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Abstract 

The paper deals with theoretical study of deformation of a ferrogel filled by 

magnetizable particles united in the chain-like aggregates. The sample is placed in a 

magentic field parallel to the chains.  Uniaxil elongation of the sample along the field 

is studied.  Analyis shows that interaction of the particles in the chains and rupture of 

the chains by the elastic forces lead to non linear dependence of the macroscopical 

stress on the elongation strain. The theoretical results are in principle agreement with 

known experimental study of the ferrogels deformation.   

Key words: Ferrogels; Chains; Deformation  

1. Introduction  

 

Magnetic polymers, ferrogels and ferroelastomers,  consist of the nano-or micron sized magnetic 

particles imbedded in a polymer matrix. Combination of rich set of physical properties of the 

polymer materials with the high reaction on magnetic field makes these smart systems very 

attractive for many industrial and bio-medical applications [1].  

     One of the interesting, from the scientific point of view, and valuable, from the viewpoint of 

practical applications, features of ferrogels is their ability to change mechanical properties and 

behavior under the action of external magnetic field. Magnetic field induces either elongation or 

contraction of the composites in the field direction (see discussion of this problem in [1]) and 

significantly changes mechanical properties of these systems. These magnetomechanic effects 

are especially strong in the systems with internal heterogeneous structures (chains, columns, etc.) 

formed by the particles [2-4].  Usually these aggregates are created by using magnetic field, at 
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the stage of the polymer matrix curing, when it is liquid. Polymerization of the matrix fixes the 

internal structures in the composites (see, for example, [2,4-8]).  

    For example, experiments [2] demonstrate significant increase, under the field action, of the 

elastic stress 𝜎  at a given uniaxial strain ε  in magnetic elastomers   with the chain-like 

aggregates. The dependence of σ on ε,  measured in [2], was non linear, with especially fast 

increase of σ at small ε. Effect of the field H on the stress in the same systems with 

homogeneous and isotropic spatial distribution of the particles was rather negligible; in the 

isotropic composites [2] the stress linearly depended on the strain. It is interesting to note that 

non monotonic, N-like shape of dependence of the difference δσ=σ(H)-σ(0) on the tensile strain 

ε  in the composites with the chains was detected in [2].  

      The non linear relation between σ and ε  in soft ferrogels, placed in magnetic field, has been 

observed in experiments [3]. This non-linearity was induced by formation, under the field action, 

of heterogeneous chain-like structures in the gel. Without magnetic field the composites 

demonstrated the linear dependence of σ on ε . Under the action of quite moderate magnetic field 

(1-3 kOe) the elastic stress increased, at least, several times as compared with the case of zero 

field.   

    The non-linear relation between the shear stress and shear strain in magnetic elastomers with 

the anisotropic structures has been observed in experiments [4].  

    Therefore one can conclude that appearance of the anisotropic heterogeneous aggregates in 

magnetic polymers significantly enhances mechanical properties of these composites and 

produces the non linear dependence of the mechanical stress σ  on the deformation ε.  

           The aim of this work is theoretical study of the stress-strain dependence in ferrogels with 

the chain-like aggregates. To be specific, we focus on the modeling of the uniaxial deformation 

of the sample in the chains direction. We suppose that the chains have been created, as in [2,4-8], 

by the application of external magnetic field at the stage of the gel curing. That is why the chains 

have the same direction, parallel to the field of polymerization. As in experiments [2,3], the 

actual field H is imposed in the direction of the chains.  

 

2. Mathematical model and results 

The rheological properties of ferrogels depend on the properties of carrier polymer matrix;  

on concentration of the imbedded particles; on the law of their magnetization and magnetic 

 interaction; on the length of the chains and details of the particles dispositions in these aggregates. 

 For the maximal simplification of the physical analysis and transparency  

of the mathematical part of the problem, we will use the following approximations.   
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      First, we will estimate magnetic force of the particle  interaction in the dipole-dipole approximation.  

It is supposed that magnetic moment of the particle is not changed by the chain deformation.  

   Note that the similar approximation of the dipole-dipole interaction between  

the particles in the chains has been used successfully in the theory of rheological properties of  

suspensions [9,10] and polymer composites [11-13] of magnetizable particles. Possible ways 

of generalization of this approximation are discussed in the Conclusion.   

     Secondly, we will use the linear stress-strain relation for the polymer matrix. Physically this 

means that only small deformations of the matrix are considered. It should be noted the 

mechanical non-linear effects in the composites with the chains have been detected in the region 

of ε corresponding to the linear law of deformation of the pure matrix [2,3]. We will neglect 

fluctuations of the chains shape and suppose that centers of all particles in the chain are situated 

on a straight line parallel to the applied field H; all particles in the chain are in physical contacts 

with their nearest neighbors.  This means that the gel was cured under the action of very strong 

magnetic field.  We will suppose also that all chains consist of an identical number of particles; 

this number is determined by the features of the matrix curing. The length of the chain, like in 

experiments [2-4], is less than the size of the composite, i.e. the chains do not percolate the 

sample. The infinite chains, percolating the sample, are considered in ref.[14].  

   Diameter of the particle is supposed much more than the characteristic size of the gel cell, 

therefore, with respect to the particles, the gel can be considered as a continuous media. Taking 

into account that the typical size of the cells in synthetic gels is about several nanometers, for the 

micron-sized magnetizable particles this condition is well justified.  Next, we will neglect any 

interactions between the chains. This approximation is based on the results of [15] which show 

that, in formation of macroscopic properties of the composites, effects inside the chains play 

dominate role as compared with effects of the interchain interaction.   The considered model of 

the chain is illustrated in Fig.1.  

     We will study deformation of a single chain under the assumption that the composite 

experiences uniaxial deformation in the chain direction.  For definiteness we will suppose that 

the chain consists of an odd number of the particle. Obviously, this assumption is not of principle 

for the physical analysis.  

     We will denote the mean vector of a material point displacement in the composite as u.   
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                                                     Fig.1. Illustration of the chain model 
 

 

In the coordinate system, shown in Fig.1, the vector u of the mean composite displacement (i.e. 

displacement at the infinitive distance from the chain), can be presented as: uz=εz. The other 

components of u do not play a role in the framework of this model that is why we omit them 

here.  

     Let the total number of the particles in the chain be 2N+1;  n be number of a particle in the 

chain, starting from the central one, which number is 0. In the framework of the used 

approximations, equations of stationary displacement of the particles in the chain can be 

presented in the following form:  

 

𝛽(𝜀𝑧𝑛 − 𝑢𝑛) + 𝜅 � 1
(𝑑+𝑢𝑛+1−𝑢𝑛)4  −

1
(𝑑+𝑢𝑛−𝑢𝑛−1)4   � + 𝑓𝑛+1,𝑛  − 𝑓𝑛,𝑛−1 = 0 , -N<n<N     (1)                                          

𝛽(𝜀𝑧𝑁 − 𝑢𝑁) − 𝜅 � 1
(𝑑+𝑢𝑁−𝑢𝑁−1)4   � − 𝑓𝑁,𝑁−1   = 0, 

𝛽(𝜀𝑧−𝑁 − 𝑢−𝑁) − 𝜅 �
1

(𝑑 + 𝑢−𝑁 − 𝑢−𝑁+1)4   � − 𝑓−𝑁,−𝑁+1   = 0 

𝑢0 = 0 

𝜅 = 𝜇0
3𝑚2

2𝜋
 

 

Here 𝑧𝑛 = 𝑛𝑑  is the initial, before deformation, coordinate of the n-th particle, d is the particle 

diameter,  un is the vector of displacement of the n-th particle,  m  is the particle magnetic 

moment, fn.l is the force of elastic interaction between the n-th and l-th  particles, µ0 is the 

vacuum magnetic permeability. The first terms in the left side of equations (1) mean the elastic 

forces, which act on the n-th particle, due to the fact that its displacement un  is not equal to the 
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displacement 𝑢 = 𝜀𝑧𝑛 of the matrix far from the chain at the level of the particle. This force is 

similar to the classical Stocks force, which acts on a particle in a Newtonian liquid when velocity 

of the particle differs from the liquid velocity. In the order of magnitude 𝛽~𝐺0𝑑,  where G0  is 

elastic modulus of the matrix.  The second terms in (1) present the difference of the forces of 

magnetic attraction of the n-th particle to the (n+1)-th and (n-1)-th ones respectively.    

     Obviously, the function fnl depends on the relative disposition of the particles. That is why we 

can present: 

 

𝑓𝑙+1,𝑙 = 𝑓(𝑢𝑙+1 − 𝑢𝑙)                                                                                                              (2)                                    
 

We determine the function f  by using the linear law of elasticity for the situation when the 

distance r between the particles centers is more than the particle diameter d and taking into 

account strong repulsion, which resists to the particles interpenetration when r<d: 

 

𝑓(𝑥) = 𝐺1𝑥,𝑤ℎ𝑒𝑛 𝑥 > 0
−∞,𝑤ℎ𝑒𝑛 𝑥 < 0                                                                                                  (3)                        

 

Parameter G1  is the elastic modulus of the polymer in the region close to the particles. Generally 

speaking, due to change of the polymer conformation near the particles, G1  can differ from the 

modulus G0  of the pure matrix.  

The total stress in the composite can be presented as: 

 

𝜎 = 𝐺0𝜀 + 𝜎𝑎                                                                                                                       (4)                  

 

where 𝜎𝑎    is the stress induced by the aggregates.  By using the results [16,17] for the stress in a 

system of chain-like polymer macromolecules, we get the following estimate:  

 

𝜎𝑎 = 2 𝑁𝑐ℎ
𝑉  
∑ 𝐹𝑛(𝑧𝑛+1 − 𝑧𝑛)𝑁−1
𝑛=0                                                                                             (5)                                   

 

where Fn is a force, the n+1-th particle acts on the n-th one;  Nch is number of the chain in the 

composite, V is the composite volume. Note that the polymer chains flexibility does not affect 

the relation (5).  

    By using eq.(1) we can present (5) as: 
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𝜎𝑎 = 2𝜑 1
(2𝑁+1)𝑣

∑ � 𝜅
(𝑑+𝑢𝑛+1−𝑢𝑛)4  + 𝑓𝑛+1,𝑛  � (𝑑 + 𝑢𝑛+1 − 𝑢𝑛)𝑁−1

𝑛=0                                   (6)                                                                                     

Here ϕ is volume concentration of the particles in the composite,    𝑣  is the particle volume.  

    This is convenient to introduce the dimensionless stress Σ=σ/G0, displacement Un=un/d  ,  

parameter of the interparticle magnetic interaction 𝛫 = 6𝜅
𝜋𝑑6𝐺0

  and the elastic force 

 Ψn+1,n = 6𝑓𝑛+1,𝑛/(𝜋𝑑2𝐺0) .  In these notations we get from (4) and (6): 

 

Σ = 𝜀 + 2 𝜑
(2𝑁+1)

∑ � 𝛫
(1+𝑈𝑛+1−𝑈𝑛)4  + Ψ𝑛+1,𝑛  � (1 + 𝑈𝑛+1 − 𝑈𝑛) 𝑁−1

𝑛=0                                     (7)                                                                       

 

The dimensionless displacement Un  can be found from solution of the system (1). 

     Some results of calculations of the dimensionless stress Σ  are shown in Fig.2. First, in 

magnetic field  (𝐾 ≠ 0)    the stress nonlinearly depends on the strain, in spite of the linear law 

of deformation assumed for the polymer matrix. The finite non zero stress takes place in the non-

deformed sample (ε=0) placed in external magnetic field. The physical cause of these effects is 

the attraction of the magnetizable particles in the chain and appearance (increase) of the 

interparticle gaps by the action of the elastic forces in the elongated sample. Of course, the 

existence of the initial (at 𝜀 = 0)  stress can be interpreted also as appearance of a finite stress 

jump at the infinitesimal elongation of the sample. It should be noted that the non-linear 

dependence of the stress on the tensile strain, similar to that described by the curve 1, has been 

detected in experiments [2,3]. The finite stress at ε=0 was observed in [2].  
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Fig.2. The dimensionless stress Σ(Κ) (a) and the stress difference Σ(𝐾) − Σ(0)   (b)   vs. the 

elongation strain ε when N=8, i.e. number of particles in the chain 2N+1=17. Parameters of the 

system: G1=G0; β=2G0; ϕ=0.15. a) lines 1 and 2: Κ=0.25  and 0 respectively. 

 

 

      In order to estimate effect of the magnetic field on the stress, we have calculates the 

difference  𝛿𝛴 = 𝛴(𝐾) − 𝛴(0)  between the stress in the magnetic field (𝐾 ≠ 0) and the stress 

without the field (𝐾 = 0). Our results demonstrate non-monotonic dependence of 𝛿Σ on the 

elongation strain 𝜀.   The similar N-like shape of the dependence of  𝛿Σ    on ε  has been observed 

experimentally and explained in [2] by the existence of the chains of various lengths in the 

composite and by the step-wise rupture of the different chains at the different magnitudes of the 

strain. The present analysis shows that the non-linear effects can be induced by the continuous 

deformation of the identical chains.  
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Fig.3. Same as in Fig.2 for  Κ=1 

 

Results of calculations for the same system, as in Fig.2, but for higher dimensionless magnetic 

field K are shown in Fig.3. They indicate non monotonic, with maximum, dependence of the 

stress on the strain. The physical cause of this non monotonic behavior is that the total stress 

presents a combination of the elastic forces in the deformed matrix and the forces of magnetic 

interaction between the particles. The last forces fast decrease while increasing of the strain ε . 

This leads to the appearance of the decreasing part of the rheogram at strong enough magnetic 

fields. It should be noted that the similar non monotonic dependence of the mechanic stress on 

the relative elongation has been detected in computer simulations [18].  

     Comparison of the calculations of the stress σ with the experiments [2], preformed with the 

carbonyl iron particles is presented in Fig.4. Parameter K is fitted as K=0.5; this corresponds to 

the particle magnetization  𝑀 = 400𝑘𝐴/𝑚 .    This means that  the iron particles are non linearly 

magnetized,  however not magnetically saturated.  It was taken into account that the 

conformation of the macromolecules, as well the field of the deformations [19] in the thin gaps 

between the nearest particles in the chains, can differ significantly from that in the bulk of the 

matrix. That is why the thin interparticle layers can be more rigid than the pure matrix.   
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Fig.4. Dimensional stress σ calculated according to the present model (solid line) and results of 

measurements of [2] vs the sample elongation. Parameters of the system: the particles consist of 

the carbonyl iron; the particle diameter d=2µm; magnetic field inside the sample H=123kA/m; 

volume concentration of the particles ϕ=0.15; elastic modulus of the matrix G0 =0.2MPa; 

𝐺1 = 15𝐺0 The number of particles in the chains is the same as in Figs.2,3.   

 

     The theoretical results are in reasonable agreement with the experimental ones. That indicates 

that the model is adequate, at least, in its main points.  Some quantitative disagreement can be 

explained by the following factors. First, the presence of the hard particles in the relatively soft 

matrix leads to stiffness of the composite even without the magnetic interaction between the 

particles (see, for example, [19]). This stiffness takes place because of the local deformation of 

the matrix near the particles and appearance of an additional local elastic stress. Unfortunately, a 

theory of elastic properties of composites with the hard spheres, united in chain-like structures, 

has not been developed yet. Those are why here we restrict ourselves by the analysis of effects of 

magnetic interaction between the particles and omit the problem of the composite stiffness 

because of the mechanic effects in the matrix. Next, the used simple dipole-dipole approximation 

underestimates the force of magnetic interaction between the closely situated particles [20]. 

However even this simplest approach allows us to reproduce the main physical features of the 

mechanical properties of the polymer composites with the chain-like aggregates.    
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Conclusion.  

      We propose a simple mathematical model of the uniaxial elongation  of a ferrogels with 

chain-like aggregates placed in magnetic field parallel to the chains. In spite of simplicity, this 

model describes experimentally [2,3] observed features of mechanical behavior of the system at 

their small elongation in the field direction: non linear dependence of the stress 𝜎 on the 

elongation strain ε; finite magnitude of the initial (𝜀 → 0) stress in the ferrogels placed in 

magnetic field; non monotonic dependence of the difference 𝜎(𝐻) − 𝜎(0) on the strain 𝜀  , as 

well as the N-shaped dependence of  𝜎    on 𝜀   , detected in computer simulations [18].  

Generalization of the model can be performed in the following directions. First, one can use 

more realistic [20-22], than the dipole-dipole, approximations for the magnetic interaction 

between the particles. These approaches take into account multipolar interactions as well as non-

linear mutual magnetization of the nearest particles in the chains. This generalization does not 

lead to principal problems, but makes the calculations much more cumbersome than those in the 

present simple model. Effects of the composite stiffness due to the rigid particles, united in the 

chains; fluctuations of the chain shape as well as their magnetic and elastic interaction require a 

special study.  Since the present simple model reproduces the main features of the 

experimentally observed mechanical effects, it can be considered as a robust basement for the 

further detailed studies of these phenomena.  
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