1	A new empirical model to estimate hourly diffuse photosynthetic photon flux density
2	
3	
4	I. Foyo-Moreno, (1,2), I. Alados (3,2) and L. Alados-Arboledas (1,2)
5	(2) Andalusian Institute for Earth System Research (IISTA-CEAMA), 18006
6	Granada, Spain
7	(3) Dpto de Física Aplicada II, Universidad de Málaga, Málaga, Spain.
8	
9	Corresponding author:
10	I. Foyo-Moreno
11	Departamento de Física Aplicada
12	Facultad de Ciencias
13	Universidad de Granada
14	18071, Granada
15	Spain.
16	Phone: 34 58 240022
17	FAX: 34 58 243214
18	E-mail: ifoyo@ugr.es
19	
20	
21	
22	
23	
24	

25 ABSTRACT

26

Knowledge of the photosynthetic photon flux density (Q_p) is critical in different applications 27 dealing with climate change, plant physiology, biomass production, and natural illumination 28 in greenhouses. This is particularly true regarding its diffuse component (Q_{pd}), which can 29 enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse 31 30 photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. 31 In this work, we propose a model to estimate this component, using a previous model to 32 calculate Q_p and furthermore divide it into its components. We have used measurements in 33 34 urban Granada (southern Spain), of global solar radiation (R_s) to study relationships between the ratio Q_{pd}/R_s with different parameters accounting for solar position, water-vapour 35 absorption and sky conditions. The model performance has been validated with experimental 36 measurements from sites having varied climatic conditions. The model provides acceptable 37 38 results, with the mean bias error and root mean square error varying between -0.3 and -8.8% and between 9.6 and 20.4%, respectively. 39 40 41 42 **1. INTRODUCTION** 43

The amount of photosynthetically active radiation (PAR), defined as the visible portion of global solar radiation (R_s) used in photosynthesis to convert light energy into biomass (Udo and Aro, 1999; Jacovides et al., 2004; Tang et al., 2013), determines the exchanges of energy and water between the land surface and the atmosphere. Among the standard environmental statistics needed to evaluate plant photosynthesis are PAR data

49 (Akitsu et al., 2017). This radiation covering both photon and energy terms lies between 400 50 and 700 nm. Thus, the photosynthetic photon flux density, Q_p , is defined as the photon flux 51 density (1 µmol photons m⁻² s⁻¹=6.022*10¹⁷ photons m⁻² s⁻¹). This is the number of photons 52 in the 400-700 nm waveband incident per unit time on a unit surface.

The amount and spectral quality of the radiation reaching the surface is altered by aerosols 54 and clouds by absorption and scattering processes, varying the proportion of the components 55 of radiation (direct and diffuse). Plants use both the direct and diffuse photosynthetic photon 56 flux density (Q_{pb} and Q_{pd}), but it is known that these components differ in the way they 57 transfer energy through plant canopies and affect the summation of nonlinear processes such 58 as photosynthesis differently than would occur at the leaf scale (Gu et al., 2002; Misson et 59 al., 2005; Min, 2005; Jacovides et al., 2007; 2010). In fact, the efficiency with which 60 incoming PAR is intercepted by a canopy, depends on its efficiency in intercepting direct and 61 62 diffuse incoming radiation and on the proportions of Q_{pd} and Q_{pb} 63 (Alados et al., 2002). The analysis of the effects of Q_{pd} on ecosystem productivity has become one of the main 64 goals in terrestrial carbon-cycle research (Gu et al., 1999, 2002, 2003; Mercado et al., 65 2009; Sun and Zhou, 2010; Zhang et al., 2010; He et al., 2011; Zhang et al., 2011), and thus 66 the treatment of Q_{pd} in ecosystem models is needed (Gu et al., 2003; Mercado et al., 2009; 67 Kanniah et al., 2012). Hence, quantifying Q_{pd} and understanding its spatiotemporal variations 68 are critical for estimating its impact on the carbon cycle of terrestrial ecosystems. Currently, 69 many sites measure Q_p, although a worldwide network for routinely measuring Q_p has not yet 70 71 been established, despite the biological importance of this radiometric quantity. Furthermore, few observation sites measure Q_{pd} , raising the need for models to estimate these data. Q_{pd} is 72 73 usually estimated by multiplying Q_p by the diffuse fraction of global radiation ($k_d = R_d/R_s$), where R_d is diffuse irradiance, but this is only a rough estimate because k_d is not equivalent to 74

75	the diffuse fraction in the visible range (k_{dQp}) , which is significantly greater than k_d under
76	clear skies, although almost equivalent under cloudy skies (Spitters et al., 1986).
77	In the present work, we have evaluated a model to estimate Q_{pd} using a previous
78	model to estimate Q_p (Foyo-Moreno et al., 2017), considering the separation of R_s into its
79	components: direct and diffuse. Prior to evaluating model performance, we have analysed
80	dependences of the Q_{pd}/R_d ratio and Q_{pd} on different parameters. These parameters describe
81	the solar position using the cosine of the solar zenith angle (θ) and indices such as sky
82	clearness ($\epsilon = (R_d + R_b)/R_d$), sky brightness ($\Delta = R_d/R_{so}\cos\theta$), and the clearness index ($k_t = R_d/R_{so}\cos\theta$)
83	R_s/R_{so}), where R_d is diffuse irradiance, R_b is direct normal irradiance and R_{so} is the
84	extraterrestrial global solar irradiance (Pérez et al., 1990; Alados et al., 1996). For example,
85	Jacovides et al. (2007; 2010) proposed an empirical model relating k_{dQp} to the clearness index
86	Q_p ($k_{tQp} = Q_p/Q_{po}$), where Q_{po} is the extraterrestrial photosynthetic photon flux density. To
87	consider the effects of water absorption in this spectral range, we also analysed dependence
88	on meteorological parameters such as water-vapour pressure (e) or dew-point temperature
89	(T_d) . The model proposed in this work uses as input data the solar position as the cosine
90	function of the solar zenith angle (\Box) and diffuse irradiance (R_d). The model was evaluated
91	with a set of independent data at various sites, two in Spain and another in Italy, with
92	different climatological characteristics.
93	

94 2. EXPERIMENTAL SITE AND MEASUREMENTS

95

In this work, we used data from three sites (Granada and Almería in Spain, and Renon
in Italy). The data from Granada were used to study the main dependence between the
variables of interest for this study, and all three stations were used to validate the proposed

99	model, since this proposal is based on a previous model to estimate Q_p (Foyo-Moreno et al.,
100	2017), with data compiled for Granada during other years vs. those used in the present work.
101	Ground-based data for two years at 1-min intervals were acquired at a station on the
102	outskirts of Granada (37.18° N, 3.58° W, 660 m a.s.l.). From this data base, hourly values
103	were generated for the entire two-year period to include a wide range of seasonal conditions
104	and solar zenith angles. The photosynthetic active photon-flux density (Q_p) was measured
105	using LICOR model 190 SA quantum sensors (Lincoln, Nebraska, USA). Another quantum
106	sensor has been equipped with a polar axis shadowband to measure the diffuse
107	photosynthetic active photon flux density (Q_{pd}) . Global solar irradiance, R_s , was measured
108	using a Kipp and Zonen model CM-11 radiometer (Delft, Netherlands), while another CM-11
109	with a polar axis shadowband was used to measure diffuse solar irradiance (R_d) . The diffuse-
110	irradiance measurements were corrected following the method proposed by Batlles et al.
111	(1995). The quantum sensor has a relative error of less than 5% relative to the values
112	measured, and global solar-irradiance measurements have an estimated experimental error
113	of about 2-3%. The calibration constants of the instruments were periodically checked
114	(Alados and Alados114 Arboledas, 1999).
115	To avoid problems associated with instrument deviations from the ideal cosine law,
116	we limited our study to solar zenith angles of less than 85° (Alados et al., 1996). We
117	evaluated the proposed model using data from different stations that had not been
118	used in building the model, two in Spain (Granada and Almería), and another
119	in Italy (Renon). Detailed information on the instrumentation and site characteristics
120	can be found for Almería in Alados and Alados-Arboledas (1999). The radiometric
121	sensors used at Almería are similar to those used at Granada. The Renon/Ritten site
122	(Italy), is operated by the Forest Service and the Agency of the Environment

123	of the Autonomous Province of Bolzano (APB). In Italy, Q _p was measured
124	by a BF2 sunshine sensor (Delta-T Devices, Burwell, Cambridge, United Kingdom).
125	This device uses an array of silicon photodiodes and a shading pattern on the
121	radiometer dome to determine Q_{pd} . The accuracy of these sensors is 15% (BF2, Delta-T
122	Devices, 2005).
127	Table 1 presents some climatic data for the stations used. Granada is an inland location
128	in south-eastern Spain, a non-industrialized medium-sized city situated in a natural basin
129	surrounded by mountains with elevations between 1000 and 3500 m a.s.l Near continental
130	conditions prevailing at this site are responsible for large seasonal temperature differences,
131	providing cold winters and hot summers. Most rainfall occurs during winter and spring.
132	Almería, located on the Mediterranean coast in south-eastern Spain, has frequent cloudless
133	days and high humidity. Renon is situated at 1735m a.s.l. in the Italian Alps in Bolzano (Alto
134	Adige, Italy). This site is influenced by an windy and humid alpine climate. Thus, the three
135	sites present contrasting climatic characteristics and altitudes. The yearly precipitation
136	markedly fluctuates.
137	
138	3. RESULTS AND DISCUSSION
139 140	
141	3.1. ANALYSIS OF Q _{pd} / R _d RATIO
142	
143	As in our earlier work (Foyo-Moreno et al., 2017), before the direct study of the
144	variable of interest (Q_{pd}), we analysed the ratio between Q_{pd} and $R_d (Q_{pd}/R_d)$ with different
145	parameters. Other works (Alados et al. 1996, Yu et al. 2015, Yu and Go, 2016) showed
146	seasonal and daily variations of Q_p/R_s and also variations of Q_{pd}/R_d (Alados and Alados-

147	Arboledas, 1999). Since the most important factor influencing the solar-radiation levels
148	reaching the Earth's surface is solar position, Figure 1 shows this dependence of this ratio on
149	$cos\theta.$ We noted that this ratio varied between 1.86 and 2.48 $\mu mol \ J^{\text{-1}}$ with a mean value of
150	2.19 ± 0.13 (µmol J ⁻¹). Jacovides et al. (2007) found a mean value in Athens (Greece) of 2.43
151	$\pm0.26~(\mu mol~J^{1}).$ For all hourly values together, we found no dependence. However, for the
152	mean values of this ratio in different categories of $\cos\theta$, we detected a slight dependence with
153	high dispersion. The correlation coefficient (R^2) was 0.54 while the intercept and slope were
154	$2.14\pm0.02~(\mu mol~J^{-1})$ and $0.08\pm0.02~(\mu mol~J^{-1}),$ respectively. The positive dependence with
155	$\cos \theta$ implies a reduction in the relative contribution of photosynthetically active photon flux
156	density over the whole solar spectrum when the optical air mass increases. In Almería (Spain)
157	a similar dependence has been reported (Alados et al., 1999). In an initial approximation, we
158	could assume that this ratio was constant and we calculated Q_{pd} from R_d .
159	The second dependence analysed was on R_s (Figure 2) and the third on R_d (Figure 3).
160	There was no dependence on R_s for all hourly values but a positive correlation was found for
161	the mean values considering the categories with the R_s values. However, a clearer
162	dependence for all hourly values was detected, although with great dispersion, as a function
163	of R_d , with larger values for low values of R_d . Thus, with decreasing R_d (clear skies),
164	the diffuse component of Q_p was larger than the diffuse component for R_d .
165	In our search for a more direct relation with sky condition, Figure 4 shows the
166	dependence of this ratio on the clearness index (k_t). This parameter is defined as the ratio of
167	the global irradiance (R_s) to the extraterrestrial global irradiance (R_{so}) , both on a horizontal
168	surface:
169	

$$k_t = \frac{R_s}{R_{so}} \tag{1}$$

with $R_{so} = E_o I_{sc} \cos\theta$. E_o is the eccentricity correction factor and the value used of the solar 172 constant (I_{sc}) is 1367 Wm⁻² (Iqbal, 1983). Details of the calculation of $\cos\theta$ can be found by 173 Iqbal (1983). The parameter kt characterizes the sky condition including the attenuation 174 effects of the most dominant factors controlling solar radiation, such as clouds and aerosols. 175 Previous studies used similar parameters such as the sky clearness and the skylight brightness 176 (Pérez et al., 1990) to characterize the sky condition (Alados et al., 1996). Another parameter 177 to characterize sky condition is diffuse fraction (k_d), defined as the ratio between diffuse 178 global irradiance (R_d) and global irradiance (R_s) : 179

178
$$k_d = \frac{R_d}{R_s}$$
(2)

Knowledge of k_d can be useful to get an idea of atmospheric load indirectly, where a low k_d indicates a clear sky and more pristine atmosphere, while high k_d values denote high aerosol loads (Singh et al., 2013). In fact, the ratio between R_d and R_{bn} can be used to estimate aerosol optical depth (Foyo-Moreno et al., 2014).

183 Figures 4 and 5 show the dependence of Q_{pd}/R_d on these parameters. There is a slight

dependence on k_t for all hourly data and for mean values in categories of k_t values, higher

values of the Q_{pd}/R_d ratio are detected for low and high k_t values. These high values of Q_{pd}/R_d

- 186 for high values of k_t are consistent with Jacovides et al. (2007), who reported a weak
- 187 correlation for daily values, which is well fit by an exponential equation with a determination
- 188 coefficient of 0.276. They found hourly ratio values varying from 2.56 ± 0.27 to 2.42 ± 0.24
- $(\mu \text{mol } J^{-1})$, and ratios under clear skies 5.5% higher than that for overcast skies. These results

190 agree with Alados and Alados-Arboledas (1999) and Min (2005). In any case, high k_t values imply low k_d values, so that this ratio had high values for low values of k_d (clear skies) 191 although the dispersion of data was high (Figure 5), increasing the dispersion with k_d . Under 192 clear skies, the regulating factors in the solar radiation modification are scattering processes, 193 194 so that spectral investigations support the premise that, under these skies with aerosol loads, short wavelengths are preferentially scattered, thus increasing Q_{pd} more than R_d (Jacovides et 195 al., 2000; Dye, 2004). However, the pattern observed for low values of k_t (<0.4) is different 196 (Figure 4), the ratio decreasing when k_t increases. This result could be associated with the 197 mixed effects of aerosols and clouds, because these cases correspond to skies with high 198 199 opacity. From the above analysis, it is clear that this ratio varies with changing sky conditions. 200 Clouds exhibit relatively constant extinction across the visible spectrum while aerosols 201 commonly show extinction that significantly diminishes the greater the wavelength (Min, 202 2005; Jacovides et al., 2007). This result can be attributed to the presence of clouds in skies 203 204 with the high solar absorption in the infrared region (NIR). Clouds absorb NIR more strongly than Q_p, and hence the transmittance of Q_p through clouds is larger than NIR. In fact, clouds 205 more markedly attenuate the total solar spectral range than they do shorter wavelengths such 206 as the ultraviolet range (Foyo-Moreno et al., 2001, 2003). 207 As in an earlier work (Foyo-Moreno et al., 2017), here, to explicitly consider 208 absorption by water vapour in the solar spectrum, we have shown in Figures 6 and 7 the 209 dependence on meteorological parameters such as the dewpoint temperature (T_d) – relevant 210 due to its correlation with precipitable water (Reitan, 1963) – and the partial vapour pressure 211 212 (e). T_d and e have been calculated from the direct measurements of air temperature (T) and

the relative humidity (U) at our station, with standard formulation. As before

214 (Foyo-Moreno et al., 2017), no dependence was detected.

215

216

3.2. ANALYSIS OF PARAMETERS CHARACTERIZING SKY CONDITIONS

217

Now, in order to find relationships between parameters considering sky conditions, it 218 is possible to define indexes for the visible range equivalent to those for the shortwave 219 broadband range. These parameters are $k_{tQp} = Q_p/Q_{po}$ (clearness index) and $k_{dQp} = Q_{pd}/Q_p$ 220 (diffuse fraction), defined as in Eqs. 1 and 2, respectively but for the visible range. Q_{po} can be 221 derived from R_{so}, with a fraction of 0.5 suggested by most studies (Frouin and Pinker 1995; 222 223 Hu et al. 2007, 2010; Wang et al. 2014), then Q_{po} can be calculated by multiplying by the ratio 4.57 of the energy-flux density to photosynthetic photon flux density (Dye 2004). 224 225 Figure 8 shows the dependence between k_{dQp} and k_{tQp} . Jacovides et al. (2007) found a polynomial fitting, shown in Figure 8 as the dashed line for 0.1<k_{tQp}<0.85. Our fitting is also 226 a third-order polynomial but with different coefficients (solid line) with a determination 227 coefficient of 0.88. For low values of k_{tQp} the diffuse component is similar to Q_p and for high 228 values this proportion decreases to about 10% of Qp. In the literature, few studies have 229 focused on the empirical relationships between Q_p and Q_{pd} of the Liu and Jordan regression 230 type (Jacovides et al., 2010). The applicability of several diffuse radiation empirical models 231 has been analysed in Athens (Jacovides et al., 2010), showing mean bias error (MBE) values 232 between -12.9 and 2.99 % and root mean square error (RMSE) values between 27.1 and 233 35.6%, with a MBE of 0.11% and a RMSE of 26.8% for their fitting. 234 Figure 9 shows the dependence between the ratio of the diffuse fraction in the visible 235 range (k_{dQp}) and the diffuse fraction in the shortwave broadband range (k_d) and clearness 236 index (k_t). We found a positive correlation, with the ratio increasing with clear skies. Spitters 237

et al. (1986) showed that the diffuse fraction for the visible range was 1.4 times the diffuse 238 broadband fraction under clear sky conditions. It is evident that this ratio increases 239 significantly when sky conditions change from cloudy to clear. In our case, the value found 240 was 1.17 ± 0.07 for clear skies. Jacovides et al. (2007) reported a value of 1.38 ± 0.32 . The 241 dispersion increases with higher kt values. However, for low values of kt (<0.4; cloudy skies) 242 the diffuse fraction in the visible range is of the same order as the diffuse fraction in the 243 244 shortwave broadband range. 245 3.3. ANALYSIS OF Q_{pd}. 246 247 In this section, we directly study the dependence of Q_{pd} on the same parameters 248 considered in Section 3.1. First, we show that the solar zenith angle alone does not allow for 249 a correct determination of Q_{pd} (Figure 10). While Q_{pd} increases with decreasing θ , due to 250 high dispersion it is possible to parameterise only the two *envelopes* of the data through a 251 252 simple linear dependence on the cosine of θ . This result is similar to earlier work with Q_p (Foyo Moreno et al., 2017), and with the ultraviolet range (Foyo-Moreno et al., 1998, 2007). 253 254 The upper envelope of the data corresponds to the maximum values that can be assumed to 254 correspond to overcast skies, and the lower envelope can be attributed to values corresponding to clear skies for a given solar position. 255 We show the high positive correlation between Q_{pd} and R_d ($R^2=0.997$), with a slope of 257 $2.125\pm0.002~\mu mol~J^{.1}$ (Figure 11), close to the mean value found for the ratio Q_{pd}/R_d [2.19 \pm 258 0.13 (μ mol J⁻¹)]. The dependence on sky conditions using the parameters k_t and k_d is shown 259 in Figures 12 and 13. The dispersion of data is high for all sky conditions. 260 Considering all of the above results, we found it more appropriate to model Q_{pd} rather 261

262 than Q_{pd}/R_d . Therefore, taking into account our previous model (Foyo-Moreno et al., 2017), 263 the expression of Q_p is:

$$Q_{p} = ak_{t}\cos\theta \tag{3}$$

We can separate Q_p into its two components: direct and diffuse. Also, taking into account that global irradiance (R_s) is the sum of the two components (direct and diffuse), we arrive at this expression for Q_{pd} :

268
$$Q_{pd} = a\cos\theta \frac{R_d}{R_{so}}$$
(4)

268 with
$$a = (2681 \pm 2) \mu \text{mol m}^{-2} \text{s}^{-1}$$
.

270

264

271 **3.4. MODEL PERFORMANCE**

272

We have evaluated the model (Eq. 4) at the three stations which were not used in its development. Table 2 shows the results found after including the correlation coefficient R^2 – (the fraction of experimental data variance explained by the model), slope b, and the intercept a of the linear regression of the Q_{pd} measured vs. the estimated values. Table 2 also shows the mean bias error (MBE) and root mean square error (RMSE), both as percentages of the mean

experimental values. The MBE and RMSE, are given by the following expressions:

279
$$MBE = \frac{100}{M_{ave}} \frac{1}{N} \sum_{i=1}^{N} (E_i - M_i)$$
(5)

280
$$RMSE = \frac{100}{M_{ave}} \left(\frac{1}{N} \sum_{i=1}^{N} (E_i - M_i)^2\right)^{0.5}$$
(6)

where E_i is the estimated value (*i*th number), M_i is the measured value, M_{ave} is the average of

282	the measured values and N is the number of observations. These two statistics enable the
283	detection both of the differences between experimental data and of the model estimates and
284	the existence of systematic over- or underestimation trends, respectively.
285	Figure 13 shows Q_{pd} estimated via Eq. (4) at all localities analysed in this work. The
286	model evaluation is excellent for all radiometric stations, the variance explained for the
287	models is better than 95%, and the values for MBE and RMSE vary between -0.3 and 8.6 $\%$
288	and 9.6 and 20.4%, respectively. The model underestimates the values for all localities. In any
289	case, both the slope and correlation coefficient of the linear regression between the measured
290	and estimated values reveals the goodness of the model estimations. Wang et al. (2017), using
291	different soft computing techniques, found MBE values between -16 and -18% and RMSE
292	ranging between 22 and 51% for six stations from the AmeriFlux network.
202	
293	
293 294	3. CONCLUSIONS
293 294 295	3. CONCLUSIONS
293 294 295 296	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain,
293 294 295 296 297	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of
293 294 295 296 297 298	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in
293 294 295 296 297 298 299	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic
293 294 295 296 297 298 299 300	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic characteristics. Firstly, we analysed the ratio of Q _{pd} to diffuse irradiance (R _d) to continue with
 293 294 295 296 297 298 299 300 301 	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic characteristics. Firstly, we analysed the ratio of Q _{pd} to diffuse irradiance (R _d) to continue with Q _{pd} . The dependence of both (Q _{pd} /R _d and Q _{pd}) on different parameters, which characterize
 293 294 295 296 297 298 299 300 301 302 	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic characteristics. Firstly, we analysed the ratio of Q _{pd} to diffuse irradiance (R _d) to continue with Q _{pd} . The dependence of both (Q _{pd} /R _d and Q _{pd}) on different parameters, which characterize solar position and sky conditions, were considered together with other meteorological factors
 293 294 295 296 297 298 299 300 301 302 303 	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic characteristics. Firstly, we analysed the ratio of Q _{pd} to diffuse irradiance (R _d) to continue with Q _{pd} . The dependence of both (Q _{pd} /R _d and Q _{pd}) on different parameters, which characterize solar position and sky conditions, were considered together with other meteorological factors such as vapour pressure and dewpoint temperature (T _d). The main findings can be
 293 294 295 296 297 298 299 300 301 302 303 304 	3. CONCLUSIONS Two years of measurements made in Granada, an urban site in south-eastern Spain, were used to study the diffuse photosynthetic photon-flux density (Q _{pd}), with the aim of proposing a model for all sky conditions. The model was evaluated at three stations, two in Spain (Granada and Almería) and another in Italy (Renon), with different climatic characteristics. Firstly, we analysed the ratio of Q _{pd} to diffuse irradiance (R _d) to continue with Q _{pd} . The dependence of both (Q _{pd} /R _d and Q _{pd}) on different parameters, which characterize solar position and sky conditions, were considered together with other meteorological factors such as vapour pressure and dewpoint temperature (T _d). The main findings can be summarized as follows:

- 1. A mean value of 2.19 \pm 0.13 μ mol J⁻¹ was found for Q_{pd}/R_d with values varying between 1.86 and 2.48 μ mol J⁻¹.
- 308 2. Q_{pd}/R_d showed dependence on parameters that characterize sky conditions such as 309 clearness index (k_t) and diffuse fraction (k_d).
- 310 3. A model was proposed to estimate Q_{pd} , taking into account a previous model to estimate
- 311 the photosynthetic active radiation-flux density (Q_p) . This model uses the solar zenith
- 312 Angle (θ) and R_d as input data.
- 4. The model provided acceptable results, with a mean bias error varying between -0.3% and
- 8.8%; and the root mean square error (RMSE) varying between 9.6 and 20.4%.
- 5. This work suggests that this empirical model can be widely applied from available
- 316 measurements in most radiometric stations, with better accuracy than other empirical models.

318 **ACKNOWLEDGEMENTS:** This work was supported by the Andalusia Regional

- 319 Government project P12-RNM-2409, by the Spanish Ministry of Economy and
- 320 Competitiveness projects CGL2013-45410-R and CGL2016-81092-R, and by the European
- 321 Union's Horizon 2020 research and innovation programme project ACTRIS-2 (grant
- agreement No 654109). The authors would like to thank the Forestry and Forest Products 323Research Institute FluxNet Database, FFPRI http://www2.ffpri.affrc.go.jp/labs/flux/).
- 324

325 **REFERENCES**

- Akitsu, T., Nasahara, K.N., Hirose, Y., Ijima, O., Kume, A., 2017. Quantum sensors for
- 327 accurate and stable long-term photosynthetically active radiation observations. Agric. For.
- 328 Meteorol. 237-238, 171-183.

- Alados, I., Foyo-Moreno, I., Alados-Arboledas, L., 1996. Photosynthetically active radiation:
- measurements and modeling. Agric. For. Meteorol. 78, 121-131.
- Alados, I., Alados-Arboledas L., 1999. Direct and diffuse photosynthetically active radiation:
- measurements and modelling. Agric. For. Meteorol. 93, 27-38
- Alados, I., Olmo, F.J., Foyo-Moreno, I., Alados-Arboledas, L., 2000. Estimation of
- photosynthetically active radiation under cloudy conditions. Agric. For. Meteorol. 102, 39-
- 335 **5**0.
- Alados, I., Foyo-Moreno, I., Olmo, F.J., Alados-Arboledas, L., 2002. Improved estimation of
- diffuse photosynthetically active radiation using two spectral models. Agric. For. Meteorol.
- 338 101, 1-12.
- Batlles, F., Olmo, F., Alados-Arboledas, L., 1995. On shadowband correction methods for
 diffuse irradiance measurements. Solar Energy 54, 105-114
- 341 Dye, D., 2004. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically
- active radiation under diverse cloud conditions. J. Geophys. Res. 109, D10203
- 343 10.1029/2003JD004251
- Foyo-Moreno, I., Vida, J., Alados-Arboledas, L., 1998. A simple all weather model to
- estimate ultraviolet solar radiation (290-385nm). J. Apl. Metereol., 38, 1020–1026.
- Foyo-Moreno, I., Alados, I., Olmo, F,J,, Vida, J., Alados-Arboledas, L., 2001. On the use of a cloud modification factor for solar UV (290-385 nm) spectral range. Theor. Appl.
- 348 Climatol., 68, 41-50.
- ³⁴⁹ Foyo-Moreno, I., Alados, I., Olmo, F.J., Alados-Arboledas, L., 2003. The influence of
- cloudiness on UV global irradiance (295-385 nm). Agric. For. Meteorol. 120, 101-111.
- Foyo-Moreno, I., Alados, I., Alados-Arboledas, L., 2007. Adaptation of an empirical model
- for erythemal ultraviolet irradiance. Ann. Geophys., 25, 1–10.

- 353 Foyo-Moreno, I., Alados, I., Antón, M., Fernández-Gávez, J., Cazorla, A., Alados-Arboledas,
- L., 2014. Estimating aerosol characteristics from solar irradiance measurements at an urban
- location in southeastern Spain. J. Geophys. Res. doi: 10.1002/2013JD020599104
- Foyo-Moreno, I., Alados, I., Alados-Arboledas, L., 2017. A new conventional regression
- 357 model to estimate hourly photosynthetic photon flux density under all sky conditions. Int.
- 358 J. Climatol. doi: 10.1002/joc.5063
- Frouin, R., Pinker, R.T., 1995. Estimating photosynthetically active radiation (PAR) at the
- act is surface from satellite observations. Remote Sens Environ 51:98–107
- Gu, L., Fuentes, J.D., Shugart, H.H, Staebler, R. M., Black, T.A., 1999. Responses of net
- 362 ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North
- American deciduous forests. J. Geophys. Res., 104, 31 421–31 434
- Gu, L., Baldocchi, D., Verma, S.B., Black, T.A., Vesala, T., Falge, E.M., et al. 2002.
- 365 Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res,
- 366 107(D6). doi:10.1029/2001JD001242
- Gu, L.H., Baldocchi, D.D., Wofsy, S.C., et al., 2003. Response of a deciduous forest
- to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299(5615): 2035–2038.
- 369 He, X.Z., Zhou, T., Jia, G.S. et al., 2011. Modeled effects of changes in the amount and
- diffuse fraction of PAR on forest GPP. Journal of Natural Resources, 26(4): 619–634
- Hu, B., Wang, Y., Liu, G., 2007. Spatiotemporal characteristics of photosynthetically active
- radiation in China. J. Geophys. Res., 112, doi: 10.1029/2006JD007965.
- Hu, B., Wang, Y., Liu, G., 2010. Variation characteristics of ultraviolet radiation derived
- from measurement and reconstruction in Beijing, China, Tellus B 62, 100–108.
- Iqbal, M. 1983. An Introduction to Solar Radiation. Academic Press: London.
- Jacovides, C.P., Tymvios, F.S., Papaioannou, G., Asimakopoulos, D.N., Theofilou, K.M.,

- 2004. Ratio of PAR to broadband solar radiation measured in Cyprus, Agric. For. Meteor.,
- 378 121, 135-140.
- Jacovides, C.P., Tymvios, F.S., Asimakopoulos, V.D., Kaltsounides, N.A., 2007. The
- dependence of global and diffuse PAR radiation components on sky conditions at Athens,
- 381 Greece, Agric. For. Meteor., 143, 277-287.
- Jacovides, C.P., Boland, J., Asimakopoulos, D.N., Kaltsounides, N.A., 2010. Comparing
- 383 diffuse radiation models with one predictor for partitioning incident PAR radiation into its
- diffuse component in the eastern Mediterranean basin, Renew. Energy, 35, 1820-1827.
- Kanniah, K.D., Beringer, J., North, P., Hutley, L., 2012. Control of atmospheric particles on
- diffuse radiation and terrestrial plant productivity A review. Progr Phys Geogr, 36(2), 209-
- 387 237.
- Mercado, L.M., Bellouin, N., Sitch, S. et al., 2009. Impact of changes in diffuse radiation on
 the global land carbon sink. Nature, 458(7241): 1014–1017.
- 390 Min, Q., 2005. Impacts of aerosols and clouds on forest-atmosphere carbon exchange. J
- 391 Geophys Res110:D066203. doi:10.1029/2004JD004858.
- 392 Misson, L., Lunden, M., McKay, M., Goldstein, A.H., 2005. Atmospheric aerosol light
- 393 scattering and surface wetness influences the diurnal pattern of net ecosystem exchange in
- a semi-arid ponderosa pine plantation. Agric For Meteorol 129:60–83.
- ³⁹⁵ Perez, R., Ineichen, P., Seals, R., Michalsky, J.J., Stewart, R., 1990. Modelling daylight
- availability and irradiance components from direct and global irradiance. Solar Energy 44,
- 397 271-289.
- Reitan, C.H., 1963. Surface dewpoint and water vapour aloft. J. Appl. Meteorol., 2: 776-779.
- 399 Singh, J., Bhattacharya, B.K., Kumar, M., Mallick, K. 2013. Modelling monthly diffuse
- 400 solar radiation fraction and its validity over the Indian sub-tropics. Int. J. Climatol., 33, 77-

- 401 86.
- 400 Spitters, C.J.T., Toussaint, H.A.J.M., Goudriaan, J. 1986. Separating the diffuse and direct
- 401 component of global radiation and its implications for modelling canopy photosynthesis.
- 402 Agric For Meteorol, 38:217–29
- 403 Sun, J.S., Zhou, G.S., 2010. Review of advances in measurements and effects of diffuse
- radiation on terrestrial ecosystem productivity. Chinese Journal of Plant Ecology, 34(4):
- 405 452–461. (in Chinese).
- 407 Tang, W., Qin, J., Yang, K., Niu, X., Zhang, X., 2013. Reconstruction of daily
- 408 photosynthetically active radiation and its trend over China.J. Geophys. Res. Atm., 118,
- 409 13292-13302.
- 410 Udo, S., Aro, T., 1999. Global PAR related to global solar radiation for central Nigeria.
- 411 Agric. For. Meteorol. 97, 21–31, <u>http://dx.doi.org/10.1016/S0168-1923(99)55-6</u>.
- 412 Wang, L., Gong, W., Ma, Y., Hu, B., Zhang, M., 2014. Photosynthetically active radiation
- and its relationship with global solar radiation in Central China. Int. J. Biometorol., 58,
- 414 1265-1277.
- 415 Wang, L., Hu, B., Kisi, O., Zounemat-Kermani, M., Gong, W., 2017. Prediction of diffuse
- 416 photosynthetically active radiation using different soft computing tcheniques. Q. J. R.
- 417 Meteorol. Soc., doi: 10.1002/qj.3081.
- 418 Yu, X., Wu, Z., Jiang, W., Guo, X., 2015. Predicting daily photosynthetically active radiation
- from global solar radiation in the Contiguous United States. Energy Convers. Manage., 89,
- 420 71-82.
- 421 Yu, X., Guo, X., 2016. Hourly photosynthetically active radiation estimation in Midwestern
- 422 United States from artificial neural networks and conventional reression models. Int. J.
- 423 Biometorol., 60, 1247-1259.

- 424 Zhang, M., Yu, G.R., Zhang, L.M. et al., 2010. Impact of cloudiness on net ecosystem
- 425 exchange of carbon dioxide in different types of forest ecosystems in China.
- 426 Biogeosciences, 7(2): 711–722.
- 427 Zhang, M., Yu, G.R., Zhuang, J. et al., 2011. Effects of cloudiness change on net ecosystem
- 428 exchange, light use efficiency, and water use efficiency in typical ecosystems of China.
- 429 Agric.For.Meteorol.151(7),803–816.

Sites	T (°C)	TM (°C)	Tm (°C)	R (mm)	U (%)					
Granada, Spain	15.4	23.0	7.8	365	58					
(37.16° N, 3.6° W, 650 m a.s.l.)	(37.16° N, 3.6° W, 650 m a.s.l.)									
Almería, Spain	19.1	23.4	14.7	200	65					
(36.83° N, 2.41° W, 21 m a.s.l)										
Renon, Italy	4.1	18.0	5.2	1010						
(46.42° N, 11.28° E,1735 m a.s.l)										
432 Table 1: Description and climat	Table 1: Description and climatic data of study sites. T (yearly average temperature), TM									

 $433\;$ (yearly average of the maximum temperature), Tm (yearly average of the minimum

434 temperature), R (yearly average of precipitation), U (yearly average of relative humidity).

|--|

Sites	Years	Ν	kt	k	Qpd,ave (µmol	pd,ave (µmol a		R 2	MBE	RMSE
					$m^{-2}s^{-1}$)	$(\mu mol m^{-2}s^{-1})$			(%)	(%)
Granada	94-95	3448	0.54 ± 0.19	0.55±0.30	428	-30.8 ± 0.8	0.992 ± 0.002	0.99	-7.7	9.6
Almeria	93-95	5797	0.58 ± 0.18	0.50 ± 0.30	419	-19.5 ± 1.1	0.959 ± 0.002	0.96	-8.8	12.9
Renon	13-15	16980	0.45 ± 0.27	0.59 ± 0.35	296	-60.3 ±0.7	1.200 ± 0.002	0.95	-0.3	20.4

457 Table 2: Statistical results of the new empirical model to estimate Q_{pd} at each station. N (total number of observations). $Q_{pd,ave}$

458 (average values of Q_{pd}). Linear regression statistics: a (intercept), b (slope) and R^2 (correlation coefficient). MBE (Mean Bias Error).

459 RMSE (Root Mean Square Error).

Figure 1: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs. the cosine of solar zenith angle (cos θ). Small dots denote experimental data, black symbols represent mean values, and bars denote standard deviations for each of the intervals in cos θ .

473 Figure 2: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs.

474 broadband solar irradiance (R_s). Small dots denote experimental data, black symbols represent

475 mean values, and bars denote standard deviations for each of the intervals in R_s .

492 Figure 3: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs.

 $\label{eq:493} \quad \text{diffuse irradiance (R_d). Small dots denote experimental data, black symbols represent mean}$

494	values,	and	bars	denote	standard	deviations	for	each	of the	intervals	in	R _d .
-----	---------	-----	------	--------	----------	------------	-----	------	--------	-----------	----	------------------

511 Figure 4: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs.

512 clearness index (k_t). Small dots denote experimental data, black symbols represent mean

513 values, and bars denote standard deviations for each of the intervals in k_t .

Figure 5: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs. k_d. Small dots denote experimental data, black symbols represent mean values and bars denote standard deviations for each of the intervals in k_d.

Figure 6: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs. the dewpoint temperature (T_d) . Small dots denote experimental data, black symbols represent mean values, and bars denote standard deviations for each of the intervals in T_d .

561

562

563

Figure 7: Ratio of diffuse photosynthetic photon flux density to diffuse irradiance (Q_{pd}/R_d) vs. the partial vapour pressure (e). Small dots denote experimental data, black symbols represent mean values, and bars denote standard deviations for each of the intervals in e.

б

Figure 8: Diffuse fraction in the visible range (k_{dQp}) vs. clearness index in the visible range (k_{tQp}). Small dots denote experimental data. Dashed lines denote polynomial fitting (Jacovides et al. 2007). Solid lines denote our polynomial fitting.

Figure 9: Ratio of diffuse fraction in the visible range (k_{dQp}) and diffuse fraction in the shortwave broadband range (k_d) vs. clearness index (k_t) . Small dots denote experimental data, black symbols represent mean values, and bars denote standard deviations for each of the interval in k_t .

Figure 10: Diffuse photosynthetic photon flux density (Q_{pd}) vs. cosine of the solar zenith angle ($\cos \theta$). Dots represent experimental data.

Figure 11: Diffuse photosynthetic photon flux density (Q_{pd}) vs. R_d. Dots represent
experimental data.

Figure 12: Diffuse photosynthetic photon flux density (Q_{pd}) vs. k_t. Dots represent
experimental data.

Figure 13: Diffuse photosynthetic photon flux density (Q_{pd}) vs. k_d . Dots represent experimental data.

691 Figure 14 a: Scatter plot of estimated vs. measured values of photosynthetic photon flux

- 692 density (Q_{pd}) at Granada site.

Figure 14 b: Scatter plot of estimated vs. measured values of photosynthetic photon flux

 density (Q_{pd}) at Almeria site.

Figure 14c: Scatter plot of estimated vs. measured values of photosynthetic photon flux

729 density (Q_{pd}) at Renon site.