metals that are commonly used to



manufacture nanowires, derived from the values of fj , ωj , Γj ,
and ωp found in [30]. The silver and gold models require one
RL circuit to represent the Drude term and four RLC circuits
to represent the Lorentzian responses, whereas aluminum and
copper require only one RL circuit and three RLC circuits in
parallel.

C. EFIE for the Simulation of Nanowires

Electromagnetic scattering or radiation problems regarding
nanowires can be solved by employing numerical simulations
based on the EFIE. Nanowires usually have a radius that is much
smaller than their length and can be modeled by the thin-wire
approximation where the axial current is assumed to dominate.
Also, the thin-wire approach can be further simplified by con-
sidering a particular case derived from the exact Greens function
referred to as the approximate kernel, which takes an advantage
of the cylindrical symmetry of the sources and avoids the singu-
larities that arise in the general case, by treating the total current
as a filament on the wire axis and enforcing the boundary condi-
tion on thewire surface. The use of this approach proves to be the
key factor for achieving high computational efficiency. Taking
into account the loads for the nanowire circuit model illustrated
in Fig. 1, the modified frequency-domain Pocklington’s EFIE
in a vacuum is [31], [32]

[ �Ei(�r, ω)]tan =
i

4πε0ω

[∫
C ′

ω2

c2

e−jkR

R
�I(�r ′, ω)ds′

]
tan

− i

4πε0ω

[∫
C ′

I(�r ′, ω)∇ ∂

∂s′

(
e−jkR

R

)
ds′

]
tan

+ [Zin(ω) �J(�r, ω)]tan (9)

and the corresponding time-domain EFIE is given by [33]

[ �Ei(�r, t)]tan =
1

4πε0

[∫
C ′

1
c2R

∂

∂t
�I (�r ′, t′) ds′

]
tan

+
1

4πε0

[∫
C ′

�R

R3

(∫ t ′

0

∂

∂r′
I(�r ′, τ)dτ

)
ds′

]
tan

+
1

4πε0

[∫
C ′

�R

cR2

∂

∂r′
I (�r ′, t′) ds′

]
tan

+ L−1 [Zin(ω) �J(�r, ω)]tan (10)

whereL−1 means for denotes the inverse Laplace transform, and
the retarded time between the source and field points is repre-
sented as t′ = t − (R/c). �I and �J account for the unknown total
current and current density, respectively, along the arclength C′

of the thin wire embedded in a vacuum, and they are related
through the radius of the nanowire a by using �I = 2πa �J . Also,
R accounts for the distance between field and source points, �Ei

corresponds to the incident electric field on the surface of the
nanowire, and the operator []tan denotes the tangential compo-
nent to the wire axis of the vector field inside the brackets.
At this point, some considerations about regarding the pro-

posed method are due. First of all, it bears remarking that (9)
and (10) are no longer valid in the upper part of the visible spec-
trum where the skin effect begins to become appreciable and

the axial current no longer dominates [8]. Regarding the con-
tribution of the circuital circuit model to the efficiency of the
method, it is noticeable that any computational improvement in
the solution of (9) is achieved by using that model instead of the
equivalent resistivity ρ(ω), apart from the physical insight that
can be inferred by an inspection of the resisitive and reactive
values corresponding to the specific circuit elements. Neverthe-
less, the use of the circuital circuit model in (10) avoids the
employment of any numerical inverse Laplace transform in the
code. Numerical algorithms for the calculation ofL−1 should be
avoided because results may suffer either from inaccuracies, as
a result of a numerical truncation of the time-domain response
associated with the first term on the right-hand side of (10), or
from extremely poor performance if the complete response of
the same term is considered. By using the RLC circuital cir-
cuit model as in [33], the contribution at each segment defined
in the method-of-moment solution can be taken into account
numerically by a trapezoidal integration or a finite difference
approximation of the circuital circuit response. This not only
avoids the calculation of derivative and integral forms of the
electric current but also enables an effective means of simu-
lating large and complex networks of electric circuits. Then,
each ith segment of the nanowire can be replaced by a series
of a numerically equivalent resistance nwRe and a numerically
equivalent time-varying field nwEe,j

i , derived from the values
Re

m and Ee,j
i,m corresponding to the mth branch of the circuital

circuit model:

Re
m = Rm +

2Lm

Δt
+

Δt

2Cm
(11)

Ee,j
i,m = EC,j

i,m − EL,j
i,m +

(
Δt

2Cm
− 2Lm

Δt

)
Ij
i,m (12)

where j is the index of a particular time jΔt, and Ij
i,m is the

current at mth branch of the ith segment. Ee,j
i,m is the reactive

energy stored at that branch, and it is calculated by using

EL,j
i,m =

2Lm

Δt
Ij
i,m −

(
EL,j−1

i,m +
2Lm

Δt
Ij−1
i,m

)
(13)

EC,j
i,m =

Δt

2Cm
Ij
i,m +

(
EC,j−1

i,m +
Δt

2Cm
Ij−1
i,m

)
. (14)

Therefore, the aforementioned equivalent parameters nwRe and
nwEe,j

i at each ith segment are calculated by

nwRe =

(
K∑

m=0

1
Re

m

)−1

(15)

nwEe,j
i = nwRe

K∑
m=0

Ee,j
i,m

Re
m

(16)

resulting in an operational expression of (10) given by

ŝ · �Ei(�r, jΔt) =
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+
1

4πε

∫
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ŝ · �R

cR2

∂

∂r′
I (�r′, t′) ds′

+
Ns∑
i=1

1
Δs

{Ii(s, jΔt)nwRe + nwEe,j
i } (17)

where ŝ is the tangential unit vector to the axis of the wire, and
s′ is the local coordinate along the axis. It should be noted that
in order to achieve satisfactory results at the feeding point, the
delta-gap model is applied by assuming an additional voltage
source placed in parallel with the equivalent circuit model. It
is important to note that (17) does not include any numerical
inverse Laplace transform, and thus provides higher computa-
tional efficiency.

III. RESULTS AND DISCUSSION

Solutions to (9) and (17) can be derived by applying the
method of moments [32]. On one hand, the nanowires are mod-
eled as straight wire segments using a sinusoidal basis function
for the spatial dependence of the electric current in (9). On the
other hand, 2-D Lagrangian basis functions are used for both
the spatial and temporal dependence of the current in (17). The
resulting matrix equations are obtained by applying the point-
matching technique that uses delta functions to project onto the
surface of the nanowire in the spatial and temporal dimensions
for the time-domain EFIE [31], [33].
Therefore, the formulations of (9) and (17) were verified by

comparing the results with simulations performed via the FDTD
method [26]. Figs. 2 and 3 show a comparison of the input
impedance for nanowire dipoleswith lengths of 220 and 440 nm,
respectively, simulated using the FDTD method, the frequency-
domain integral-equation (FDIE) method, and the time-domain
integral-equation (TDIE) method. According to the numerical
requirements of each method for frequencies up to 800 THz,
spatial domains were modeled with segments of 10 nm for the
integral equations, andwith a Yee cell size of 2 nm for the FDTD
simulation. Boundary conditions were included in the FDTD by
using a perfectly matched layer to terminate the computational
grid. The simulation was run for 400 000 time steps that took
approximately 35 h on 2.4-GHz Intel Xeon. Simulations of
both integral-equation-based methods in the time domain and
frequency domain were made using a spatial length-to-radius of
2 per segment, with a total computational time of roughly 20 s,
including all frequencies. In both cases, the nanowires had a
radius of 10 nm and were fed in the center using a voltage source
modeled with the delta-gap approach. The results from FDTD
and TDIE have been transformed to the frequency domain in a
postprocessing step for comparison with the FDIE method.
Reasonable agreement was achieved between the three dif-

ferent methods, but differences are noticed between the 220 and
440 nmdipoles in the upper part of the visible region (from about
500–600 THz). In the optical regime, the surface-impedance ap-
proximation assumes that the main mode is dominant over the
branch-cut contributions, albeit this is true only for points on
the antenna located far enough from the source. For small radius
values, which present high attenuation as the current propagates

Fig. 2. (a) Real and (b) imaginary parts of the input impedance of nanowire
dipole of length 220 nm and radius 10 nm, fed at its center and modeled using
different numerical methods.

along the dipole, the former condition holds somewhat. How-
ever, the combined degradation of the two main assumptions
of the method for large-radius dipoles—the thin-wire approx-
imation and the domination of the main branch in the surface
impedance approach—leads to serious inaccuracies especially
in the upper part of the optical range.
The differences in the infrared region seen in Fig. 2 aremainly

due to the low ratio between the length and radius of the dipole,
which limits the number of segments that can be used to model
the nanoantennas for the integral-equation-based solutions. This
leads to a degradation of the thin-wire approximation. Taking
the FDTD solution for reference, percentages of error in the
impedance values determined with FDIE and TDIE have been
calculated. For the peak values at the first resonance, these er-
rors are below 5% in the case presented in Fig. 2. Nevertheless,



Fig. 3. (a) Real and (b) imaginary parts of the input impedance of nanowire
dipole of length 440 nm and radius 10 nm, fed at its center and modeled using
different numerical methods.

there is a shift in the resonance frequency that can be consid-
ered tolerable for the FDIE solution (3.1% percentage error) but
this is unacceptable for the TDIE solution (12.5% error and a
wavelength change of 150 nm). Therefore, it can be seen that
for cases where the thin-wire approximation is no longer valid
the proposed approach is suitable only as a rough estimation,
and the use of other assessments based on analytical methods
should be considered [16], [19]. Further improvements of this
technique could arise by combining thin-wire integral-equation
solutions based on the exact kernel, which have been shown to
be accurate for low length-to-radius ratios [34], and consider-
ing higher order propagation modes predicted in nanowires at
infrared and optical regimes [8]. However, the drastic reduc-
tion in computational time through the use of integral equations
greatly compensates for the reduction in accuracy, always bear-
ing in mind that integral equations provide only a preliminary
estimate, which, although coarse, can be still quite useful for

Fig. 4. (a) Real and (b) imaginary parts of the input impedance of several
nanowire dipoles of length 440 nm and radius 10 nm.

the initial evaluation of antenna characteristics or for the com-
parison of the behavior of different antennas. On the other hand,
looking at Fig. 3, we find that the shift in the resonance frequen-
cies predicted by the different methods is much lower, leading
to tolerable errors (1.9% and 3.8% for FDIE and TDIE, respec-
tively) for cases presenting a higher length-to-radius ratio.
Another important question arises from the deviation noted

in Figs. 2 and 3 compared to the resonance frequency corre-
sponding to a perfect electric conductor dipole of the same
dimensions, i.e., geometrical resonance frequencies. As pointed
out in [20] and [23], the intraband and interband transitions of
the composing material influence the velocity of the surface-
wave propagation mode in the nanodipole, and constitutes a
major factor in applied designs. Thus, the main effect of the
transitions in different metal-nanowires is a shift of the geo-
metrical resonance frequencies. To confirm this conclusion, we
use the aforementioned integral-equation methods to evaluate
nanowires having different material properties. Fig. 4 shows
the input impedance for gold, silver, aluminum, and copper
nanowires, each with a length of 440 nm, a radius of 10 nm, and



Fig. 5. Efficiency of several metal nanowires dipoles of length 440 nm and
radius 10 nm.

Fig. 6. Time-domain plot of currents in nanowires of length 440 nm and radii
10 nm, composed of (a) Ag and (b) Al. Taking into account that the nanowire
has been simulated with a total of 23 segments, each segment of the nanowire
(Y -axis) has a length of 19.13 nm, and the time interval chosen in the numerical
model (X -axis) corresponds to a duration of 637.68 fs.

Fig. 7. (a) Real and (b) imaginary parts of the input impedance for a 440-nm
long Ag dipole with different radii.

a feed point located at the center of thewire.Moreover, it isworth
noting that the impedance and efficiency of the silver, gold, and
copper nanowires are very similar, because all of these metals
share the same group in the periodic table, indicating a similar
electronic configuration for the external energy levels. Most of
the electrical properties (e.g., conductivity) are closely related
to the interaction between electrons located at these external
energy levels, which leads to their similar frequency response.
Furthermore, Fig. 5 shows the corresponding efficiency of these
radiators. It can be seen that aluminum has much higher effi-
ciency in the lower part of the visible spectrum. The relatively
flat response of the input impedance and efficiency suggests that
it is a good option for the design of broadband systems based on
nanowires. Moreover, the low resistance and inductance in the
interband response of the Lorentz–Drude model (correspond-
ing to R0 and L0 in Table I) suggest the formation of slow
waves for these dipoles. The existence of these slow waves can
be confirmed by a comparison of the time-domain currents in
the nanowires. Fig. 6 shows a comparison between the current



on Ag and Al nanowire dipoles. It can be seen that the initial
current pulse is fed at the center (segment 12) of both the Ag
(on the left top ) and the Al (on the right bottom) nanowires at
the same time (at approximately the 30th time interval). After
propagating along the wire, the current pulse reaches the end of
the dipoles at the 60th time interval for the Ag nanowire, and at
the 52nd time interval for the Al nanowire. Therefore, the sur-
face waves on each dipole are seen to have different velocities
of propagation as expected.
Finally, the dependence of the results is also demonstrated by

varying the radius of the nanowire. It is well known that the in-
fluence of this parameter over the performance of the nanodipole
is higher than in classical dipoles, because of the change in the
velocity of the propagation of the surface wave caused by a
variation in the radius. This effect can be inferred by examining
the terms in (9) and (10), which contain Zin (ω) �J (�r, ω). Thus,
as shown in Fig. 7 for a silver nanodipole, a relatively small
decrease in the radius affects in a significant way the resonance
frequencies.

IV. CONCLUSION

This paper demonstrates that nanowire simulations based
on the EFIE constitute a fast alternative to other full-wave
numerical-analysis methods. Moreover, we have shown that
physical models of nanowires can be effectively incorporated
into the EFIE with only a minor increase in computational re-
sources through the use of circuit-equivalent models for the
Lorentz–Drude conductivity. This scheme facilitates the com-
parison between the resonance frequencies of nanowires simu-
lated with different metals, demonstrating the main influence of
the surface-wave velocity in the half-wave resonances. Evalua-
tion of the computational resources needed for EFIE solutions
shows a dramatic improvement in efficiency compared to FDTD
(20 s versus 35 h for the examples presented here). Thus, the
proposed method is expected to provide an efficient means for
the future simulation of nanowire arrays and more complex
nanowire structures.
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