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Synopsis 

A theoretical model of magnetoviscous effect in a suspension of non-Brownian linearly 

magnetizable particles is suggested. A simple shear flow in the presence of an external magnetic 

field aligned with the velocity gradient is considered. Under the action of the applied field, the 

particles are supposed to form dense highly elongated drop-like aggregates. Two different 

scenarios of the aggregates’ destruction under shearing forces are considered, namely a “bulk” 

destruction of aggregates into pieces, and an “erosive” destruction connected to the rupture of 

individual particles from the aggregate surface. Both models are based on a balance of forces 

acting either on the whole aggregate or on individual particles. The two approaches lead to 

qualitatively different Mason number (Ma) behaviors of the magnetic suspensions: the 

suspension viscosity scales as either Ma-2/3 for the bulk destruction of aggregates or Ma-4/5 for the 

erosive destruction. In any case, we do not recover Bingham behavior (Ma-1) often predicted by 

chain models of the magneto- or electrorheology. Our theoretical results are discussed in view of 

comparison with existing theories and experimental results in the wide range of Mason numbers. 

 

 

 



 2 

I. Introduction 

Suspension of magnetizable particles in a liquid, so-called magnetorheological 

suspensions (MRS), attract considerable interest of investigators and engineers due to a rich set 

of physical properties which find broad applications in many modern technologies. One of the 

most interesting features of these systems is their ability to change, up to several orders of 

magnitude, their rheological properties under the action of quite moderate magnetic fields 

[Shulman and Kordonski (1982), Ginder (1998), Bossis et al. (2002), Odenbach (2002), Bayat et 

al. (2009), de Vicente et al. (2011)]. 

The physical cause of the strong rheological effects is assembling of the particles in 

heterogeneous structures strongly aligned along the applied field. A number of different 

structures has been observed and/or predicted in magnetic suspensions. In the quiescent state, a 

hexagonal pattern of column-like aggregates is most often observed in the MRS sandwiched 

between two parallel plates and subjected to a stationary magnetic field perpendicular to the 

plates [Liu et al. (1995)]. An arrangement of particles inside the columns into a body-centered-

tetragonal (BCT) lattice has been proved to be the most favorable from the energy viewpoint 

[Tao and Sun (1991)]. However, smallness of thermal fluctuations, non-negligible gravitational 

forces and eventual solid friction between particles may hinder thermodynamic equilibrium 

states and lead to less organized structures, such as branched chains [Klingenberg et al. (1991)], 

zigzag chains [Bossis et al. (1997)] or irregularly shaped aggregates [Bonnecaze and Brady 

(1990)]. In flowing suspensions these structures may become more complicated but the 

suspension still preserves its high anisotropy with respect to the field and the flow orientation so 

that, at low-to-moderate concentrations, the structure can still be modeled as an ensemble of 

parallel chains [Shulman et al. (1982), Martin and Anderson (1996)] or dense drop-like [Halsey 

et al. (1992), Shulman et al. (1984)] or cylindrical [Gomez-Ramirez et al. (2011)] aggregates. 

Note that regular sheet-like patterns have been observed in suspensions of smaller magnetic 

polystyrene particles undergoing a week Brownian motion, both at steady [Volkova et al. (1999)] 
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and oscillatory shear [Cutillas et al. (1998)]. However, to our knowledge, such shear-banding has 

not been reported for conventional MRS composed of polydisperse large iron particles. More 

recently, honeycomb and foam-like structures were generated with the help of triaxial magnetic 

fields in view of application to composite materials [Martin et al. (2004)]. 

Under shear flow, the field-induced particle structures enhance the suspension stress level 

and often lead to a Bingham like rheological behavior:  

a0                                                                                                                                (1) 

Here and below  is the macroscopic (measured) stress in the suspension, 0 is the viscosity of 

the carrier liquid,  is the macroscopic shear rate, a is the stress produced by the aggregates. 

The relation (1) has been derived mathematically strictly (see, for example [Batchelor (a) (1970), 

Pokrovskii (1978)]) for dilute suspensions where the hydrodynamic interaction between 

aggregates and between separated particles is negligible. For systems where this interaction is 

significant, the high-shear viscosity, equal to the viscosity of the suspension of non-aggregated 

particles, can be used instead of 0 [Berli and de Vicente (2012), Marshal et. al. (1989)]. Below, 

for maximal simplification of the mathematical part of the work, we will neglect any interaction 

between aggregates and will use relation (1).  

From the scaling arguments, the only dimensional groups that can constitute the 

aggregate stress of non-Brownian suspensions are either the fluid stress 0  or the magnetostatic 

energy density, 2
0H , or their combination, the simplest of which is the power law: 

2
0

0 0

a Haa 0

00

, with 0 being the magnetic permeability of vacuum, H – the macroscopic 

magnetic field inside the suspension and  - a real number. Existing experimental data confirm 

this scaling but give rather dispersed values of the exponent , varying in the range 0.7< <0.95, 

depending on the considered system (electrorheological fluids [Halsey et al. (1992)], MRS 

[Volkova et al. (2000), Klingenberg et al. (2007)], inverse ferrofluids [de Gans et al. (1999), 

Ramos et al. (2011)]).
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From the theoretical point of view, the aggregate stress a is determined by the 

concentration, size and shape of the aggregates. In their turn, in non-Brownian suspensions, these 

magnitudes are determined by the combination of the force of magnetic attraction between the 

particles, by the hydrodynamic forces which destroy the aggregates, and, eventually by the 

capillary forces tending to minimize the aggregate surface, thus contracting the aggregates.  

In what follows, we shall briefly review the MRS rheological behavior predicted by the 

two most popular concepts of chain-like and drop-like aggregates, and then cite some other 

theoretical approaches. Theoretically, the effect of the chains on the stationary viscous properties 

of MRS with non-Brownian magnetizable particles has been studied by Shulman and Kordonski 

(1982) and, in details, by Martin and Anderson (1996). In the model of Martin and Anderson 

(1996), the stress a does not depend on the shear rate  and, under the assumption of the linear 

magnetization of the particles, a is proportional to 2
0H . The independence of the aggregate 

stress on the shear rate can be briefly explained in the following manner. The increasing shear 

flow progressively destroys the particle chains such that their length (or aspect ratio r) decreases 

with the shear rate as 1/2r 1/2 . The hydrodynamic stress generated on chains is proportional to 

the fluid stress 0  times the aspect ratio squared: 2
0a r2r . Therefore, the shear rate works 

out from the aggregate stress in the model of Martin and Anderson (1996) and gives rise to the 

dynamic yield stress. Some modifications to this approach can be found elsewhere [see, for 

example, de Gans et al. (1999), Volkova et al. (2000)]. Generalization of the chain model to the 

systems with the Brownian magnetizable particles has been done by Martin (2000) and Zubarev 

et al. (2007). It was shown that the Brownian effects lead to an increase of the stress a with . 

However, for typical magnetic suspensions, composed of micron-sized particles, the energy of 

magnetic interaction between particles appears to be significantly larger than the thermal energy 

kT at magnetic fields as low as 1 kA/m. Therefore, Brownian effects can be ignored. The effect 

of the bulk “drops”, consisting of a very large number of non-Brownian particles, has been 
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studied by Halsey et al. (1992), Shulman et al. (1984), Kordonsky et al. (1990). The model of 

Halsey et al. (1992) is based on finding of extremum of the magnetic (electrical) free energy of a 

magnetizable (polarizable) ellipsoidal drop tilted with respect to the applied field. For the highly 

elongated drops the results lead to the following scaling relation 2 2/3 1/3
0 0( ) ( )a H 1/3) . It 

should be noted that the approach of the model of Halsey et al. (1992) does not take into account 

any mechanisms of the drop destruction by the action of the hydrodynamic viscous forces. 

Analysis shows that account of these mechanisms is principally important for development of a 

physically correct theory of rheological properties of suspensions with the heterogeneous 

aggregates. 

The rupture of the particles from the surface of the “drop” by the viscous forces has been 

considered by Shulman et al (1984), Kordonsky et al. (1990). This model leads to the relation 

2
0a H ; the stress a does not depend on the shear rate  similarly to the chain model of 

Martin and Anderson (1996). The model of Shulman et al. (1984) and of Kordonsky et al. (1990) 

is often used for the interpretation of rheological effects in magnetic suspensions (see overview 

of Bossis et al. (2002)). However, this model contains a parameter  (the thickness of the gap 

between neighboring particles in the aggregates) which cannot be determined theoretically; it is 

considered as an empirically adjustable parameter. Strictly speaking, the gap thickness  can 

depend both on the field H and the shear rate , however in the model of Shulman et al (1984) 

and Kordonsky et al. (1990), the thickness  is considered as a constant. Analysis shows that this 

simplification plays a principle important role for the final results of the model. If we take into 

account a dependence of  on  and H, the stress a will depend on , i.e. the main result that 

consta  may be changed qualitatively. More recently, Gomez-Ramirez et al. (2011) have 

extended the Shulman’s et al. model to magnetic fiber suspensions assuming aggregates of 

cylindrical shape and considering the aggregate break-up in its middle plane instead of rupture of 

individual particles from the aggregate surface. This model gave the same Bingham behavior 
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2
0a H  but, when applied to a suspension of spherical particles, it under-predicted 

significantly the yield stress value. 

An alternative particle-level approach was developed by Baxter-Drayton and Brady 

(1996) who related the escape time (required for particles trapped into a cage formed by their 

close neighbors to jump from cage to cage) to the suspension stress and shear rate. This theory 

gives a more sophisticated scaling for the aggregate stress but the results can be successfully 

fitted to the power-law scaling with the exponent  varying between 0.9 and 1 at the dipolar 

coupling parameter (the ratio of magnetic-to-thermal energy) 2.5< <17. Unfortunately, the 

theory invokes an adjustable parameter and the results for higher values of  (typically 103-106 

for conventional MRS) have not been reported. Nevertheless, Stokesian dynamics simulations of 

the same authors confirm this scaling for 102< <1012. More recently, a structural viscosity model 

has been proposed by Berli and de Vicente (2012) based on the balance between build up 

(magnetic field-induced clustering) and breakdown (shear-induced breakup) of particle 

aggregates. This theory predicts a shear-thinning behavior with a low and a high shear 

Newtonian plateaus and an intermediate region fitted to the power-law trend with the exponent  

lower than unity and depending on the ratio of high-shear-to-low-shear viscosity. This model 

may perfectly describe different experimental data at the expense of two adjustable parameters.  

Summarizing, one can note that, in spite of the long time since the beginning of the 

theoretical study of the rheological properties of magneto- and electrorheological fluids, a 

satisfactory theory based on correct physical considerations, free of adjustable parameters and, at 

the same time, giving a satisfactory agreement with experiments, has not yet been developed. In 

the present paper, we present a model of the rheological properties of a suspension of 

magnetizable particles united in bulk drop-like aggregates. The model is based on the analysis of 

hydrodynamic and magnetic forces acting on the aggregates and does not use any adjustable 

parameter. We also compare our theoretical results with the experimental ones found in literature 

and with our own experimental results. 
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II. Theoretical model and main approximations 

A. Torque equilibrium 

We consider a suspension, consisting of linearly magnetizable spherical particles. The typical 

size of the particles in modern MRS is about one micron. For particles of this size the Brownian 

effects are very weak, that is why we will neglect them. We will suppose that the particles are 

gathered in dense highly elongated “drops”, considered as prolate ellipsoids of revolution with a 

major semi-axis a and a minor semi-axis b (Fig.1). Each drop consists of a very large number of 

particles. For maximal simplification of calculations, we restrict ourselves by the consideration 

of suspensions with highly elongated drops, in a similar way as in the works of Halsey et al. 

(1992), Shulman et al. (1984), Kordonsky et al. (1990). 

The macroscopic stress a  is determined by the volume concentration  of the drops in 

the suspension, by the angle  of the drop deviation from the applied field H and by the aspect 

ratio r=a/b (see, for example, Halsey et al. (1992), Shulman et al. (1984), Kordonsky et al. 

(1990)).  

 

Fig.1. Sketch of the drop-like aggregate subjected to the shear and magnetic fields. 

 

The volume concentration of drop-like aggregates in the suspension can be estimated from the 

obvious relation: 
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a

0  

where 0  is the total volume concentration of the particles in the suspension, a  is the 

concentration of the particles inside the drop. Since the energy of magnetic attraction between 

the particles in modern MRS is as a rule several orders of magnitude more than the thermal 

energy kT [Bossis et al. (2002)], the concentration a  inside the drop is very close to the 

concentration of the maximal packing. Therefore we can use the estimate 0.64a  for the 

random close packing limit.  

The angle   is determined by the balance between the magnetic and hydrodynamic 

torques, acting on the drop, which in the limit of highly elongated (r>>1) and non-rotating 

aggregates reads [Halsey et al. (1992), Shulman et al. (1984), Kordonsky et al. (1990)]: 

2 2
2 2

0 0
1 sin 2 2 cos
2 2 ln

rV H V
rln r

2
2r 2cos

l
,       (2) 

giving the following expression for the aggregate inclination angle :

2

2

2 2
tan

ln
rMa

r
                                                                                                     (3) 

Here  and V are the magnetic susceptibility and the volume of the drop, respectively, and 

2
0 0/( )Ma H 2

0/( )2
0/( 0/( 0  is the Mason number proportional to the ratio of the hydrodynamic-to-

magnetic forces acting on the aggregates. Note that the Mason number could also be defined 

through either suspension magnetization or particle magnetization, M, instead of the magnetic 

field H [Klingenberg et al. (2007)]. The definition Ma(M) allows a better representation of 

experimental results in the broad range of the magnetic fields. However, in the present case of 

the linear magnetization law, M H , the definition Ma(H) is equivalent to the Klingenberg’s 

definition Ma(M) and seems to be more convenient for direct comparison with experiments 

because it does not require additional measurements of the suspension magnetic susceptibility. 
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The drops do not flip under the shear flow until a critical Mason number, Mac, which can 

be estimated on the basis of the more general approach of Okagawa et al. (1974) who have 

considered the motion of an ellipsoidal particle under shear and electric fields. This theory gives 

23 ln /(8 (2 ))cMa r r , whose value is estimated to be of the order of unity in our model 

conditions. Since our theory is applied to extremely low Mason numbers, the non-flipping 

condition, cMa Ma  is automatically satisfied. 

The aggregate volume V and aspect ratio r are defined by a condition of mechanical 

stability of the aggregates. It is clear that the hydrodynamic forces tend to break the aggregates, 

while the magnetic and the surface ones tend to keep them intact. Two possible mechanisms are 

expected to govern this force balance. On the one hand, the whole aggregate may become 

unstable at some critical volume, Vc, when the tensile force acting on the aggregate is not 

counterbalanced any more by the compressive force. On the other hand, the aggregate growth is 

limited by the balance between the erosive hydrodynamic and adhesive magnetic forces acting 

on particles situated on the aggregate surface. Both mechanisms lead to the aggregate 

destruction. The former one will be hereinafter called the “bulk destruction mechanism”, while 

the latter one will be referred to as the “erosive destruction mechanism”. These two mechanisms 

are considered in details in the next two subsections, where the aggregate aspect ratio and 

volume are estimated. 

B. Force equilibrium: bulk destruction mechanism 

We will take into account that the angle  for the highly elongated drops is small (it will 

be justified below), that is why we will use the estimate: ,sintan  and .1cos  In the 

frame of the bulk destruction mechanism, we will ignore the behavior of the magnetic particles 

on the aggregate surface. The balance between the stretching and contracting forces will 

therefore be applied to the whole aggregate. The total force f, which tends to deform the drop, 

consists of the hydrodynamic force fh and the potential force fp. In its turn, the last force consists 
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of the force fm of the demagnetizing field of the drop (this force, like fh, tends to elongate the 

drop) and the force f  of the surface tension, which tends to transform the drop into a sphere. 

The hydrodynamic force can be deduced from Batchelor’s slender body theory [Batchelor 

(1970)], as: 

2 2

0 0sin cos
ln lnh

a af
r r

2

0ln
a
rln 0sin cos aiisin cos                                                                                     (4) 

Here a is the major semi-axis of the drop. For the further calculations it will be 

convenient to express a through the drop volume V and the aspect ratio r. One can easily show 

that, for the ellipsoidal drop, these three magnitudes are related by the following formula:  

1/3
2/33

4
Va r                                                                                                                    (5) 

Substituting (5) into (4), we get: 

0

3/43/2

ln4
3

r
rVfh                                                                                                     (6) 

The potential force fp can be calculated using the following relation: 

1 1
2 2p V V V

F F F rf
l a r a

                                                                                (7) 

Here F is the drop free energy, l=2a is the length of the drop major axis. The free energy can be 

presented as: 

FFF m                                                                                                                        (8) 

where Fm is the free energy of the drop interaction with the field H, F  is the free energy of the 

drop surface tension. 

In the framework of the approximation <<1, r>>1, we get the following expressions for the 

magnetic and surface energies (see, for example, Landau and Lifshitz (1960); Zubarev and 

Ivanov (1998)): 

rr
VHFm ln12 2

20                                                                                                       (9) 
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3/13/2
3/2

2

4
3 rVSF ss                                                                                              (10) 

Here s is the coefficient of the surface tension, S is the surface area of an elongated ellipsoid 

with volume V and aspect ratio r. The well known form of S as function of V and r (see, for 

example, Korn and Korn (1968)) is used here in the limiting case r>>1.  

The surface tension coefficient is typically estimated as the difference between the energy 

of interactions between neighboring particles in the bulk of the aggregate and on the aggregate 

surface per unit surface [Cutillas et al. (1998), Iskakova et al., (2006)]. Since we consider only 

magnetic interactions between particles, the interaction energy scales as 2 3
0M R  which gives 

the following scaling for the surface tension:  

2 2 2
0 0s M R H R                                                                                                           (11) 

where R is a length-scale of the order of magnitude of the particle size and p is the particle 

magnetic susceptibility. In a real situation, the surface tension appears to depend on the 

orientation of the magnetic field with respect to the aggregate surface [Lobkovski and Halsey 

(1995), Cebers (2002)]. Such anisotropy leads to surface instability in the case of concentrated 

ferrofluid droplets, which appear as a result of phase separation in a magnetic colloid [Promislow 

and Gast (1997)]. We expect that these effects do not change the qualitative behavior of MRS 

and we neglect them at the present approximation.  

Combining Eqs. (4)-(11), after calculations one can get the following expression for the 

total tensile force acting on the drop: 

3/12
0

3/1
0

3/43/2
3/82

0
3/2

ln4
3ln rHV

r
rrrHVf                                       (12) 

where ,
3

4
4
3 2

3/1

 and 
1/ 32

23
4 4

R . 

Schematically the dependence of the force f on the aspect ratio r is shown in Fig.2. 
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Fig.2. The tensile force f (in arbitrary units) vs. the drop aspect ratio r. The meaning of parameters Vc and rc is 

explained in the text. 

 

The negative part of f corresponds to contraction of the drop, positive ones – to its elongation. 

The points r1 and r2 are stationary (with respect to the drop elongation) magnitudes of the aspect 

ratio r of a drop with a given volume V. The ratio r1 corresponds to a stable point of the drop 

deformation, r2 – to an unstable point. If V<Vc, the drop has a stable aspect ratio r1 and can grow 

due to the adsorption of single particles, amalgamation with other drops, etc. If the volume V is 

larger than the volume Vc, the force f is positive for all the values of r. This means that the 

elongating forces dominate the surface tension force and one can expect the stretching of the 

drop till its break somewhere near the drop middle plane. The growth of the drop volume will 

stop when V achieves Vc. Thus, the volume Vc and the aspect ratio rc of the stable drop are 

determined as a solution of the system of equations: 

0),( rVf ,  ( , ) 0V

f V r
r

                                                                                                 (13) 

To close the problem, one should take into account the dependence (3) of the angle  on the 

aspect ratio r, such that the system (13) takes the final form as follows: 
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2 / 3 10 / 3
2 / 3 2 8 / 3 1/ 3 2 1/ 3

0 0 02 2

2(2 ) 3ln 0
4 ln

rV H r r Ma V H r
r

1/ 31/ 31/ 31/ 31/ 3   (14a) 

2 / 3 7 / 3
2 / 3 2 11/ 3 1/ 3 2 4 / 3

0 0 02 2

8 10 2(2 ) 3 1ln 0
3 3 4 ln 3

rV H r r Ma V H r
r 3

1/ 31 1/ 31/ 31/ 31/ 3  (14b) 

After simple calculations we get the following solution for the set (r, , V) of unknown 

parameters characterizing the suspension microstructure: 

2
2/3

ln
r Ma

r
          (15a) 

2
1/3

2

7
11

Ma           (15b) 

33 27 2 7

3 3

11 3 11
18 ln 4 54 ln

r R rV
r r

       (15c) 

with 
1/3 1/32/3 2 47 4 7

22 3 2 22 2
 being a numerical factor depending on the 

aggregate magnetic susceptibility . Eq. (15b) is obtained from Eq. (3) by replacing 2 / lnr r  by 

Eq. (15a). For brevity we omit in Eqs. (15) the subscript “c” in the aspect ratio r and volume V of 

the stable drop. 

One can see from Eqs. (15a) and (15b) that our input assumptions, concerning the large 

aspect ratios, r>>1, and the small angles, <<1, are justified in the limit of low Mason numbers, 

Ma<<1. 

 

C. Force balance: erosive destruction mechanism 

We will now ignore the stability of the whole drop and consider the stability of the 

particles situated on the aggregate surface. Note that the erosive hydrodynamic force is maximal 

near the aggregate extremity situated on its major axis. Let us estimate the balance of 

hydrodynamic and magnetic forces at this point. In the considered limit, Ma<<1, r>>1, and, 
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<<1, the expressions for these forces reduce to the following ones (details of derivation are 

provided in the Appendices I and II): 

2
2

0 4
lnh
rf R

rln r

2r 4
l
r          (16a) 

2 3
2 08 1

3m
H Rf r
a

       (16b) 

with 3 /(3 )p p  and p being the particle magnetic susceptibility. The force balance reads: 

0h mf f ,          (16c) 

In conventional MR suspensions subjected to low-to-moderate magnetic fields, the particle 

magnetic susceptibility is of the order of 210p
210 , which results in 3 . 

The torque balance (3) and the force balance (16c) do not still give a closed system of 

equations for the desired quantities  and r because an unknown parameter, the length of the 

aggregate major semi-axis, a, appears in Eq. (16b) for the magnetic force. This magnitude is 

related to the aggregate volume, V, by Eq. (5). Strictly speaking, the aggregate volume depends 

on the kinetics of the nucleation/aggregation process, which is influenced by the flow. However, 

the characteristic time scale of amalgamation and disintegration of the aggregates, as well as the 

time scale of the change of the aggregate shape in response to its volume variation, appears to be 

much shorter than the typical time, 1 1/31 1/31  of the mutual approach of two aggregates – the time 

required for an aggregate to move a distance equal to the mean space between neighboring 

aggregates. Such a difference in time scales is expected in the considered case of low Mason 

numbers and low particle volume fractions. Thus, ignoring the effect of the tensile hydrodynamic 

forces, one can determine the aggregate aspect ratio r, at a given aggregate volume V, from the 

condition of minimum of the drop free energy F with respect to r. Of course, this condition is 

equivalent to the equation fp=0, where the potential tensile force fp is determined by Eq.(7) in the 

frame of the bulk destruction model.  



 15 

For highly elongated aggregates the equation ,( / ) 0VF r  takes the form [Zubarev 

and Ivanov (1998)]: 

4 3 7

348 ln
R rV

r
          (17) 

Relationship (17) has been obtained for an aggregate parallel to the magnetic field. When 

the Mason number is small, the angle  between the aggregate major axis and the magnetic field 

direction is small. Therefore Eq. (17) can be used as a first approximation in the low Mason 

number limit. Now, applying the torque balance [Eq. (3)] and the force balance [Eqs. (16a)-

(16c)], eliminating the aggregate major semi-axis a with the help of Eqs. (5), (17), we arrive at 

the following transcendent equation for the aggregate aspect ratio:  

5/ 2
1

3/ 2ln
r Ma

r
          (18) 

where 
1/ 234 1

3 2
. 

Equation (18) demonstrates that the drop is highly elongated (r>>1) when the inequality Ma<<1 

is held. In order to find an approximate analytical expression for the aspect ratio r, let us 

calculate the logarithms of both sides of Eq. (18). Neglecting the term ln(lnr) as compared with 

lnr, we get: 

12ln ln
5

r Ma           (19) 

This allows us to obtain the final relationships for the set (r, ) of microstructure parameters: 

3/5
2/5 2/5 3/5 12 ln ( )

5
r Ma Ma         (20a) 

2/5
4/5 1/5 1/5 1

2

5 2(2 ) ln ( )
2

Ma Ma        (20b) 

As it is seen from Eqs. (20a), (20b), the approximations ,1r  1  are justified for the limit 

of low Mason numbers, Ma<<1, in a similar way as in the “bulk destruction” model. 
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D. Shear stress and field-specific viscosity 

The stress tensor generated by the drops can be presented as the sum of a symmetric part 

(stresslet) and an asymmetric part (coming from the external torque). Applying the well-known 

expression [Brenner (1974), Pokrovskiy (1978)] for the stress tensor generated by anisotropic 

particles to the case of highly elongated drops (r>>1), we get the following formula for the shear 

component of the aggregate stress: 

2
2 2

0
2 1 1cos sin cos(2 )
3 ln 2 2a symmetric asymmetric a h a h

r n n
r

2
222cos

l
cos2cos22

lnlnlnl
,  (21) 

where h  is the hydrodynamic torque, acting on the drop, na= /V is the number of drops in a 

unit volume of the system. In the limit of small angles , the first term in the brackets of Eq. (21) 

becomes negligible and both the symmetric and the asymmetric parts give equal contributions to 

the total stress. Taking into account the expression for h  [right-hand side of Eq. (2)] in the limit 

<<1, equation (21) reduces to: 

2

02
lna h
r

V r

2

l
r

rln
         (22) 

Substituting Eq. (15a) or Eqs. (19), (20a) into (22), we get the two expressions for the aggregate 

stress, within the frames of the bulk destruction, a,bulk, or erosive destruction, a,erosive, models: 

2/3 1/32/3 2
, 0 0 02 2a bulk Ma H

2/3 1/32/3 2
0 0

2/3 2
0 00H0

2/3 22/3      (22a) 

1/5
4/5 4/5 1/5 1 1/5 2 4/5

, 0 0 0
22 ( ) ln ( ) ( ) ( )
5a erosive Ma Ma H4/5 4/5 1/5 1 1/5 2 4/5

0 0 )4/5 4/5 1/5 1 1/5 2
0000000) 4/5 4/5 1/5 1 1/51/5 1 1/( ) () (4/5 1/5 1 1/51/5 1 1/51 1/5

0 0) 4/5 ln ( )ln (4/5 1/5 11/5 14/5 1/54/5 1/51/54/5 1/5    (22b) 

Using the definition of the field-specific viscosity of the 

suspension 0 0 0 0 0( ) /( ) /( )a0 0 0 0) /( ) /( )0 0 0 0) /( ) /() /( ) /(0 0 0 00 00 0 0) /( )) /( , we get the following expression for this 

magnitude in the frame of both models: 

2/32
bulk

a

Ma           (23a) 
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1/5
4/5 4/5 1/5 12 2 ln ( )

5erosive
a

Ma Ma       (23b) 

Recall that 0.64a  is the internal volume fraction of the aggregates. The relationships (22) and 

(23) represent the main results of our theory. 

It is interesting to note that, for both models, the aspect ratio (15a) or (20a), and, 

therefore, the stress (22a,b) and the field-specific viscosity (23a,b), do not depend on the particle 

radius R intervening into the surface tension (11) of the drop. This result can be explained from 

the scaling arguments. In more details, the particle size is the only dimensional scale of the 

problem in the unbounded non-Brownian suspension with colloidal interactions negligible as 

compared to the magnetic ones. Therefore, this parameter cannot form any dimensionless group 

and automatically works out from the dimensionless magnitudes r and [ ]. Consequently, it does 

not appear in the aggregate stress. On the contrary, the aggregate stable volume V (the 

dimensional quantity) scales as R3 as inferred from Eqs. (15c), (17).  

Recall that the upper bound, Maup, of the Mason number for both considered models 

corresponds to the aggregate aspect ratio r 10. Above Maup approximations r>>1 and <<1 do 

not hold. This gives Maup 0.1 for the bulk destruction model and Maup 0.35 for the erosive 

destruction model. On the other hand, at very low Mason numbers, the structures can span the 

gap of the flowing channel and the aggregate behavior will be strongly affected by the 

interactions with the walls. The lower bound of Mason number, Malow is therefore defined by 

limiting the aggregate length 2a by the gap g between the walls. Applying an energy 

minimization analysis [described in details by Grasselli et al. (1994)], we estimate the aspect 

ratio of the ellipsoidal aggregates confined by two plains of the order of 210r 210  for a typical 

gap-to-particle radius ratio, 3/ 10g R 310 . This allows us to estimate the order of magnitude of the 

lower bound of our model by using Eqs. (15a) and (20a), namely 310lowMa 310 . 
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In what follows, in Sec. III-A, we analyze the theoretical results in comparison with the 

experimental ones for the range of Mason numbers, low upMa Ma Ma . Discussion on the 

rheological behavior beyond this limit will be presented in Sec.III-B. 

 

III. Results and discussion 

A. Power-law behavior at low upMa Ma Ma  

First of all, let us remark the different rheological behavior predicted by both models. As 

inferred from Eqs. (23a,b), the two models predict different scaling of the field specific viscosity: 

the bulk destruction mechanism provides 2/3
bulk

Ma , while the erosive destruction 

mechanism gives a stronger decrease with Mason number, 4/5
erosive

Ma  if we neglect the 

logarithmic term in Eq. (23b). Analysis shows that the former mechanism leads to smaller 

volumes and smaller aspect ratios of the aggregate as compared to the latter mechanism. It would 

be therefore logical to maintain the bulk destruction mechanism as the one defining the 

aggregate behavior and therefore the suspension rheology. However, most of the experimental 

data reported in literature (we will analyze some of these data below) give a behavior closer to 

that predicted by the erosive destruction model, i.e. 4/5Ma . It is possible that the aggregate 

extension under the action of the demagnetizing field (supposed in the bulk destruction model) is 

hindered by the solid friction between the particles constituting the aggregates. In this case, the 

aggregate could grow beyond the critical volume of the bulk destruction [Eq. (15c)] until the 

onset of the particle erosion from the aggregate surface, such that the erosion mechanism 

dominates. At this moment, we cannot give a clear response about which mechanism is 

dominant, or about whether both appear simultaneously. Therefore, we inspect the behavior of 

both models.  

The dependency of the field-specific viscosity [ ] on the Mason number is presented in 

Fig.3, where our both models are compared with those of Halsey et al. (1992) and Shulman et al. 
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(1984), as well as with three set of experimental data obtained by different research groups. 

Before inspecting this figure, we shall briefly describe how we plotted the theoretical and 

experimental data of other researches. The model of Halsey et al. (1992) gives the same 

expression as our equation (23a) for the field-specific viscosity, in which the numerical factor  

is somewhat different from the one of our bulk destruction model and is equal to 

1/34

32(2 )
 (note that this magnitude is not explicitly given in their paper). This 

parameter (and, consequently, the field-specific viscosity [ ]) appears to be about two times 

lower than the one of our model. The possible reason of this disagreement is that in the model of 

Halsey et al. (1992), the shape of the drop was determined from the only condition of minimum 

of the drop free energy, while the mechanisms of aggregate destruction by the hydrodynamic 

forces was not taken into account. In what concerns the model of Shulman et al. (1984), it gives 

another scaling for the field-specific viscosity, namely 1(2 / )a Ma  with 1
6 a

R  

and  being the mean interparticle gap inside the aggregates, R- the particle radius and a 0.64 – 

the internal volume fraction of the aggregates. All the four compared models are based on the 

assumption of ellipsoidal dense drop-like aggregates. 

We remark that the results of these models depend on the magnetic susceptibility  of the 

drop-like aggregates, which intervenes into the expressions for  and  parameters. Simulations, 

based on the finite element method [described in details by López-López et al. (2012)], give the 

value 12 for the case of magnetic particles of high magnetic permeability. For definiteness, we 

use this value, =12, for the four theoretical models to be compared. On the other hand, the 

Shulman’s model uses an adjustable parameter /R, the gap-to-the particle size ratio, whose 

value is expected to be of the order of 10-2, but that must be forced to an incredibly large value 

( /R=1) in order to adequately describe the experimental results.  
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All the three sets of experimental data taken from literature, and providing a power law 

scaling, were fitted to the power-law dependency Ma , with  being a real exponent. We 

also renormalized the Mason number used by different authors to the one used in our work, 

2
0 0/( )Ma H 2

0/( )2
0/( 0/( 0 , taking into account that the magnetic contrast factor ( p /( p+2) 

intervening into other definitions is close to unity for the case of particles of high magnetic 

permeability p >>1. 

 

Fig.3. Theoretical and experimental dependencies of the field-specific viscosity vs. the Mason number. 
Experimental curves represent the best fit to the power law Ma  of the experimental data of Halsey et al. 
(1992) (electrorheological fluid composed of silica particles dispersed in 4-methylcyclohexanol at 10%vol and at the 
applied electric field of 1kV/m); Volkova et al. (2000) (MRS composed of carbonyl iron particles dispersed in a 
silicon oil at 5%vol and at 7<H<20 kA/m, a red circle indicates the position of a small “shoulder” of the flow 
curve); Klingenberg et al. (2007) (MRS composed of iron particles in hydrocarbon oil at =45%vol, we had to 
renormalize these data to the linear magnetization limit used in the three compared theories, such that the 
proportionally factor between our and Klingenberg’s et al. definitions of the Mason number is 22 /(9 )s , with the 
value s≈4.2 of the suspension magnetic susceptibility found form the interpolation formula proposed by the same 
authors for the suspension magnetization in the limit of vanishing fields)
 

Thus, inspecting figure 3, we see that all the three set of experimental data give nearly the 

same power-law trend with an exponent =0.85-0.9 lying between 2/3, predicted by the Halsey’s 

et al. model, and 1, predicted by the Shulman’s et al. model. Despite the quantitative difference, 

our erosive destruction model gives a better qualitative agreement with experiments, giving an 
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exponent =0.8. The discrepancy between the inspected models and the experimental results is 

likely due to the fact that none of the two rupture mechanisms (proposed by our both models) 

appears solely but it is rather their synergy that may provide the correct scaling. Quantitatively, 

the experimental results obtained by different groups are quite different and unfortunately do not 

gather into the same master curve. This complicates the comparison between theory and 

experiments. For instance, the model of Shulman et al. (1984) gives a better correspondence with 

the results of Klingenberg et al. (2007) on highly concentrated MRS (at the expense of an 

abnormally high interparticle gap parameter /R=1) and our bulk destruction model– with the 

results of Volkova et al. (2000) on MRS composed of highly permeable carbonyl iron particles. 

Nevertheless, recall that our bulk destruction theory employs a new alternative mechanism of the 

aggregate destruction. As already mentioned, combined with the classical mechanism of the 

particle rupture from the aggregate surface (erosive destruction), we expect to recover the 

intermediate behavior with an exponent 2/3< <1 closer to experimental values and to get a better 

quantitative agreement with the experimental results.  

Another point that can explain the scatter of the experimental results is the solid friction 

between the particles, since this solid friction can prevent the aggregates from deformation 

accordingly to the minimum of the free energy. An estimation of the friction force between two 

iron particles is obtained from the radial magnetic force times a friction coefficient, which is 

usually between 0.2 and 0.3. As a typical example, the experimental radial magnetic stress 

(Fm/a2) between two iron particles for a field H=24kA/m is 100kPa (Volkova et al. 2002), which 

gives a frictional stress of 20kPa on the particles located on the surface of the drop. This stress is 

far from being negligible and will likely prevent the drop from reaching its equilibrium volume 

[cf. Eqs. (15c) and (17)] in both cases of bulk or erosive destruction. 
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B. Beyond the limit low upMa Ma Ma  

A deviation of the experimental results from a simple power-law trend at very low or 

relatively high Mason numbers has been reported by some groups. As an example, we plot in 

Fig. 4. the experimental dependencies of the field-specific viscosity versus the Mason number 

obtained by Berli and de Vicente (2012) for suspensions of carbonyl iron particles, as well as our 

new experimental results obtained for suspensions of cobalt spheres (see details in figure 

caption). As we see, both sets of experimental results essentially coincide in the range 10-

4<Ma<10-2. As seen in the inset of Fig. 4, in this range, the experimental data are perfectly fitted 

by a power law trend Ma  with the same exponent, =4/5, as the one predicted by our 

erosion destruction model. At Mason numbers 0.1upMa Ma 0.1 the data no longer follow the 

power-law trend and are not gathered into a master curve. Furthermore, the data of our 

experiments show an increasing slope at high Ma, while those reported by Berli and de Vicente 

(2012) exhibit a decreasing slope. We think that at high Mason numbers, the role of field 

becomes weaker and, possibly, colloidal interactions between particles start playing a non-

negligible role. In this case suspension rheology is no longer governed solely by Mason number 

but also by an additional dimensionless number, like, for example, the ratio of colloidal-to-

magnetic forces. The data no longer collapse into a single master curve. The divergence between 

Berli and de Vicente and our data at high Ma could come from a different colloidal stabilization 

of the magnetic particles (no stabilizing agents in the first study and surfactant stabilization in 

our study) leading to different colloidal interactions. 
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Fig.4. Mason number dependency of the field-specific viscosity in a broad range of Mason numbers. Experimental 

data of Berli and de Vicente (2012) (full circles connected by a solid line) were obtained for a 10%vol suspension of 

carbonyl iron particles (diameter 800 nm) dispersed in silicon oil without a stabilizing agent. According to Berli and 

de Vicente (2012), these data are perfectly fitted by Casson rheological equation written in the following form in 

terms of the field-specific viscosity: 1 1/2( / *) ( / *)Ma Ma Ma Ma , with Ma* being an adjustable parameter. 

Our experimental results (symbols not connected by a line) were obtained for 5%vol. suspensions of cobalt spherical 

particles (diameter 1.34 µm) dispersed in silicon oil and stabilized by adsorption of aluminum stearate on particle 

surface. These data are regrouped onto a single master curve in the range of Mason numbers, 10-4<Ma<10-2; outside 

this range, the data deviate from the master curve. Solid lines stand for the predictions of the bulk destruction [Eq. 

(23a)] and erosive destruction [Eq. (23b)] models in the limit of low Mason numbers. Red dashed curve corresponds 

to extension of the bulk destruction model to higher Mason numbers 

 

In order to check the behavior at high Mason number, we have extended our bulk 

destruction model [Sec. II-B] beyond the limit r>>1, <<1 and Ma<<1. We present the 

corresponding Mason number dependency in Fig. 4 by a dashed line (mathematical details of this 

model are described in López-López et al. (2014)).  

As we see, this generalized model (not accounting for colloidal interactions) gives a more 

rapid viscosity decrease with Mason number than that predicted by the bulk destruction model 

limited to low Mason numbers. The curvature of the generalized dependency appears to be 

qualitatively similar to that of our experimental curves, even though they diverge from the 
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master curve at high values of Ma. The solution is obtained for Mason numbers, Ma<0.25 – the 

case when the magnetic torque still prevents the aggregates from flipping under shear flow.  

At Mason numbers Ma<10-4 , thus beyond the estimated lower bound, 310lowMa 310 , the 

data are no longer gathered into a master curve and show different exponents ranging from 0.5 

for some of our data to 1 for Berli and de Vicente experiments. As already stated, at 

Ma<Malow, wall effects come into play. These interactions may lead to qualitatively different 

behaviors. For a strong cohesion with the walls a static yield stress is usually observed and Ma-1 

behavior is expected, as in the case of Berli and de Vicente experiments. For the opposite limit of 

perfect slippage of aggregates over the walls, a low-shear plateau (corresponding to =0) may be 

observed, as predicted by [Gomez-Ramirez at al. (2011), cf. Eq. (24) in that paper] for 

suspensions of magnetic fibers. As inferred from Fig. 4, our experimental data show an 

intermediate behavior between perfect slippage and perfect adhesion. Furthermore, stick-slip 

instability at low shear rates may also be observed in some cases [López-López et al. (2013)]. In 

summary, diversity of the wall interaction scenarios does not allow, at the present time, a 

generalized description of the MR effect at Mason numbers Ma<Malow.  

Finally, note that in the present models, we assumed that the extension of the drops by 

tensile hydrodynamic forces did not modify the gaps between the particles. This situation 

corresponds to a rather slow flow in the limit of low Mason numbers, Ma<<1. At this limit, the 

particles inside the drops have enough time to rearrange in such a way to keep their contacts with 

neighboring particles. This provides the highest magnetic susceptibility and the lowest magnetic 

energy for a drop of a given aspect ratio and volume. At more rapid flows, the particles would 

not have enough time for such “ideal” rearrangement preserving interparticle contacts. Thus, the 

gaps between particles can be progressively “opened” during the drop extension. In this case, the 

drop magnetic susceptibility  is expected to decrease with its elongation. The derivation of the 

magnetic energy (9) with respect to the drop length l would result in an additional “compressive” 

term of the magnetic force, related to / l  [López-López et al. (2012)]. This term can be quite 
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important for the short-ranged magnetic interactions between particles of high magnetic 

susceptibility. In our previous work [Gomez-Ramirez et al. (2011)], we considered the opposite 

limit – we neglected the drop elongation but took into account the magnetic attraction between 

particles when the aggregate is ruptured at the middle and the gaps between particles are 

“opened”. This led us to a balance between the “compressive” magnetic and tensile 

hydrodynamic forces and resulted in a Bingham behavior if the surface tension was neglected. In 

reality, there can be a combined effect of the four forces (the tensile and compressive magnetic 

forces as well as the surface tension and the hydrodynamic forces), which could lead to an 

intermediate behavior between 1/3
a

1/3  (or 2/3Ma ) and the Bingham one ( a  

independent of  and 1Ma ). This study will be the subject of a separate work. 

 

IV. Conclusions 

We present a model of magnetoviscous effect in magnetorheological suspensions with 

dense drop-like aggregates. Two different mechanisms of aggregate destruction by 

hydrodynamic forces are considered. Firstly, the aggregate may become mechanically unstable if 

the tensile hydrodynamic and tensile magnetic (coming from the demagnetizing field) forces 

overcome the compressive surface tension force. In this case, the aggregate is expected to break 

into parts and the aggregate rupture can be seen as a bulk destruction process. Alternatively, the 

magnetic particles can be eroded from the aggregate surface by the hydrodynamic forces; when 

these erosive forces overcome the adhesive magnetic ones, the aggregate size decreases until the 

equilibrium is reestablished. Such a scenario is referred to as erosion destruction mechanism. For 

a better understanding, we have considered both above-mentioned mechanisms separately, 

keeping in mind that they may act simultaneously, especially at higher suspension 

concentrations, when the aggregates may easily amalgamate. 

Both mechanisms give qualitatively different rheological behaviors under the considered 

limit of Mason numbers, low upMa Ma Ma , where the lower bound, Malow, corresponds to the 
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percolation limit and the upper bound, Maup, – to the aggregate aspect ratio r≈10. The bulk 

destruction mechanism reproduces the power law 2/3Ma  of Halsey et al. (1992), even 

though it accounts for the hydrodynamic interaction in an essentially different way. The erosive 

destruction scenario provides another scaling for the field-specific viscosity, 4/5Ma , closer 

to the known experimental data. At the present moment, we are unable to give a grounded 

preference to the first mechanism or the second one of aggregate destruction, although 

experiments point out to the realization of the second one. Beyond the limit low upMa Ma Ma , 

experimental data no longer follow a simple power law trend and do not gather into a single 

master curve. Diversity of wall interactions at lowMa Ma  and increasing importance of 

colloidal interactions at upMa Ma  may partially explain these behaviors.  

In addition, analysis of the present model along with the theories available in literature 

reveals an extreme effect of the nature of the magnetic forces on the suspension rheological 

behavior. Depending on whether the magnetic force acting on the aggregates is tensile (due to 

demagnetizing fields, cf. Halsey et al. (1992) and the present bulk destruction model) or 

compressive (due to dipolar attractions between particles, cf. Shulman et al. (1984), Gomez-

Ramirez et al. (2011), also the erosive destruction model of the present study), the field-specific 

viscosity follows a power law Ma  with the exponent  equal to either 2/3 or 4/5 or 1. 

Most of the experimental results show an intermediate trend, Ma , with =0.7-0.95. We 

believe that the synergy of both compressive and tensile magnetic forces will result in a correct 

rheological behavior with 2/3< <1 and will provide a better agreement with experiments. In this 

sense, the present model is the necessary step to the further development of the theory. 

It is worth noting that the problem of definition of a leading contribution to the total 

magnetic force is not restricted to magnetic suspensions. In magnetic particle gels (ferrogels), the 

magnetic force leads to either contraction or extension of the sample along the applied magnetic 
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field depending on the sample shape as well as on the internal particle space distribution 

[Stolbov et al. (2011), Zubarev (2012)]. 

For a longer perspective, the effects of magnetic and hydrodynamic interactions between 

particle aggregates should be carefully studied, especially for the case of concentrated MR 

suspensions. These interactions along with mutual collisions should unavoidably lead to 

stochastic destruction of the aggregates, followed by their reformation. The kinetics of the 

rupture-reformation events should considerably affect the average rheological properties of MR 

suspensions, even in steady flows. In summary, a rigorous approach combining a simultaneous 

determination of the aggregate orientation and the aggregate size distribution via the kinetics of 

the orientation-aggregation process is still missing in the domain of magnetorheology.  
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Appendix I. Demonstration of Eq. (16a) for the hydrodynamic force 

The hydrodynamic viscous force , acting on the unit area of a rigid ellipsoid surface in a shear 

flow, have been calculated by Jeffrey (1922). In the case of aggregates with a high aspect ratio, 

r>>1, the components of these forces in the cylindrical reference frame ( ,z) (introduced in Fig. 

1) read: 
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where P
2/1
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2

4

2

ba
z .   

The relations (A1) are valid in the shear plane formed by the flow velocity and velocity gradient. 

The normal component (with respect to ellipsoid surface) of this viscous force can be calculated 

as: 

22 11
1

s
s

s
zn                                                                                             (A2) 

Here, the derivative 2 2

2

/
1

as dz d
b

b

 is determined on the ellipsoid surface. 

Simple but cumbersome calculations show that, for all angles  of our interest, the point 

where the normal force n  is maximal appears to be very close to the point ,0,az  i.e. to 

the extremity of the aggregate major axis. Combining Eqs. (A1)-(A2), we find the hydrodynamic 

force at this point: 

2

0, 0
lnn
rz a

r

2

ln
r

rl
r          (A3) 

The hydrodynamic force, acting on a magnetic particle situated on the aggregate’s 

extremity, can be estimated as follows: 

24 ( , 0)h nf R z a          (A4) 

After substitution of Eq. (A3) into Eq. (A4), we arrive at the final result [Eq. (16a)] for the 

hydrodynamic force. 

 

Appendix II. Demonstration of Eq. (16b) for the hydrodynamic force 

The magnetic force acting on a particle situated on the aggregate extremity can be found from 

the following relation: 

2

0 , 0
1 v
2m p z af

z
,         (A5) 
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Here 
3

3
p

p

, 3

3
4v Rp  is the particle volume, p  is the particle magnetic susceptibility, 

 is the absolute magnitude of the local magnetic field near the ellipsoid surface. In order to 

estimate the magnitude , let us present the external field H in the following form: 

H=Hz+Hρ,  cos ,zH H   sin cosH H      (A6) 

Here  is the polar angle in the cylindrical coordinate system. Under the approximation of the 

linear magnetization of the particles, we can consider separately the effects of the components Hz 

and Hρ on the force fm. Let us introduce the scalar magnetic potential  according to the rule: 

grad            (A7) 

Following Landau and Lifshitz (1960), we will seek for the potential in the form 

1 ( ) ,zH z C q d          (A8a)  

22/32

1)(
ba

q          (A8b) 

Here C is the integration constant. Relationships between ellipsoidal coordinates  and  and 

cylindrical ones z and ρ can be found elsewhere [Landau and Lifshitz (1960)]. The ellipsoid 

surface corresponds to 12

2

2

2

ba
z , while its major axis ( 0 ) is defined by 2b . The 

integration constant C can be determined from the usual condition of continuity of the 

magnetostatic potential  across the aggregate surface. Computing this constant and deriving 

the magnetostatic potential according to Eq. (A7), we arrive at  the following expression for the 

magnetic field intensity on the aggregate surface in the vicinity of the extremity z=a, =0 : 

cos 1 ( )
(1 )z

NH q d zq
N J z

     (A9a) 

0            (A9b) 
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where  is the aggregate magnetic susceptibility, 
0

( )J q d  and N is the demagnetizing factor 

of the ellipsoid along its major axis. Substituting Eq. (A9) into Eq. (A5) and applying the 

approximation r>>1, <<1, we arrive at the final expression (16b) for the magnetic force acting 

on a particle situated in the aggregate surface in the vicinity of its extremity.  
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Figure captions 

 

Fig.1. Sketch of the drop-like aggregate subjected to the shear and magnetic fields. 

 

Fig.2. The tensile force f (in arbitrary units) vs. the drop aspect ratio r. 

 

Fig.3. Theoretical and experimental dependencies of the field-specific viscosity vs. the Mason 

number. Experimental curves represent the best fit to the power law Ma  of the 

experimental data of Halsey et al. (1992) (electrorheological fluid composed of silica particles 

dispersed in 4-methylcyclohexanol at 10%vol and at the applied electric field of 1kV/m); 

Volkova et al. (2000) (MRS composed of carbonyl iron particles dispersed in a silicon oil at 

5%vol and at 7<H<20 kA/m, a red circle indicates the position of a small “shoulder” of the flow 

curve); Klingenberg et al. (2007) (MRS composed of iron particles in hydrocarbon oil at 

45%vol, we had to renormalize these data to the linear magnetization limit used in the three 

compared theories, such that the proportionally factor between our and Klingenberg’s et al. 

definitions of the Mason number is 22 /(9 )s , with the value s≈4.2 of the suspension magnetic 

susceptibility found form the interpolation formula proposed by the same authors for the 

suspension magnetization in the limit of vanishing fields) 

 

Fig.4. Mason number dependency of the field-specific viscosity in a broad range of Mason 

numbers. Experimental data of Berli and de Vicente (2012) (full circles connected by a solid 

line) were obtained for a 10%vol suspension of carbonyl iron particles (diameter 800 nm) 

dispersed in silicon oil without a stabilizing agent. According to Berli and de Vicente (2012), 

these data are perfectly fitted by Casson rheological equation written in the following form in 

terms of the field-specific viscosity: 1 1/2( / *) ( / *)Ma Ma Ma Ma , with Ma* being an 

adjustable parameter. Our experimental results (symbols not connected by a line) were obtained 

for 5%vol. suspensions of cobalt spherical particles (diameter 1.34 µm) dispersed in silicon oil 

and stabilized by adsorption of aluminum stearate on particle surface. These data are regrouped 

onto a single master curve in the range of Mason numbers, 10-4<Ma<10-2; outside this range, the 

data deviate from the master curve. Solid lines stand for the predictions of the bulk destruction 

[Eq. (23a)] and erosive destruction [Eq. (23b)] models in the limit of low Mason numbers. Red 

dashed curve corresponds to extension of the bulk destruction model to higher Mason numbers 


