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ABSTRACT

A NOVEL BLIND PARAMETRIZATION ALGORITHM
FOR DAMAGE DETECTION IN CFRP PLATES

A novel blind damage parametrization algorithm is presented for

selecting the most plausible parametrization to identify damage in

ultrasonic measurements obtained from a damaged carbon fiber-

reinforced polymer plate. This parametrization is selected among

all possible ones, extracting those whose plausibilities are higher, so

the ultrasonic signals can be well fitted. The algorithm performance

is validated with a set of synthetically damaged signals. The results

show that the algorithm is able to detect the right damage positions

and amounts, even if the added level of white Gaussian noise less

than a signal-to-noise ratio of 25 dB. In addition, some experimen-

tal signals obtained from a post-impact fatigued CFRP plate were

evaluated with our algorithm under two different damage configura-

tions. The first one, which entails stiffness degradation of the layers,

results as more plausible than the second one, which entails stiff-

ness degradation and attenuation increase. The obtained damage

patterns were compared to classic observational techniques such as

micrography.

Keywords: Bayesian inverse problem, Ultrasonic NDE, US mod-

eling, Carbon fiber-reinforced polymer, post-impact fatigue damage,

blind parametrization algorithm, damage detection and reconstruc-

tion.





RESUMEN

UN NOVEDOSO ALGORITMO DE
PARAMETRIZACIÓN PARA LA DETECCIÓN DE

DAÑO EN LAMINADOS DE CFRP

Un novedoso algoritmo de parametrización de daño se presenta

para seleccionar la parametrización más plausible que pueda iden-

tificar daño en medidas ultrasónicas obtenidas de un laminado de

fibra de carbono. Esta parametrización se elige de entre todas las

posibles, extrayendo aquellas cuyas plausibilidades son mayores, de

tal manera que las señales ultrasónicas puedan ser mejor ajustadas.

La validación del algoritmo se presenta con un set de señales sintéti-

camente dañadas. Los resultados muestran que el algoritmo es capaz

de detectar correctamente la posición y cantidad de daño, incluso si el

nivel de ruido blanco Gaussiano añadido a la señal llega hasta un ra-

tio de señal-ruido de 25 dB. Además, algunas señales experimentales

escogidas del especimen dañado con fatigua post-impacto fueron in-

troducidas en nuestro algoritmo con dos configuraciones diferentes.

La primera, que implica una degradación de la rigidez de las capas,

se mostró como más plausible que la segunda, la cual implica una

degradación de la rigidez además de un incremento de la atenuación.

Los patrones de daño obtenidos fueron comparados con las técnicas

observacionales clásicas como la micrografía.

Palabras clave: Problema inverso bayesiano, END ultrasónica,

modelos US, fibra de carbono, daño de fatiga post-impacto, algo-

ritmo de parametrización ciega, detección y reconstrucción de daño.
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Chapter 1

Introduction

1.1 Context and motivation

Fiber-reinforced polymer (FRP) materials have been widely used in aero-

nautics applications, and are continuously growing in civil engineering, since

they show a higher performance (i.e. strength and durability) than classic

materials like steel [1]. For example, these materials have a higher resis-

tance when loaded in fiber direction [2], when subjected to cyclic mechanical

loading (or fatigue loading). Nevertheless, they suffer from limitations since

they may be affected by some different types of damage. Some of the most

known damage are construction defects (for instance, micro-bubbles within

the resin of the material, called matrix or debonding fiber-resin), extreme

environmental changes (i.e. contractions and dilatations due to thermal

amplitude), impact damage, which can be the responsible for more severe

damage since this material does not allow dissipation by plastic deformation

in the thickness direction [3], or fatigue damage, which can produce matrix

cracks, stiffness degradation or fiber-matrix debonding [4]. Alternatively,

post-impact fatigue damage, which is one of the most complex damages

in composites, such as carbon fiber-reinforced polymer (CFRP), has been

widely studied in the literature trying to avoid harmful effects in the FRP

1



1.2 Literature review 2

plates [5, 6]. However, damage growth mechanisms on fatigue after im-

pact damage are not fully understood yet [7]. Consequently, nondestructive

evaluation (NDE) techniques have been developed to detect such damage

within the specimens. One of the most frequently used NDE techniques for

this purpose is ultrasound (US) [8, 9].

Ultrasonic signals obtained from materials put down post-impact fatigue

loading have a high complexity. Therefore, a reliable ultrasonic wave prop-

agation (UWP) model that can extract relevant damage information from

those signals is desirable. To this end, a model-based inverse problem (IP)

can be applied to reconstruct the values of the damage parameters that fit

best the experimental measurements. The theoretical background on the

inverse problem theory is provided by Tarantola [10]. The fundamental idea

of the IP consists of using an iterative strategy based on the minimization

of the discrepancy between the experimental and the modeled signal re-

sponses. Next section reviews some proposals of the literature that have

been developed within this context

1.2 Literature review

The reconstruction of the mechanical properties of damaged composites

from US measurements, such as layered CFRP’s, has scarcely been ad-

dressed by solving IP’s. Thus, some of these reviews account for multilay-

ered materials, as a generalization for composite materials. In that vein,

Kinra and Zhu [11] developed an inverse algorithm, which utilizes the well-

known Newton-Raphson method, to reconstruct the thickness and the phase

velocity of a thin coating on a thick substrate, through a comparison of

the theoretical and the measured transfer functions. In a similar proposal,

Kinra et al [12] developed another inverse algorithm, which utilizes either

the Newton-Raphson or the Simplex method in conjunction with the incre-
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mental search method in order to reconstruct simultaneously the thickness

and the phase velocity of each individual layer. These results are obtained

by minimizing the difference between the experimental and the theoretical

results in a mean-sum-square sense. Instead of comparing the time-domain

signals, they consider the phase spectrum in the IP. In another related pro-

posal, Kinra and Iyer [13] presented an inverse algorithm, which utilizes the

secant method [14], and could estimate one of the following parameters given

the remaining three: thickness, wave speed, density and attenuation. This

was possible through a comparison between the experimentally obtained

and theoretically predicted transfer function.

Alternatively, Balasubramaniam and Whitney [15] presented an inverse

technique for computing the material elastic constant from data acquired

with an immersion through-transmission method for characterizing thick

glass-epoxy composites. In addition, Balasubramaniam and Rao [16] de-

scribed an inverse technique based on genetic algorithms that reconstructed

the material stiffness properties. In a similar approach, Fahim et al [17]

proposed a model-based inverse problem for detecting variations in struc-

tural parameters (stiffness properties and attenuation coefficients) due to

impact damage in composites. Genetic algorithm was used for the param-

eter search.

As a drawback, most of these works are applied to determine the proper-

ties of a limited amount of layers and have limitations such as uncertainties

derived from the measurement techniques (i.e. errors in the transmitter-

receiver alignment, bad positioning of the specimen, etc.), noise in the ul-

trasonic signals which can produce distortions in the shape of the wave and

modify the parameters reconstruction, or just from the numerical method

like gradient-based algorithms which do not attain global convergence [17].

In addition, they introduced a parametrization (the group of parameters
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that can vary) as invariant, so they intrinsically assume those parametriza-

tions as the best. To face these problems, we propose a Bayesian inverse

problem (BIP), which enables us to incorporate the uncertainties from the

measurments noise and that of the model within the inversion scheme.

Bayes’ Theorem is applied at two levels: (1) to deal with the posterior in-

formation about the UWP model parameters for a specific parametrization

(model-class), and (2) to assess a degree of plausibility of each model-class

within a set of them [18]. This framework has been recently used to assess

fatigue models in CFRP material by Chiachio et al, since it takes into ac-

count the observation and model uncertainties in application to the problem

of fatigue degradation [19, 20]. Despite all these contribution, there are still

voids in this field that we try to fill in with our proposal.

1.3 Research objectives

Damage identification in multilayered materials is a challenging problem. To

this end, the ultrasonic nondestructive evaluation is chosen to detect and

parametrize pathologies in these materials. In this work, a strategy based on

Bayesian inverse problem (BIP) along with an ultrasonic wave propagation

(UWP) model is adopted to develop a global tool that provides the most

plausible parametrization, and then, the underlying damaged pattern that

explains the data obtained from a damaged CFRP specimen. This is the

final objective of the research presented in this thesis. To approach this

objective, several concrete objectives are presented on the basis of some

assumptions to validate or falsify, listed below.

� Post-impact fatigue damage in CFRP plates is not fully understood

yet because of its complexity. Consequently, a parametrization consid-

ered as invariant can introduce erroneous results in the signal recon-
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struction, since the damage distribution may be a priori unknown. In

addition, uncertainties derived from the noise in the ultrasonic signals

and the measurement techniques make that the deterministic inverse

problem can contaminate the signal and parameter reconstructions.

→Research assumption 1: A blind parametrization algorithm can deal

with the damage detection and the material properties reconstruction,

by merging the BIP with the UWP model.

� The material properties reconstruction from ultrasonic signals mea-

sured in a damaged CFRP specimen can be addressed not only with a

unique variable, but with several configurations, which are referred to

different variables (i.e. stiffness modulus or attenuation coefficients),

since a single type of damage can be explained with different variables.

→Research assumption 2: A blind parametrization algorithm is ex-

pected to be able to reconstruct signals obtained from real inspection

conditions, with two different configurations at the same level of reli-

ability.

1.4 Outline of the thesis

This thesis intends to provide suitable solutions to the several research ques-

tions outlined in the previous Section. The methods and experiments de-

signed to investigate these research questions are listed below:

Research question 1:

A blind parametrization algorithm can deal with the damage detection

and the material properties reconstruction, by merging the BIP with

the UWP model.

The description of the ultrasonic wave propagation (UWP) model used

in this work is summarized in Chapter 2, Section 2.2. On the other
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hand, the Bayesian framework used in this algorithm is presented in

Chapter 2, Section 2.4. Afterwards, the blind parametrization algo-

rithm is depicted in Chapter 2, Section 2.5, and the MATLAB codes

of the main algorithm and its subroutines are presented in the Ap-

pendices A and B. In addition, the reliability and robustness of the

algorithm are proved by making use of several synthetic signals. The

description of the synthetic signals is explained in Chapter 2, Section

2.3, whereas the results of the test with the signals and parameters

reconstruction are presented in Chapter 3, Section 3.2. Moreover,

the interpretation of these results is outlined in Chapter 4, Section

4.1.

Research question 2:

A blind parametrization algorithm is expected to be able to reconstruct

signals obtained from real inspection conditions, with two different con-

figurations at the same level of reliability.

The experimental evaluation of the proposed algorithm is carried out

by making use of some ultrasonic signals measured in a damaged

CFRP specimen. The material description and experimental proce-

dure to take the measurements are depicted in Chapter 2, Section

2.1. In addition, the set of variables chosen to reconstruct the dam-

age is explained in Chapter 2, Section 2.3. On the other hand, the

algorithm specifications are presented in Chapter 3, Section 3.1 and

the results of the experimental validation are presented in Section 3.3.

The interpretation of these results is outlined in Chapter 4, Section

4.1. Finally, some concluding remarks and future trends based on this

work complete the Chapter 4, Sections 4.1 and 4.2.



Chapter 2

Methodology

The proposed methodology consists of five steps. In first place, Section 2.1

briefly describes the experimental process used to manufacture the speci-

men and the ultrasonic setup employed to measure it. Secondly, Section

2.2 presents the wave propagation model used to idealize the experimen-

tally obtained ultrasonic signals. Then, the Bayesian hypothesis testing is

explained in Section 2.4, with emphasis on the Bayesian inverse problem,

the Bayesian model-class and the Metropolis-Hastings algorithm used for

Bayesian model updating. Finally, the blind algorithm developed to identify

the damage is carefully outlined in Section 2.5.

2.1 Experimental setup

Ultrasonic signals used here were obtained from a specimen previously

tested at the Nondestructive Evaluation Laboratory. This specimen was

damaged with two types of tests (impact and fatigue). In order to detect

the applied damage in the CFRP plate, ultrasonic signals were obtained in

an immersion tank.

7
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2.1.1 Material description

The CFRP specimen used in this work has been manufactured at the Insti-

tute of Polymers and Composites, TU Hamburg-Harburg, Germany. This

specimen is compound by several layers of carbon fibers stacked with epoxy

resin between them. The orientation of the fibers of each layer was selected

in two perpendicular directions, which are called 90◦ and 0◦ directions in

reference to the main directions of the laminate (denoted by [0/90]4s, where

0/90 indicates the two main directions and the subscript 4s indicates the

number of layers stacked together).

After the laminate construction, curing was applied. At this stage of

manufacturing, the specimen was placed in autoclave at 177◦C for three

hours with a pressure of 7 bar. This process is necessary for the epoxi resin

in order to react chemically and achieve its top mechanical properties like

stiffness, strength, etc. The final dimensions of the specimen are 250×35×2

mm3.

Let us consider the well-known mixing rules [21], see Equation (2.1),

which enable us to obtain the properties of each layer. To this end, it is

necessary to count with the properties of the matrix (epoxy resin) and the

volume fraction of fibers, which were provided by manufacturer.

Eeff =
1

Vf
Ef

+
Vm
Em

νeff = Vf · νf + Vm · νm (2.1)

ρeff = Vf · ρf + Vm · ρm

In Equation (2.1) Eeff is the effective Young’s modulus of the layer, νeff

the effective Poisson ratio of the layer, ρeff the effective density of the layer.

The subscript f is referred to the fibre fraction whereas the subscript m to
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the matrix fraction. The volume fraction of each material in each layer is

denoted by V . Thus, the effective properties of the layers that compose the

CFRP plate are shown in Table 2.2.

Layer properties
Young modulus Poisson ratio Density Attenuation Thickness

E [GPa] ν [−] ρ [kg/m3] α [Np/m] a [mm]

0◦/90◦-orientation 11.1616 0.3007 1589.5 293.023 0.1215

Table 2.1 Mechanical and geometrical properties of the layers that compose
the CFRP plate.

The specimen was damaged with two types of tests. At first, the CFRP

plate was impacted with 3.8 Joule energy and after this, the specimen was

put down fatigue test (tension and compression) up to 100000 cycles.

2.1.2 Experimental procedure

The ultrasonic technique used for capturing the measurements of this work

is the normal incidence technique [22, 23], which allows us to detect damage

parallel to the surface such as delaminations or matrix cracking when cracks

do not appear perpendicular to the surface. These ultrasonic wave signals

were obtained by Bochud [24] using an immersion through-transmission sub-

wavelength technique as in [11]. The experimental procedure used to obtain

those signals is briefly summarized hereafter.

The CFRP plate was excited by a low-frequency ultrasonic sine-burst

at 5 MHz, which was produced by a wave generator (Agilent 33220). The

specimen was placed at the focal distance (df = 30mm) between the focused

transducers. Once recieved, the signals were amplified and digitized with

an adquisition card, and then analyzed off-line in a personal computer. The

response signals were measured on a damaged area corresponding to an

extension of 40× 20 mm2 (with a 1 mm step).

This configuration provides us 861 measurements. In this work, only a
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Figure 2.1 Experimental configuration of the excitation-propagation-
measurement system1

few of these signals are used. They were carefully selected in order to give

a representative view of different damage mechanisms (i.e. matrix cracks,

delaminations, etc.)

2.2 Ultrasonic wave modeling

The ultrasonic wave propagation model used in this work in order to mimic

the ultrasonic signals experimentally obtained is that of Bochud’s thesis

[24], because of its low complexity and efficiency; those characteristics are

ideal to run a model-based probabilistic inverse problem (PIP) approach,

since this kind of approach needs a huge number of evaluation of the forward

problem.

This model is digital and relies on the properties of the CFRP layers:

thickness, Young’s modulus, density, damping and Poisson ratio (some of

these properties are obtained with the mixing rules presented in Equation

(2.1)). Once all these properties are introduced into the model, acoustic

properties like wave velocity and impedance ratios (water and specimen)

are generated and converted into model parameters, and later transformed

1Reproduced from Bochud [24].
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into filter coefficients. This procedure is sketched in Figure 2.2. Thus, we

have the filter parameters needed to generate a ultrasonic wave signal that

idealizes the specimen and water properties. The aforementioned signal

will be the center of the study to detect possible damages in each layer or

interface.

Ei, νi, ρi, αi, ai -
ci =

√
Ei(1 + νi)(1− 2νi)

ρi(1− νi)

Zi = ρici

-

Gri =
Zi+1 − Zi
Zi + Zi+1

Gαi = eαiai

mi =
Fsai

ci

-

b0 =

M∑
i=1

GtiGαi

Λ =

M∑
i=1

mi

ak from recursion

Physical properties

Acoustic properties

Model parameters Filter coefficients

Figure 2.2 Computational process to take layered material properties and
convert them to a functional digital filter.2

The material idealization is not completed yet. The fact that there is

no possibility to observe a delamination (one of the most common damage

produced by impact in laminates) has to be taken into account, since it

occurs between plies. To model this kind of damage it is necessary to

assume a small interface layer, whose thickness is thinner than both plies

and wavelength of the emitted ultrasonic wave. Since the manufacturing

procedure of CFRP sample was made by stacking up each sequence of four

layers, it is reasonable to consider that between each ply, there is a small

interface layer of matrix, which in this case consists of epoxy resin. For this

reason, epoxy resin properties (Table 2.2) were assigned to simulate those

interfaces. Thus, the model, has N = 33 layers (that are the 16 layers of

the real CFRP plate, plus 15 interfaces of epoxy resin in-between, plus 2

water layers ahead of and behind the specimen).

Given those properties (see Table 2.1 and 2.2), which include layers and

interfaces properties, the UWP model can be computed straightforwardly,

2Reproduced from Bochud [24].
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Interface properties
Young modulus Poisson ratio Density Attenuation Thickness

E [GPa] ν [−] ρ [kg/m3] α [Np/m] a [mm]

Interface 5.2728 0.3500 1310 361.1595 0.01

Table 2.2 Properties of the interfaces assumed between every two consecu-
tive layers in the digital model.

and thus provides an approximation of a measurement from an undamaged

area.

2.3 Damage hypothesis

One of the challenges that we face up in the damage reconstruction problem

is to deal with such a large set of damage model parameters. In fact, any

of these parameters θ ∈ {Ei, νi, ρi, αi, ai} can be affected by damage, with

i = 1, . . . ,M . All these parameters provide information about the mechan-

ical and geometrical performance of the entire CFRP plate. In order to

solve this problem with a reasonable computational cost, a reduced number

of variables have to be selected. It can reasonably be assumed that damage

affects mostly the global stiffness, reducing its nominal value, or the atten-

uation coefficient, increasing its nominal value. Thus, the Young modulus

E or the attenuation coefficient α of each layer/interface were chosen as

potential variables.

Post-impact fatigue damage is not fully understood yet [7], and the

complex distribution of damage is not known a priori. To face this issue, we

propose a blind damage parametrization that searches damage iteratively

within any single layer i, with i = 1, . . . ,M, in order to obtain the best

matching between the modeled and experimental signals. Once the first

damage parameter is identified, it is stored and then the search begins

again with the aforementioned parameter fixed plus the current one. For

more information about the algorithm, see Section 2.5.
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To evaluate the robustness of this novel blind damage parametrization

algorithm, it is necessary to evaluate it with rather simple signals, whose

damage distribution is known a priori. To this end, we generated several

synthetically damaged signals by running the forward problem with our

model and adding different level of white Gaussian noise (WGN) to it.

An enclosed set of synthetic damaged signals has been generated with the

following damage distribution (i.e. the numbers between brackets indicate

the position of the damage layer/interface according to Figure 3.1):

Damage localization Layers (Plies) Interfaces (Matrix)

Test no. 1 [1] [2 30]

Test no. 2 [19 29] [2 18 30]

Test no. 3 [1 15 17] [30]

Table 2.3 Damage distribution to generate signals in order to validate the
algorithm.

Those sintethycally damaged signals were created so that the damage

follows a realistic distribution, according to the description available in the

literature [8, 9, 25]. For impact damage, effects are supposed to be in group

of layers and interfaces opposite to the impacted side, in addition to the

first layer and interface, which is responsible to endure high part of impact

energy. Typical delaminations and matrix cracking in CFRP’s can be seen

in Figure 2.3. Besides, fatigue test spreads cracks and micro-cracks into 90◦

plies,and even delaminations can grow in extension to them.

In test number 1, damage in the first layer (where drop weight impacts

firstly) and in two interfaces has been proposed: the first one, which can

be produced by violent impacts and the last one, which is probably one of

the most likely position for delaminations (see Figure 2.3). For test number

2, a more complex damage distribution has been chosen. Delaminations

have been assumed as consequence of matrix cracking propagation. This

could be explained because when cracks become larger, some delaminations
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Figure 2.3 Microgragh of impact damage in composite sample3.

can appear in the adjacent interfaces of layers of different orientation. In

addition, we chose delamination in the first layer of the CFRP plate because

of the same reason given for the test 1. Finally, a third test has been

created with different kind of damage. One delamination stands in the last

interface, as consequence of the impact, and the first layer is damaged for

the same reason as before, but two central layers are additionally chosen,

whose orientation is 90◦, are damaged because of fatigue damage by tension

and compression loading. The level of noise added to the signals has been

addressed by computing the signal-to-noise ratio (SNR) [27] as,

SNR = 10 log

(
Es
σ2
ν

)
[dB]. (2.2)

expressed for white Gaussian noise (WGN). The SNR relates the level of in-

put energy of the signal (Es) with the variance of the WGN (σ2
ν). Generally,

three levels of noise were considered.

2.4 Bayesian hypothesis testing

Once the UWP model and the damage hypothesis have been defined, the

assessment of the BIP has to be addressed. The hypothesis testing consists

of evaluating one parameter in each layer and interface of the laminate

3 Reproduced from Mitrevski et al. [26].
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(Young’s modulus or attenuation coefficients for each layer and stiffness

modulus for each interface). Each single value of a parametrization produces

an ultrasonic wave signal, so we have to test a huge number of values (by

the forward problem) to achieve those which fit better the experimental

signal. To face this problem, we use Bayesian methods (Figure 2.4) for

model assessment, since they only use the axioms of probability [18, 28].

Damage Hypothesis Parameters Modeled Signal

Prior PDF Likelihood Function 

Posterior PDF Model-Class Evidence

Model-Class
Plausibility

Specific BIP part

Generic BIP part

Figure 2.4 Bayesian framework applied for damage detection.

In order to make this Bayesian procedure more understandable, the pro-

cess for assessing damage hypothesis described in Section 2.3 is depicted in

Figure 2.4. Every step is described in the following subsections, with a

general explanation of Bayesian inverse problem, the stochastic transfor-

mation of the modeled signal, the formulation of the likelihood function as

well as the process to obtain the posterior probability density of function

(PDF) and evidence of each model-class. The model-classM in this work

is referred to the UWP model along with the underlying damage hypothesis

done before, that are enclosed within a certain model parametrization.
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2.4.1 Bayesian inverse problem

The way of assessing this problem is addressed with Bayesian inverse prob-

lem, since this type of inverse problem can better deal with noise, hetero-

geneity of properties within the CFRP plate and approximation of reality

made by the UWP model, than a deterministic IP. Bayesian inverse prob-

lem provides information about how probable is that our model parameters

θ over the set Θ ⊂ Rd are fitted to data D, which contain information

about experimental tests and some important prior information on those

parameters. This information is presented in form of the posterior PDF

(p(θ|D,Mj)), since this PDF shows how the plausibility of the values θ are

conditionated by experimental and prior data and by the model class M.

Experimental data D consist of a sequence of ultrasonic signals or synthetic

signals that can be written as D = {y1(t), . . . , yN(t)}. This sequence of

signals have been obtained as explained in Section 2.1.2, in a zone close to

the impacted area. In order to reduce the computational cost, only a few

signals have been chosen, representative of different levels of damage.

On the other hand, the quality of the fit between the modeled signals

(which depend upon the model parameters θ, within a certain model-class

M) and the dataD has to be assessed in this work. This information is given

in terms of probability by a function called likelihood function (p(D|θ,Mj)).

Both posterior and likelihood functions can be connected thanks to the

Bayes’ Theorem as follows:

p(θ|D,Mj)︸ ︷︷ ︸
posterior

= c−1p(D|θ,Mj) p(θ|Mj)︸ ︷︷ ︸
prior

(2.3)

where p(θ|Mj) represents prior information, specified as a Log-normal PDF

(with the nominal values of the chosen parameters as the mean and a per-

centage of them as the standard deviation, see Table 3.1), defined before

starting Bayesian inverse problem. The normalizing constant c is defined
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so that p(θ|D,Mj) represents a valid PDF, that is:

∫
Θ

p(θ|D,Mj)dθ = c−1

∫
Θ

p(D|θ,Mj)p(θ|Mj)dθ = 1 (2.4)

Solving this equation in order to obtain constant c−1 is quite challenging.

Those integrals have not an analytical solution, so numerical solutions have

to be chosen in order to compute this constant. But this constant is not

relevant in order to obtain the posterior PDF shape. In addition, we use

Markov-Chain Monte Carlo (MCMC) methods to simulate Bayesian inverse

problem and obtain samples of this posterior (Section 2.4.4). After taking

these samples we can obtain the constant c−1 by computing the evidence

(see Section 2.4.7).

2.4.2 Bayesian model-class

The UWP model has to be “embedded” stochatically [18] in order to carry

on defining the formulation of the likelihood function. The UWP model is

established by a deterministic relationship hz = hz(u, θ) : RNi ×RNm → R,

between the model input u ∈ RNi , that represents model information pre-

sented in Section 2.2 (Young’s modulus, attenuation, etc.), and the model

output x(t) ∈ R, which expresses the modeled signal, given a set of Np un-

certain model parameters θ ∈ Θ ⊂ RNp . To be related with the UWP

model, measured signals y(t) can be expressed as below:

y(t)︸︷︷︸
measured signal

= hz(t;u,θ)︸ ︷︷ ︸
model

+e(t) (2.5)

The error term e(t) represents the distance of the model to the measured

signal. We choose to model the error e(t) as a Gaussian PDF, which is

supported by the Principle of Maximun Information Entropy (PMIE) [29,

30]. Consequently, the probability model for the measured signal y(t) can be
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also modeled as a Gaussian PDF. This PMIE supplies us a tool for giving a

probability model for the model-error term such that it produces the largest

uncertainty (largest Shannon entropy). Thus, the stochastic UWP model

can be defined as a function of model parameters θ ∈ Θ, as

p(y|u,θ,Mj) = c1 exp (−J(y,u,θ)) (2.6)

where c1 is a normalizing constant and J(y(t),u,θ) is a misfit function that

give us information about how well the modeled signal and the experimental

one fit each other. This function is defined as,

J(y,u,θ) =
1

2

∫ T

0

(
y(t)− hz(t;u,θ)

σ(t)

)2

dt (2.7)

Once the expression that gives the relationship between the modeled and ex-

perimental signals in terms of probability is defined, the likelihood function

can be formulated

2.4.3 Formulation of the likelihood function

An indicator of the degree of fitting is needed. To this point, the likelihood

function can give us a view of this fitting. It is defined for N ultrasonic

signals as data D, in case of we wanted to average a set of ultrasonic signals,

by the stochastic UWP model defined in Equation (2.6), under damage

hypothesis defined by the model-classM, as follows:

p(D|θ,Mj) =
N∏
i=1

p(yi(t)|u,θ,Mj) (2.8)

By substituting Equation (2.6) into Equation (2.8), the likelihood function

can be finally expressed as:

p(D|θ,Mj) = c1 exp

(
−

N∑
i=1

J(yi,u,θ)

)
(2.9)

where c1 is a normalizing constant.
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Up to this point, the likelihood function and the prior information have

been described by their PDF’s. We can compute the shape of the posterior

PDF of the parameters (Equation (2.3)) just knowing the prior and likeli-

hood probability in the absence of knowing the constant defined in Section

2.4.1. In order to generate samples and taking them when they fit well with

the data, the MCMC Metropolis-Hasting algorithm is used.

2.4.4 Metropolis-Hastings algorithm for Bayesian model

updating

MCMC methods in Bayesian model updating generate parameter samples,

which are distributed according to the target posterior PDF p(θ|D,Mj).

One of the advantages of these methods is that they can avoid the speci-

fication of the constant presented in Equation (2.3), reducing the compu-

tational cost in obtaining the value of the integrals. This constant will

be obtained in the calculus of the evidence. In particular, the Metropolis-

Hasting (M-H) [31–33] algorithm has been selected because of its versatility

and implementation simplicity.

The M-H algorithm can be applied for any problem, not only for signal

approach problem, but for others like fatigue life prediction in composites

[20, 34]. This algorithm is built up with a stationary distribution, which

is the posterior PDF. Its implementation simplicity is one of its strengths,

only a test about which candidate model parameter θ
′
taken from a pro-

posal distribution q(θ
′ |θ) is best suited to the posterior PDF is needed.

The M-H obtains the state of the chain at ζ + 1, given the state at ζ,

specified by θ(ζ). The candidate parameter θ
′
is accepted (i.e. θ(ζ+1) = θ

′
)

with probability min{1, r}, and rejected (θ(ζ+1) = θ(ζ)) with the remaining

probability 1−min{1, r}, where:
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r =
p(D|θ′ ,Mj)p(θ

′|Mj)q(θ
(ζ)|θ′)

p(D|θ(ζ),Mj)p(θ
(ζ)|Mj)q(θ

′ |θ(ζ))
(2.10)

The proposal distribution q(θ
′ |θ) is obtained from a multi-dimensional nor-

mal distribution, with the previous parameter of the chain as the mean and

the standard deviation specified by a certain percentage of the prior samples

(in the prior distribution) so that the acceptance ratio r is between a range

0.2-0.4 [35]. The process goes until Ns samples have been generated. This

stop criterion is given by the cumulative average convergence of the target

PDF. When this value converges, this sampling process can be stopped and

the next step, the evidence of the model-class can be evaluated.

2.4.5 Bayesian model-class assessment

Up to this point, everything has been related to one particular damage

hypothesis of the system represented by the model-classMj, but a sequence

of model-classes can be taken in order to obtain which one fits better with

data D. This set of model-classes can be represented as a manifold: M =

{M1, . . . ,Mj, . . . ,MNM}. Each of these model-classes is considered to be a

different damage hypothesis, with different number of uncertain parameters.

The probabilistic approach of model-class selection is motivated by the fact

that the model itself may not necessarily reproduce the observed system,

but it is just an approximation [30, 36]. Probabilities of each model-class

can be obtained by making use of the Bayes’ Theorem at the model-class

level as:

p(Mj|D,M) =
p(D|Mj)p(Mj|M)∑NM

i=1
p(D|Mi)p(Mi|M)

(2.11)

where p(Mj|M) is the prior probability of each model-class, that expresses

the initial modeler’s judgement on the relative degree of belief onMj ∈M.
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This prior probability has been taken with the same value for each model-

class, since there is no information about the probability of occurrence. The

factor p(D|Mj) is the evidence (or marginal likelihood) for the model-class

Mj, and represents how likely the experimental signals are reproduced if

model-classMj is adopted. Note that the evidence is equal to the normal-

izing constant in establishing the posterior PDF in Equation (2.3), so that

it can be obtained as:

p(D|Mj) =

∫
Θ

p(D|θ,Mj)p(θ|Mj)dθ (2.12)

The evaluation of the last multi-dimensional integral is nontrivial, and can

only be solved with numerical methods, except for some cases where the

Laplace’s method of asymptotic approximation can be used [37]. In this

work, a recent technique based on samples from the posterior is adopted to

numerically solve this integral [28].

2.4.6 Information-theory approach to model-class se-

lection

To compute the evidence of a model-class, it is interesting to calculate

the degree of robustness that the actual model-class holds. Robustness

can be defined as an agreement between data-fit and complexity of the

signal and this can be separately obtained. Thus, we can avoid extremes

like over-fitting and under-fitting. A common principle enunciated is that,

if data are explained equally well by two models, then the “simpler” one

should be preferred (often referred to as Ockham’s razor [30]). To tackle

with this problem, Muto and Beck [38] proposed an information-theoretic

interpretation of the evidence for a model-class, as follows:
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log p(D|Mj) =

∫
Θ

[log p(D|θ,Mj)] p(θ|D,Mj)θ− (2.13)

−
∫
Θ

[
log

p(θD,Mj)

p(θ|Mj)

]
p(θ|D,Mj)θ =

= E[log p(D|θ,Mj)]− E
[
log

p(θ|D,Mj)

p(θ|Mj)

]
where E is the expectation with respect to the posterior PDF p(θ|D,Mj).

The first term of Equation (2.13) is a measure of the average goodness of

fit (AGF) of the model-classMj to the data D. The second term is the rela-

tive entropy between the posterior and the prior PDFs, which measures the

‘differenc”, in logarithmic terms, between those PDFs [39]. This term deter-

mines the expected information gained (EIG) of the model-classMj from

the data and it is, by definition, always non-negative. The measure of data-

fit of the model-class, specified before, corresponds to the AGF term in

the Equation (2.13), whereas the complexity term is associated to the EIG.

This equation provides us a quantitative value for the Principle of Model

Parsimony or Ockham’s razor [30]. Thus, the model-class that better fits

the data and explains them in terms of information gained of data can be

obtained.

2.4.7 Computation of the evidence for a model-class

Model-class posterior PDFs have to be obtained in order to choose which

one fits better the data D. This posterior probability will be calculated from

the evidence of each model-class, and along with analysis of EIG and AGF

terms, the best-suited model-class could be selected from a set of them.

The computation of the evidence cannot be trivial, since this is a multi-

dimensional problem. The Equation (2.12) could be solved with Monte

Carlo methods, but computational cost would not be acceptable. To face

this problem, Cheung and Beck [28] proposed a method based on samples
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from the posterior, and it has been adopted in this work. This technique

analytically approximates the posterior PDF based on the samples obtained

by the M-H algorithm. This approximation is used to obtain the evidence

as:

log p (D|Mj) = log p (D|θ,Mj) + log p (θ|Mj)− log p (θ|D,Mj) (2.14)

This equation is obtained by taking logarithms of Bayes’ Theorem presented

in Equation (2.3). All terms in Equation (2.14) can be analytically obtained,

except the posterior PDF p (θ|D,Mj), whose information is based on sam-

ples. For more information about the algorithm used to obtain the evidence,

see Section 2.5.1.

2.5 Algorithm description

To face this problem, with such huge set of possible parameters and model-

classes, a blind damage parametrization algorithm is proposed. This algo-

rithm goes through every layer and interface of the UWPmodel, establishing

a model-class in each one. The Metropolis-Hasting algorithm, as depicted in

Section 2.4.4, samples the space of parameters defined for each model-class,

by comparing the ultrasonic signal generated with the forward problem with

the experimental signal. When appropriated values are found, the target

PDF tends to converge so the evidence calculation can be done. Once the

algorithm goes trough all layers and interfaces a set of model-classes is ob-

tained, so that the one which has higher posterior probability, and therefore

fits better with the data, is selected.

The second stage of the search of model-classes begins after obtaining

the first model-class (fixing the position of the layer/interface found in the

first stage). In this second seeking, the algorithm tries again to assess
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model-classes in each layer and interface but with a difference. Indeed, in

this second stage, there are two uncertain parameters, the fixed position

from the last seeking (with the updated nominal value as the mean of the

selected samples) plus the current position. This process goes until the

modeled signal of the stage N fits worse the previous signal from the stage

N − 1.

2.5.1 Details of implementation

Figure 2.5 schematically depicts how the algorithm works. Firstly, decisions

such as which variables select for layer/interfaces or to adjust factors for the

M-H test have to be adopted before starting the algorithm computation.

Secondly, the prior PDF of the chosen parameters is defined, sampling the

space with a certain standard deviation. After this sampling, the likelihood

function and the target posterior PDF are computed.

The test M-H is done bellow (Figure 2.7). The Markov chain engine

provides samples for the target PDF. These samples must be evaluated into

the likelihood function in order to know the degree of fitting for the sample

given the data D. The acceptance has a probability min{1, r} (see Equation

(2.10)). This acceptance rate and the cumulative target PDF are evaluated

in order to know if the M-H factors are appropriate. When the cumulative

target PDF tends to converge into a single value this sub-algorithm can be

stopped. Selected samples, which are chosen between a range defined by the

burn-in period4 and the limit5 of the target PDF, are stored in a variable

which contains the information used later in the evidence calculation.

In addition, the evidence is needed in order to make the Bayesian model-

class assessment. The method based on samples from the posterior PDF

4This is the point of the cumulative target PDF since which, the tendency start being

convergent.
5End of the cumulative target PDF once it has converged.
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Figure 2.5 Diagram of implementation of blind damage parametrization
algorithm.(1) Test Metropolis-Hasting is depicted in Figure 2.7. (2) Evi-
dence computation is described below.(3) Graphic explanation is depicted
in Figure 2.6.

proposed by Cheung and Beck [28] is described bellow. Firstly, N1 sam-

ples of the posterior PDF obtained in the M-H zone are selected in the

range specified before and assessed in the posterior PDF. Secondly the Log-

likelihood or AFG term in Equation (2.13) of the selected parameters is

obtained, it depends on the values of the target and the prior PDF in the

selected parameter as:
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...

Figure 2.6 Diagram of stages. The algorithm goes through all layers and
interfaces, choosing the most plausible position in each stage. Black arrows
represent the direction of the tour.

log p (D|θ,Mj) =
1

N1

N1∑
i=1

log p
(
θ

(k)
i |D,Mj

)
log p

(
θ

(k)
i |Mj

) (2.15)

where θ
(k)
i is the ith parameter in the set of selected ones. Two terms for

obtaining the analytical approximation of the posterior have to be evalu-

ated: the evaluation of the proposal, centred in the selected parameters and

evaluating in the central parameter6 (θ(m)
i ); ε(k) = q(θ|θ(k)) and the eval-

uation of the ratio between central parameters of the target and selected

parameters τ (k) = r(θ|θ(k)).

The analytical approximation of the posterior is carried out once the

AFG term is calculated. The ratio between the target of proposed values

and the target of the central value has to be addressed ρ(m) = r(θ(m)|θ).

Once ρ(m), τ (k) and ε(k) are obtained, the analytical approximation of the

posterior can be represented as:

p (θ|D,Mj) ≈
1
N1

∑N1

k=1 τ
(k)ε(k)

1
N2

∑N1

m=1 ρ
(m)

(2.16)

The evaluation of the Log-evidence can be reached with the Equation (2.14).

6Central parameters are picked up from a N2 vector of the central part of the selected

parameters, organized by the number of proposal values given in the M-H part of the

algorithm.
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Proposal (i)

Test M-H1

Prior PDF Likelihood function

Acceptance

Forward
Problem

Figure 2.7 Diagram of implementation of Metropolis-Hasting test algo-
rithm.This is a explanation of the Figure 2.5 in its part Test M-H.

On the other hand, the term of the Log-evidence named as EIG in Equation

(2.13) can be addressed by extracting the Log-evidence to the AGF term.

Moreover, all model-classes (for layers and interfaces for N parameters)

are assessed in order to obtain that which fits better with data. This process

stops when the modeled signal is sufficiently well fitted with the experimen-

tal one and when it does not improve the matching of the modeled signal

from the previous stage.



Chapter 3

Results

This chapter describes the results obtained from the blind parametrization

algorithm. Firstly, Section 3.1 presents the relevant information used in the

algorithm for signal interpretation. Then, Section 3.2 focuses on the algo-

rithm evaluation by making use of synthetically damaged signals described

in Section 2.3. Finally, some experimental signals obtained from the dam-

aged CFRP plate described in Section 2.1 are analyzed in Section 3.3, in

order to highlight the potential of our proposal.

3.1 Algorithm specifications

The blind parametrization algorithm has been calibrated for both synthetic

and experimental signals. The prior information on damage parameters is

listed in Table 3.1. The prior PDF selected in this work is a lognormal

(LN) distribution centred in the nominal value of each parameter, since the

mechanical values of these parameters are always non-negative, and with a

standard deviation defined by a percentage of variation of its nominal value.

The coefficients of variation (C.O.V.) for each parameter are chosen with a

relatively large dispersion since the degree of changes due to damage is a

priori unknown. The subindex i = 1, . . . , 31 is referred to each layer and

28
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interface as depicted in Figure 3.1 (be aware that the 2 water layers are not

considered here, since they remain unchanged).

Localization Parameter Nominal value Units C.O.V. (%) Prior PDF

Layers
Ei 11.1616 GPa 40 LN

αi 293.02 Np/m 60 LN

Interfaces Ei 5.2728 GPa 40 LN

Table 3.1 Prior information of the parameters used in calculations.

Model error parameters (standard deviation in the misfit function, see

Section 2.4.2) are fixed with a deterministic value for each kind of damage.

The smaller one was selected for the signal from a lowly damaged area,

while increasing its value for the signals situated in a highly damaged area.

The C.O.V. of this model error parameter is selected to be 5% for the signal

from a lowly damaged area, 8% for the signal from a moderately damaged

area and 10% for the signal from a highly damaged area.

1 2 3 4 109875 6 11 12 13 14 15 16 17 18 19 20 262524232221 27 28 29 30 31

Thickness: 2.15mm

0º 90º 0º 90º 0º 90º 0º 90º 90º 0º 90º 0º 90º 0º 90º 0º Orientation

Numbering

Interface

Layer

Legend

Figure 3.1 CFRP numbering scheme for parameter subscripts.

The burn-in period (see Section 2.5.1) is automatically selected in each

model-class assessment. Concretely, once the cumulative posterior proba-

bility tends to converge, the burn-in period is selected around this point.
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3.2 Evaluation of the algorithm

The proposed algorithm is first evaluated by making use of synthetic signals.

These signals were directly generated with the UWP model (see Section

2.2) by inserting synthetic damage in the physical parameters. Damage was

induced in some layers and interfaces by varying the nominal value of the

selected parameter, that is by reducing the value of the Young modulus E.

3.2.1 Test 1

The algorithm procedure used for obtaining the damage parametrization is

depicted step by step for this first test using a synthetic signal. Test number

1 consists of a synthetic signal damaged in the first layer, and the first and

last interfaces. The nominal values of the corresponding Young moduli were

reduced as indicated in Table 3.2.

Parameter Ei=1 (GPa) Ei=2 (GPa) Ei=30 (GPa)

Nominal value 11.1616 5.2728 5.2728

Synthetic damage 8 4 4

Table 3.2 Nominal values and the synthetic damage induced in some lay-
ers/interfaces.

The ultrasonic signal modeled with those altered nominal values is now

chosen as the experimental one to evaluate our blind parametrization algo-

rithm. The goal of this test is twofold: (1) To assess the level of precision of

the algorithm bearing in mind that IP’s may suffer from unicity problem,

that is two model parametrizations could give the same solution; (2) to

evaluate the robustness to noise of the algorithm by adding three different

levels of WGN to the signal, which respectively correspond to a SNR of 25,

20 and 15 dB.

The model-class selection is briefly described for the noise-free synthetic

signal in order to illustrate how the algorithm searches for the best-suited
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damage parameters. This search is done through each parameter of the

model, which has been previously designated to be uncertain. Layer by

layer and interface by interface, the Log-evidence and therefore the poste-

rior probability of each model class are assessed, so that the best one is

selected in each stage and its position fixed for the new search. The poste-

rior probability of each class is presented in Figure 3.2 for the first stage. As

can be observed, the first-model classM1 reaches the highest probability.

1 15 17 31
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7 95 11 13 19 21 23 25 27 293

Figure 3.2 Posterior probability of each class for the first stage. The best-
suited damage parameter is the model-classM1.

The two next stages have model-classes that are less differentiable. The

three model-classes along with their posterior probabilities are summarized

in the Table 3.3. Posterior probability is more identificable in the first stage,

whereas it is less differentiable in the two next stages, since the most im-

portant improvement in the signal fitting is due to first parameter (that is

the parameter in the first layer, which absorbs most of the damage infor-

mation in contrast to the interfaces). As can be observed, the synthetically

damaged parameters (see Table 3.2) have been chosen in a proper way (the

mean and standard deviation of the chosen parameters are depicted in Table
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3.4).

Iteration 1st Stage 2nd Stage 3rd Stage

Model-class M1 M2 M30

Posterior probability 0.99657 0.39746 0.074405

Table 3.3 Model-classes selected in each stage of the algorithm, along with
their respective posterior probabilities.
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Figure 3.3 Comparison between synthetic signal without noise (upper-left
plot), with SNR=25 dB (upper-right plot), with SNR=20 dB (lower-left
plot) and SNR=15 dB (lower-right plot) and the mean of modeled signals
given by the samples obtained from the blind parametrization algorithm.

In addition, Figure 3.3 shows how well-fitted are the experimental and

the modeled signals for the different levels of noise. In the upper-left plot,

each point of the experimental measurement is reliably reproduced by our

blind damage parametrization. In the upper-right plot, the matching is re-

markable for this low level of noise (SNR = 25 dB) and further supports the

performance of the proposed algorithm. Similar results have been obtained
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in the lower-left plot (SNR = 20 dB). As can be observed in the lower-right

plot, the synthetic signal with a SNR = 15 dB is also well-fitted with the

modeled signal. The slight signal mismatch is due to the high noise level (i.e.

the third echo is totally masked by noise) and the fact that several model-

classes are possible candidates to match the experimental signal. Despite

the good matching the selection of parameters was not very accurate for

this last reconstruction (see Table 3.4).

Furthermore, Figure 3.4 depicts the scatter plot of the reconstructed

parameters in the case of the synthetic signal without noise. As can be

seen, the reconstructed values fit well those specified in Table 3.2. It can be

observed that the first parameter is more accurate than the others, which

thus supports that the parameter in the first stage is more identifiable.

Damaged parameter
Ei=1 Ei=2 Ei=30

GPa GPa GPa

Assigned values 8 4 4

Synthetic w/o noise 7.99± 0.12 4.26± 0.73 4.04± 0.46

Synthetic SNR = 25 dB 7.99± 0.12 4.26± 0.72 3.96± 0.45

Synthetic SNR = 20 dB 7.55± 0.37 4.28± 0.64 3.62± 0.72

Synthetic SNR = 15 dB 8.64± 1.52 4.32± 1.08 −

Table 3.4 Parameter reconstruction for each different synthetic signal in
test 1. Empty cells mean that the parameter delivered by the algorithm was
in an erroneous position.

Table 3.4 collects the mean and standard deviation of the chosen param-

eters in the last stage of the algorithm. These were computed as follows,

µ =
1

N

N∑
i=1

θi and σ =

√√√√ 1

N

N∑
i=1

(θi − µ)2 (3.1)

For the three first cases, the latter are in good agreement with the syn-

thetically damaged parameters provided in Table 3.2. Nevertheless, in the

fourth synthetic signal (SNR = 15 dB) the algorithm did not identify the

last interface. The third parameter chosen by the algorithm in the last stage
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Figure 3.4 Plots of 1e+5 posterior samples when updating model class
M30 in the third stage with synthetic signal without noise of test 1 data
D. On the diagonal, lognormal fit of the samples shows the marginal PDF
of each parameter. Green circles represent the undamaged parameters in
each scatter plot, on the diagonal, this symbol indicates the undamaged
parameter for the ordinate axis. Red circles represent the synthetically
damaged parameters.

was the last layer. The algorithm lacks in precision due to the high level of

noise, which, in this case, altered the convergence.

3.2.2 Test 2

Test number 2 consists of a synthetic signal damaged in two layers, the

tenth and the fifteenth one, and three interfaces, the first, last and ninth

ones, as presented in Table 3.5.

The ultrasonic signal modeled with these new values of the parameters is

chosen as the experimental one in test number 2. Again, the robustness to

noise of the algorithm is evaluated by adding three different levels of WGN

as in Test 1 (see Section 3.2.1).
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Parameter Ei=19 (GPa) Ei=29 (GPa) Ei=2 (GPa) Ei=18 (GPa) Ei=30 (GPa)

Nominal value 11.1616 11.1616 5.2728 5.2728 5.2728

Synthetic damage 6 9 3 3.5 3.7

Table 3.5 Nominal values and the synthetic damage induced in some lay-
ers/interfaces.

The posterior probabilities of all the model-classes selected by the algo-

rithm given the experimental signal without noise are shown in the Table

3.6.

Iteration 1st Stage 2nd Stage 3rd Stage 4nd Stage 5rd Stage

Model-class M19 M29 M2 M30 M18

Posterior probability 0.9999 0.2018 0.1062 0.05614 0.05751

Table 3.6 Model-classes selected in each stage of the algorithm, as well as
their respective posterior probabilities for the synthetic signal without noise.

As in Test 1 (Section 3.2.1), it can be observed that high probability

relies on the first model-class of the algorithm. The next stages have a

lower difference between their respective model-classes posterior probabil-

ities, since the most important improvement in the signal fitting is again

due to first parameter. As can be observed, the synthetically damaged pa-

rameters (see Table 3.5) have been chosen in a proper way for all the noise

levels.

In addition, Figure 3.5 shows the degree of matching between the ex-

perimental and the modeled signals. In the upper-left plot, the modeled

signal by the algorithm shows high standard of fit with the experimental

one. In the upper-right plot, the matching is remarkable for this low level

of noise (SNR = 25 dB), and even with the higher levels of noise showed in

the lower plots, the signal fitting between experimental and modeled signals

are notable.

Moreover, Figure 3.6 depicts the scatter plot of the reconstructed param-

eters in the case of the synthetic signal without noise. The reconstructed
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Figure 3.5 Comparison between synthetic signal without noise (upper-left
plot), with SNR=25 dB (upper-right plot), with SNR=20 dB (lower-left
plot) and SNR=15 dB (lower-right plot) and averaged modeled signal given
by the samples obtained from the blind parametrization algorithm.

values are close to those which were specified in Table 3.5. It can be ob-

served that the first and second parameters are more accurate than the

others. This supports that parameters in the first stages (i.e. the layers)

are better identificated. The spread of the values increases when considering

the interfaces (the three last columns and rows).

Damaged parameter
Ei=19 Ei=29 Ei=2 Ei=18 Ei=30

GPa GPa GPa GPa GPa

Assigned values 6 9 3 3.5 3.7

Synthetic w/o noise 6.05± 0.26 9.22± 0.45 4.36± 0.81 4.28± 0.93 3.69± 0.67

Synthetic SNR = 25 dB 6.33± 0.48 9.40± 0.61 4.71± 1.19 4.73± 1.20 4.16± 0.86

Synthetic SNR = 20 dB 6.00± 0.38 9.10± 0.66 4.29± 0.62 3.25± 0.77 3.68± 0.71

Synthetic SNR = 15 dB 6.06± 0.26 9.14± 0.45 4.39± 0.75 4.40± 0.88 3.75± 0.68

Table 3.7 Parameter reconstruction for each different synthetic signal in
Test 2.
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Figure 3.6 Plots of 8e+4 posterior samples when updating model class
M30 in the third stage with synthetic signal without noise of test 2 data
D. On the diagonal, lognormal fit of the samples shows the marginal PDF
of each parameter. Green circles represent the undamaged parameters in
each scatter plot, on the diagonal, this symbol indicates the undamaged
parameter for the ordinate axis. Red circles represent the synthetically
damaged parameters.

The mean and standard deviation of the chosen parameters in the last

stage of the algorithm are shown in Table 3.7. It can be seen that the

first and second parameters, which stand for the Young’s modulus in the

layers, fit better with the synthetic ones (6 GPa and 9 GPa). The presence of

noise in the signal does not distort the mean of the two first parameters, but

causes a larger dispersion for the three last parameters that correspond to

the Young moduli of the interfaces (3 GPa, 3.5 GPa and 3.7 GPa). For this

test, despite the high number of model parameters, the algorithm provides

a reliable guess for the reconstruction of all the parameters, independently

of the considered noise level.
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3.2.3 Test 3

Test number 3 consists of a synthetic signal damaged in three layers, the

first, eighth and the ninth ones, and the last interface, summarized in Table

3.8.

Parameter Ei=1 (GPa) Ei=15 (GPa) Ei=17 (GPa) Ei=30 (GPa)

Nominal value 11.1616 11.1616 11.1616 5.2728

Synthetic damage 6 8 8 3

Table 3.8 Nominal values and the synthetic damage induced in some lay-
ers/interfaces.

These new values of the parameters are introduced into the forward problem,

resulting in the ultrasonic signal, which is chosen as the experimental one

in this third assessment of the algorithm. Again, the robustness to noise

of the algorithm is evaluated by adding three different levels of WGN as in

the two previous tests.

Furthermore, Figure 3.7 shows the signal reconstruction from the se-

lected parameters in the algorithm. It can be seen that in the upper-left

and upper-right plots, which correspond to the signal without noise and

with a SNR of 25 dB respectively, the signal fitting is remarkable. Despite

the the level of noise, the blind algorithm correctly chose the parameters in

these two first cases, but this does unfortunately not occur with the higher

levels of noise. The lower plots show how the modeled signals are reason-

ably well fitted, but they differ from the experimental one, especially in

the case of the highest noise level. The mismatch can be explained due to

a random selection of the uncertain parameters by the algorithm, because

some damage information may be drown in noise.

The mean and standard deviation of these uncertain parameters selected

by the algorithm are shown in Table 3.9. For the signals without noise and

with the lower level of noise (SNR = 25 dB) the three first parameters
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Figure 3.7 Comparison between synthetic signal without noise (upper-left
plot), with SNR=25 dB (upper-right plot), with SNR=20 dB (lower-left
plot) and SNR=15 dB (lower-right plot) and averaged modeled signal given
by the samples obtained from the blind parametrization algorithm.

Damaged parameter
Ei=1 Ei=15 Ei=17 Ei=30

GPa GPa GPa GPa

Assigned values 6 8 8 3

Synthetic w/o noise 5.95± 0.23 8.23± 0.56 8.09± 0.51 4.7157± 1.33

Synthetic SNR = 25 dB 5.98± 0.22 8.21± 0.51 8.07± 0.58 4.45± 1.18

Synthetic SNR = 20 dB 6.11± 0.35 8.10± 0.97 7.64± 0.92 −

Synthetic SNR = 15 dB 9.59± 0.90 − 6.44± 0.33 −

Table 3.9 Parameter reconstruction for each different synthetic signal in
test 3. Empty cells mean that the parameter delivered in the algorithm was
in an erroneous position.

have been chosen with more accuracy than the last one, that is the Young’s

modulus in the last interface. Nevertheless, with the higher levels of noise,

the algorithm failed in the parameter selection. This is due to the high level

of noise, which limits the algorithm performance. It must also be noted that

for this large induced synthetical damage, the echoes are drastically reduced
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in amplitude, and nearly completely drown in noise.

Moreover, error in the mean of the reconstructed parameters for tests

1 and 3 are depicted in Figure 3.8. The relationship between measure-

ment noise and reconstruction noise should be linear in a log-log scale if

the forward and IP’s were linear. The obtained results serve as a further

illustration of the nonlinearity of the IP, which is a cause of its ill-posedness

in the sense of Hadamard [40], and the physical complexity of the problem.
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Figure 3.8 Relationship between the error percentage in the parameter
reconstruction and the level of noise in terms of SNR.

3.3 Experimental evaluation

Experimental signals measured on the damaged CFRP plate, as explained

in Section 2.1, are now introduced as data in our blind parametrization

algorithm. Three different experimental signals were chosen, in order to

represent three levels of damage with increasing complexity. The goal of this

section is to evaluate if our algorithm is able to reconstruct signals obtained

from real inspection conditions. Since damage in layers can be a priori
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explained with a decrease in the Young’s modulus E (first configuration)

or an increase in the attenuation coefficient α (second configuration), the

experimental signals are assessed by comparing both computations in order

to obtain the most reliable damage configuration. The Young’s modulus

is the selected parameter considered as uncertain for the interfaces in both

cases.

3.3.1 Low damage

The first measurement was taken from a low-damaged area of the CFRP

plate. Figure 3.9 shows both reconstructions for the chosen configuration in

the layers with Young’s modulus (left) and attenuation coefficient (right).

A fairly good matching is obtained for both configurations. The recon-

struction performed with the attenuation coefficients fits slightly better the

experimental signal than that performed with the Young modulus.
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Figure 3.9 Comparison between experimental measurement and signal re-
construction with the first configuration on the left, and second configura-
tion on the right.

Since both configurations are different, the parameter reconstruction has

been addressed separately. The first reconstruction shows a decrease in the

nominal values of the Young modulus for the external layers and interfaces

(see Table 3.10). This behavior is consistent with the initial phases of impact

damage, where matrix cracks are generated in the back-wall layers, followed



3.3 Experimental evaluation 42

by the growth of delaminations, and if the impact energy is sufficiently

higher, these defects can also appear on the impacted layer of the CFRP

plate [9].

First configuration Second configuration

Parameter Mean±Std Nominal Parameter Mean±Std Nominal

L
ay
er
s

E1 (GPa) 6.30± 0.20 11.1616 α7 (Np/m) 215.53± 248 293.02

E29 (GPa) 9.95± 0.51 11.1616 α19 (Np/m) 1425.9± 315 293.02

In
te
rf
ac
es E2 (GPa) 4.54± 0.51 5.2728 E2 (GPa) 1.93± 0.30 5.2728

E30 (GPa) 4.14± 0.59 5.2728 E28 (GPa) 1.95± 0.11 5.2728

− − − E6 (GPa) 2.58± 0.34 5.2728

Table 3.10 Parameter reconstruction for both configurations.

On the other hand, the second reconstruction shows a relatively differ-

ent behavior than the first configuration. The mean values of the chosen

parameters by the algorithm are shown in Table 3.10. As can be observed,

the damage in the interfaces is chosen at the same locations, whereas the

altered attenuation coefficients predict a damage in layers located deeper

within the specimen. Despite the good reconstruction, this behavior seems

not to be as realistic as the one obtained in the first configuration.

3.3.2 Moderate damage

The second measurement was taken from a moderate-damaged area of the

CFRP plate. Figure 3.10 shows both reconstructions for the chosen configu-

ration in the layers with Young’s modulus (left) and attenuation coefficient

(right). A relatively good matching is obtained for both configurations. As

can be observed, the left plot fits better the second part of the wave, which

comes after the wave-front. On the other hand, the right plot fits better the

wave-front, whereas the matching of the echoes is relatively poor.

Since both configurations are different, the parameter reconstruction has

been addressed separately again. The first reconstruction shows a decrease

in the nominal values of the Young’s modulus for the external layers as well
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Figure 3.10 Comparison between experimental measurement and signal
reconstruction with the first configuration on the left, and the second con-
figuration on the right.

as in the layers situated in the middle, as summarized in Table 3.11. In

addition, a decrease in the nominal value of the Young’s modulus for one

interface, which is stacked with a damaged layer, has been selected.

First configuration Second configuration

Parameter Mean±Std Nominal Parameter Mean±Std Nominal

L
ay
er
s

E1 (GPa) 9.13± 1.05 11.1616 α13 (Np/m) 214.6± 232 293.02

E31 (GPa) 5.96± 0.42 11.1616 α3 (Np/m) 2536.7± 464 293.02

E15 (GPa) 3.12± 0.83 11.1616 α21 (Np/m) 2420.7± 563 293.02

E17 (GPa) 3.56± 0.34 11.1616 − − −

E5 (GPa) 4.56± 0.80 11.1616 − − −

In
te
rf
ac
es E4 (GPa) 0.88± 0.11 5.2728 E12 (GPa) 2.79± 0.99 5.2728

− − − E22 (GPa) 0.53± 0.05 5.2728

Table 3.11 Parameter reconstruction for both configurations.

On the other hand, the second reconstruction chooses a deeper damage

pattern within the specimen. The mean values of the chosen parameters by

the algorithm are shown in Table 3.11. As can be observed, the damage is

placed in different layers/interfaces compared to first reconstruction. The

damage in the interfaces is next to the damage in layers. The change in the

the mean value is considerable.
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3.3.3 Severe damage

The last experimental signal was chosen in a zone within the impacted

area. Figure 3.11 shows both reconstructions as explained before. In the left

plot, which represents signal reconstruction with the first reconstruction, the

modeled signal fits worse the wave front than the modeled signal presented

in the right plot. Even though, the reconstruction is quite poor for both

cases. In the left plot, the algorithm tries to fit the echoes, but the matching

is relatively bad. In contrast, in the right plot, the algorithm fits well the

wave front, but totally ignores the echoes, probably due to the high noise

level.
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Figure 3.11 Comparison between experimental measurement and signal
reconstruction with the first configuration on the left, and the second con-
figuration on the right.

First configuration Second configuration

Parameter Mean±Std Nominal Parameter Mean±Std Nominal

L
ay
er
s

E5 (GPa) 9.46± 1.07 11.1616 α1 (Np/m) 265.28± 415 293.02

E29 (GPa) 9.10± 1.12 11.1616 α25 (Np/m) 13181± 1028 293.02

E27 (GPa) 7.10± 1.29 11.1616 − − −

E19 (GPa) 7.02± 1.23 11.1616 − − −

E25 (GPa) 6.05± 1.06 11.1616 − − −

In
te
rf
ac
es E26 (GPa) 3.79± 0.80 5.2728 − − −

E18 (GPa) 0.06± 0.01 5.2728 − − −

Table 3.12 Parameter reconstruction for both configurations.

The first reconstruction chooses a decrease in the nominal values of
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Young’s modulus in layers of the latter half of the CFRP plate, the opposite

to the impacted face, as summarized in Table 3.12. It is observed that the

damage is dispersed in the opposite layers to the impacted face.

On the other hand, the second reconstruction chooses a simpler pattern

of damage since the damage is concentrate in one layer by a drastic in-

crement in the attenuation coefficient compared to its nominal value. The

mean values of the selected parameters as uncertain are presented in Table

3.12.

First reconstruction

Low damage Moderate damage Severe damage

Iteration Mi Post. (%) Mi Post. (%) Mi Post. (%)

1st stage M1 99.9 M1 99.9 M26 47.14

2nd stage M2 9.37 M31 90.78 M5 5.20

3rd stage M29 6.75 M4 96.95 M29 4.63

4th stage M30 5.80 M15 18.03 M27 4.39

5th stage - - M17 47.02 M19 4.28

6th stage - - M5 5.81 M18 4.34

7th stage - - - - M25 4.70

Second reconstruction

Low damage Moderate damage Severe damage

Iteration Mi Post. (%) Mi Post. (%) Mi Post. (%)

1st stage M7 12.82 M13 14.26 M1 7.09

2nd stage M2 6.32 M12 28.48 M25 3.60

3rd stage M28 10.03 M3 29.71 - -

4th stage M6 21.99 M21 3.41 - -

5th stage M19 4.52 M22 6.75 - -

Table 3.13 Model-class plausibilities for each parameter/stage for the two
reconstructions in each level of damage (Experimental evaluation measure-
ments).

Finally, the model-class plausibilities of the selected parameters are pre-

sented in Table 3.13. The first and second configurations are presented

together, in addition to the three different parametrizations for each ex-

perimental signal in order to give a global view of the plausibilities. As

can be observed, the model-class plausibilities for the first configuration



3.3 Experimental evaluation 46

are higher than the second one. In addition, the model-class plausibilities

placed in the layers, in the first stages for the first configuration are also

higher than these ones for the second configuration. It can be also noted

that the more number of the algorithm stages, the less plausibility of the

selected model-class.



Chapter 4

Discussion and conclusions

4.1 Discussion

Firstly, our blind damage parametrization algorithm was evaluated with

three different synthetically damaged signals, which are related to impact

damage distribution, as presented in Section 2.3, and they were assessed

in our algorithm in order to know if it was able to capture the damaged

layers and interfaces with three different levels of noise. As can be observed

from the results, the parametrization is given in a proper way up to a

level of noise of SNR = 20 dB, for which it starts to fail, as depicted in

Test 3. Moreover, the relationship between the error percentage in the

parameter reconstruction and the level of noise (Figure 3.8) showed a non-

linear dependency, which was expected since many inverse problems are ill-

posed: Solutions may not exist, they could be unstable and non-converging,

or there may exist multiple solutions.

In addition, for the Test 2, by comparing Figure 3.6 with the model-class

plausibilities in Table 3.6, it is clear that the first two parameters, in order

of priority found by the sequential parametrization algorithm, are clearly

discernible from undamaged (green marks) to damaged (red marks), which

corresponds to parametrization plausibilities above 20%. In contrast, the

47
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subsequent parameters are still discernible but their uncertainties are com-

parable to the change of parameters values between undamaged to damaged

states. The associated parametrization plausibilities are of the order of 10%

or less. This behavior is similar to the two others synthetic Tests, where

the first parameters have the higher plausibilities. Thus, the modeled signal

tends to mimic the experimental one quickly in the first stages and then the

others other stages are responsible for the matching of the few remaining

signal echoes.

In the second part, experimental measurements taken from the dam-

aged CFRP plate described in Section 2.1.1 were introduced in our blind

algorithm obtaining results for two different reconstructions: with Young’s

modulus as variable in layers and interfaces in first place, and attenuation

coefficients in layers added to Young’s modulus in the interfaces in second

place. As could be expected, with the first reconstruction, the parametriza-

tion increases its complexity with the level of damage. Thus, at low damage

state our algorithm is able to mimic the measurement with 4 parameter

whereas for higher damages it needs more parameters. Nonetheless, this

behavior is the opposite with the second reconstruction since it decreases

the number of parameters while increasing the damage complexity.

Furthermore, the evolution of the damage types and distribution across

layers for the first configuration (see Figure 4.1 (a)) is compatible with mi-

crograph observations (Figure 4.1 (b)). For instance, the first damaged

layers are always degradation (stiffness reduction) of the boundary layers or

close to them, followed by a strong delamination in the adjacent interfaces.

This holds especially for low and moderate damage levels. At moderate

damage, the central layers also degrade. Finally, at severe damage, the

reconstruction is more random, which is coherent with the randomness of

the evolution of strong damages inside a laminate. In particular, the re-
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Figure 4.1 (a): Damage schemes within the CFRP plate thickness scheme
with the order in the parameter selection in each position. (b): Radiograph
and schematic of a micrograph of a cross-section for an impacted specimen
removed after 100000 cycles of loading.

constructed damage is dominated by a degradation of layers or group of

layers (and delamination) adjacent to the boundary ones, followed by a

degradation and delamination of central layers.

In addition, model-class plausibilities can be seen in Table 3.13. By

comparing both reconstruction, it can be concluded that first configura-

tion yields more plausibility, in their first parameters, than the second one.

This could be a reason for choosing the first configuration, since the BIP

is solved with one parameter more differentiable, considering that it holds

more plausibility, instead of the second one.

Interestingly, the strongest levels of damage are not prioritized by the
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algorithm. As an example, in the severe damage, first reconstruction, the

almost full delimitation in layer 18 (99% stiffness reduction, which is the

strongest reduction) is prioritized as one of the lasts most plausible. The

second configuration, which includes attenuation, yields damage distribu-

tions less coherent with micrograph observations, which is compatible with

the lower class plausibility. Notwithstanding, both configurations produce

signal reconstructions which are far from perfectly mimic the measurements,

as can be observed in Section 3.3.

4.2 Conclusions

The blind damage parametrization algorithm has been developed and eval-

uated with synthetic signals and experimental signals obtained from a dam-

age CFRP plate. The best-suited model-class is selected by our algorithm in

order to obtain a robust parametrization, which could explain the measure-

ments. Moreover, we extract some concluding remarks of our novel blind

parametrization algorithm as follows:

• The algorithm was able to reconstruct the synthetic signals with a

remarkable degree of fitting, even though erroneous parameters were

selected for the signal reconstruction and the high level of noise.

• The matching of the modeled signals with the experimental measure-

ments is approximate, especially with the first configuration, since the

signals are similar but not perfectly mimicked.

• The parameters were selected in a proper way for the synthetically

damaged signals without noise and with a SNR = 25 dB. Higher levels

of noise can produce erroneous choices in the selected parameters.

• The first parameters chosen by our algorithm were the most plausible
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(more than 20%), whereas the following ones had plausibilities under

10%, which make less discernible these damaged parameters.

• The first configuration used in the reconstruction of the experimental

signals (E − E layers-interfaces) showed that the higher the damage

level, the higher the number of parameters. In addition, the result-

ing parametrizations were positively contrasted against micrograph

observations for composites.

• The second configuration (α − E layers-interfaces) showed damage

pattern less coherent with micrograph observations. Furthermore, this

configuration holds in most cases less plausibility than the first one.

Finally, we can promote some future trends in order to enhance this

blind algorithm:

• The algorithm has to be algorithmically paralleled in order to reduce

the computational cost, which could reduce to a few days the compu-

tation of an unique BIP.

• A deeper study of the attenuation coefficient as variable in the layers

has to be addressed in order to remove some drawbacks like the large

standard deviations obtained in this work.

• The 3D properties of the whole measured area of the CFRP plate

should be reconstructed in order to provide complete damage maps

for each layer/interface.

• New configurations, with a new set of variables (i.e. Young’s moduli

and attenuation coefficients in layers), have to be assessed in order to

find a good set that does not compromise the computational cost and

explains data with a high degree of precision.



Appendix A

Blind parametrization algorithm

MATLAB code

1 % Sergio Cantero Chinchilla

2 % Damage hypothesis selection for US scan

3 % Bayesian Inverse Problem

4 % Compute the MCMC Metropolis−Hasting method

5

6 % Initialize variables for the BIP and UWP model

7 clear all; format compact; addpath([pwd '/lib']);

8 addpath([pwd '/lib_ip' ]);

9 addpath([pwd '/lib_fpx' ]);

10

11 % Initialize algorithmic variables

12 cont_pos_vector=0;

13 pos_vector=[];

14 pos_in_la=[];

15 pos_med=[];

16 stop_cond=[];

17 GENERAL_STOP=false;

18

52
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19 % Global loop

20 while cont_pos_vector<10 && GENERAL_STOP==false

21 for x=31:−1:1

22

23 parameters_in=[2];

24 parameters_la=[2];

25

26 % Initialize variables for the BIP and UWP model

27

28 ip_vars; ip_init;

29 fpx_vars; fpx_init;

30 interfaces=[]; layers=[];

31 coincident=false;

32 k1=0;k2=0;k3=0;k4=0;

33

34 % Give the right positions of the current uncertain parameters

35 if length(pos_vector)>0

36 for i=1:length(pos_vector)

37

38 if pos_vector(i)==x

39 coincident=true

40 break

41 end

42

43 if pos_in_la(i)==true

44

45 if rem(x,2)==0

46 k1=k1+1;

47 %layers=[];

48 interfaces(1)=[x/2];

49 interfaces=horzcat(interfaces,(pos_vector(i)/2));

50 parameters=[2];

51 %if length(layers)≥1

52 % parameters=horzcat(parameters,4);
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53 %end

54

55 else

56 k2=k2+1;

57 layers(1)=[round(x/2)];

58 interfaces(k2)=[pos_vector(i)/2];

59 parameters=[2];

60 %if length(interfaces)≥1

61 % parameters=horzcat(2,parameters);

62 %end

63 end

64

65 else

66

67 if rem(x,2)==0

68 k3=k3+1;

69 layers(k3)=[round(pos_vector(i)/2)];

70 interfaces(1)=[x/2];

71 parameters=[2];

72 %if length(layers)≥1

73 % parameters=horzcat(parameters,4);

74 %end

75

76 else

77 k4=k4+1;

78 layers(1)=[round(x/2)];

79 layers=horzcat(layers,round(pos_vector(i)/2));

80 % interfaces=interfaces;

81 parameters=[2];

82 %if length(interfaces)≥1

83 % parameters=horzcat(2,parameters);

84 %end

85

86 end
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87

88 end

89 end

90 else

91 if rem(x,2)==0

92 layers=[];

93 interfaces=[x/2];

94 parameters=[2];

95 %if length(layers)≥1

96 % parameters=horzcat(parameters,4);

97 %end

98

99 else

100 layers=[round(x/2)];

101 interfaces=[];

102 parameters=[2];

103 %if length(interfaces)≥1

104 % parameters=horzcat(2,parameters);

105 %end

106

107 end

108 end

109

110

111 if coincident==true

112 Expinfgain(1:21,x)=0;

113 Expctdlglikhd(x)=0;

114 Logev(1:21,x)=0;

115 continue

116 end

117

118

119

120 % Initialize Factors of the M−H algorithm
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121

122 std_mod_error = 0.48*.08; % Std. dev. of the error

123

124 % Choose the configuration to finish MCMC M−H in function of

125 % the number of parameters

126

127 % 1 Parameter

128 if cont_pos_vector==0

129 % Contator for plotting and burn−limit calculation:

130 contstop=5000;

131 % Cont for the calculation of the burn−limit:

132 cont_burn_limit=30000;

133 % First approximation of the fctr_prop (acceptance ratio?):

134 cont_ini_fctr_prop=15000;

135 % Final approx for the fctr_prop (Must be lower than cont_burn_limit):

136 cont_fctr_prop=16000;

137 if rem(x,2)==0

138 fctr_prop=0.02;

139 cont_burn_limit=30000;

140 cont_ini_fctr_prop=20000;

141 cont_fctr_prop=22000;

142 else

143 fctr_prop=0.03;

144 end

145

146 % 2 Parameters

147 elseif cont_pos_vector==1

148 contstop=5000;

149 cont_burn_limit=25000;

150 cont_ini_fctr_prop=15000;

151 cont_fctr_prop=20000;

152 if rem(x,2)==0

153 fctr_prop=0.01;

154 cont_burn_limit=25000;
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155 cont_ini_fctr_prop=20000;

156 cont_fctr_prop=22000;

157 else

158 fctr_prop=0.008;

159 end

160

161 % 3 Parameters

162 elseif cont_pos_vector==2

163 contstop=5000;

164 cont_burn_limit=35000;

165 cont_ini_fctr_prop=20000;

166 cont_fctr_prop=30000;

167 if rem(x,2)==0

168 contstop=5000;

169 cont_burn_limit=80000;

170 cont_ini_fctr_prop=25000;

171 cont_fctr_prop=27000;

172

173 fctr_prop=0.012;

174 else

175 fctr_prop=0.009;

176 end

177

178 % 4 Parameters

179 elseif cont_pos_vector==3

180 contstop=10000;

181 cont_burn_limit=60000;

182 cont_ini_fctr_prop=40000;

183 cont_fctr_prop=50000;

184 if rem(x,2)==0

185 fctr_prop=0.01;

186 contstop=15000;

187 cont_burn_limit=100000;

188 cont_ini_fctr_prop=40000;
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189 cont_fctr_prop=45000;

190 else

191 fctr_prop=0.008;

192 end

193

194 % 5 Parameters

195 elseif cont_pos_vector==4

196 contstop=10000;

197 cont_burn_limit=60000;

198 cont_ini_fctr_prop=30000;

199 cont_fctr_prop=45000;

200 if rem(x,2)==0

201 contstop=10000;

202 cont_burn_limit=100000;

203 cont_ini_fctr_prop=40000;

204 cont_fctr_prop=50000;

205 fctr_prop=0.009;

206 else

207

208 fctr_prop=0.005;

209 end

210

211 % 6 Parameters

212 elseif cont_pos_vector==5

213 contstop=10000;

214 cont_burn_limit=90000;

215 cont_ini_fctr_prop=30000;

216 cont_fctr_prop=80000;

217 if rem(x,2)==0

218 contstop=10000;

219 cont_burn_limit=120000;

220 cont_ini_fctr_prop=50000;

221 cont_fctr_prop=55000;

222 fctr_prop=0.08;
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223 else

224 fctr_prop=0.07;

225 end

226

227 % 7 Parameters

228 elseif cont_pos_vector==6

229 contstop=10000;

230 cont_burn_limit=90000;

231 cont_ini_fctr_prop=40000;

232 cont_fctr_prop=70000;

233 if rem(x,2)==0

234 contstop=10000;

235 cont_burn_limit=150000;

236 cont_ini_fctr_prop=30000;

237 cont_fctr_prop=31000;

238 fctr_prop=0.06;

239 else

240 fctr_prop=0.06;

241 end

242

243 % 8 Parameters

244 elseif cont_pos_vector==7

245 contstop=20000;

246 cont_burn_limit=120000;

247 cont_ini_fctr_prop=60000;

248 cont_fctr_prop=80000;

249 if rem(x,2)==0

250 contstop=50000;

251 cont_burn_limit=360000;

252 cont_ini_fctr_prop=340000;

253 cont_fctr_prop=350000;

254 fctr_prop=0.067;

255 else

256 fctr_prop=0.07;
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257 end

258

259 % 9 Parameters

260 elseif cont_pos_vector==8

261 contstop=20000;

262 cont_burn_limit=120000;

263 cont_ini_fctr_prop=60000;

264 cont_fctr_prop=80000;

265 if rem(x,2)==0

266 contstop=50000;

267 cont_burn_limit=380000;

268 cont_ini_fctr_prop=360000;

269 cont_fctr_prop=370000;

270 fctr_prop=0.055;

271 else

272 fctr_prop=0.06;

273 end

274

275 % 9−10 Parameters

276 elseif cont_pos_vector>8

277 contstop=20000;

278 cont_burn_limit=130000;

279 cont_ini_fctr_prop=100000;

280 cont_fctr_prop=150000;

281 if rem(x,2)==0

282 contstop=50000;

283 cont_burn_limit=380000;

284 cont_ini_fctr_prop=360000;

285 cont_fctr_prop=370000;

286 fctr_prop=0.021;

287 else

288 fctr_prop=0.02;

289 end

290 end
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291

292 % Max number of MCMC steps (samples)

293 K=200000000;

294

295 n=[0:K/contstop];

296

297 % Delay between experiment signal and model signal

298 delay=8;

299

300 % Standard deviation of the prior PDF of the parameters

301 thck_std_prior=.01; E_std_prior=.4; Dnst_std_prior=.15;

302 Dmpng_std_prior=.6; Poiss_std_prior=.05;

303

304

305 %%%%%%%%%%%%%%%%%%%%%%% METROPOLIS−HASTING ZONE %%%%%%%%%%%%%%%%%%%%%%%%

306

307 % Nominal values of the CFRP properties

308 [th thi Em Eeff rhom rhoeff dam num nueff model_m]=nominal_values(1);

309 model_m(:,4)=model_m(:,4)*1e−7;

310

311 % Extract the different nominal values (layers and interfaces)

312 Ela_pos=[];

313 Em_pos=[];

314

315 % Loop into the layers

316 pos=1;

317 pos2=1;

318 pos3=1;

319 for j=1:length(parameters_la)

320 pos=pos;

321 for i=1:length(layers)

322 if cont_pos_vector>0 && (2*layers(i)−1)6=x

323 th(pos,1)=pos_med(pos3);

324 pos3=pos3+1;
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325 else

326 th(pos,1)=model_m(2*layers(i)−1,parameters_la(j));

327 end

328 if parameters_la(j)==2

329 Ela_pos(pos2)=pos;

330 pos2=pos2+1;

331 end

332 pos=pos+1;

333 end

334 end

335

336 % Loop into the interfaces

337 pos2=1;

338 for j=1:length(parameters_in)

339 pos=pos;

340 for i=1:length(interfaces)

341 if cont_pos_vector>0 && (2*interfaces(i)) 6=x

342 th(pos,1)=pos_med(pos3);

343 pos3=pos3+1;

344 else

345 th(pos,1)=model_m(2*interfaces(i),parameters_in(j));

346 end

347 if parameters_in(j)==2

348 Em_pos(pos2)=pos;

349 pos2=pos2+1;

350 end

351 pos=pos+1;

352 end

353 end

354

355

356 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

357 %%%%%%%%%%%%%%%%%%%%%%%% LOG−NORMAL PDF PARAMETERS %%%%%%%%%%%%%%%%%%%%%

358 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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359

360 % Mu and sigma of Log−Normal PDF for each parameter

361 for i=1:length(parameters)

362 for j=1:length(th(:,1));

363

364 if parameters(i)==1 % Thickness

365 mu(j)=log(th(j,1)^2*1/sqrt(th(j,1)*thck_std_prior+th(j,1)^2*1));

366 sigma(j)=sqrt(log(1+th(j,1)*thck_std_prior/th(j,1)^2*1));

367 end

368

369 if parameters(i)==2 % Young modulus E

370 mu(j)=log(th(j,1)^2*1/sqrt(th(j,1)*E_std_prior+th(j,1)^2*1));

371 sigma(j)=sqrt(log(1+th(j,1)*E_std_prior/th(j,1)^2*1));

372 end

373

374 if parameters(i)==3 % Density

375 mu(j)=log(th(j,1)^2*1/sqrt(th(j,1)*Dnst_std_prior+th(j,1)^2*1));

376 sigma(j)=sqrt(log(1+th(j,1)*Dnst_std_prior/th(j,1)^2*1));

377 end

378

379 if parameters(i)==4 % Damping

380 mu(j)=log(th(j,1)^2*1/sqrt(th(j,1)*Dmpng_std_prior+th(j,1)^2*1));

381 sigma(j)=sqrt(log(1+th(j,1)*Dmpng_std_prior/th(j,1)^2*1));

382 end

383

384 if parameters(i)==5 % Poison ratio

385 mu(j)=log(th(j,1)^2*1/sqrt(th(j,1)*Poiss_std_prior+th(j,1)^2*1));

386 sigma(j)=sqrt(log(1+th(j,1)*Poiss_std_prior/th(j,1)^2*1));

387 end

388

389 end

390 end

391

392
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393 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

394 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BAYES' THEOREM %%%%%%%%%%%%%%%%%%%%%%%%%%

395 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

396

397

398 % Sampling the prior space for each parameter

399 for i=1:length(th)

400 prior_samples(:,i)=lognrnd(mu(i),sigma(i),[20000,1]);% Sampling generation

401 prctl_5(i)=prctile(prior_samples(:,i),5); % Percentile 5%

402 prctl_95(i)=prctile(prior_samples(:,i),95); % Percentile 95%

403 end

404

405 rng_param=abs(prctl_95−prctl_5); % Space range

406

407 % Likelihood value for nominal values

408 lik=ip_fun(parameters_la,parameters_in,layers,interfaces,th(:,1),...

409 model_m,std_mod_error,delay);

410

411 % Prior PDF

412 prior=prod(lognpdf(th(:,1)',mu,sigma));

413

414 % Posterior (Bayes' theorem)

415 target(1)=lik*prior;

416

417

418

419 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

420 %%%%%%%%%%%%%%%%%%%%%%%%%%% M−H ALGORITHM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

421 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

422

423 % Initialize values for the M−H algorithm

424 Exp_value=[eps];

425 acc_sum=0;

426 cont_n=1;
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427 cont=0;

428 cont2=2;

429 cont3=0;

430 k=1;

431 stabilization=false;

432 cont_limit=0;

433 good_rate_ini=false;

434 good_rate=false;

435

436 % Start the loop

437 while stabilization==false ||good_rate_ini==false || good_rate==false

438

439 % To know the step each 1000 steps

440 k=k+1;

441 if rem(k,1000)==0

442 fprintf(['k= ',num2str(k),' parametro ',num2str(x),...

443 ' batida ',num2str(cont_pos_vector+1),'\r\n'])

444 end

445

446 % Standard deviation of the proposal

447 prop_stdv=fctr_prop*rng_param;

448

449 % Proposal values (Normal distribution)

450 th_prop=[mvnrnd(th(:,k−1)',prop_stdv.^2)];

451

452 % Filtering wrong parameters

453

454 for j=1:length(Ela_pos)

455 if th_prop(Ela_pos(j))≥Eeff

456 sep=th_prop(Ela_pos(j))−Eeff;

457 th_prop(Ela_pos(j))=Eeff−sep;

458 end

459 end

460
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461 for j=1:length(Em_pos)

462 if th_prop(Em_pos(j))≥Em

463 sep=th_prop(Em_pos(j))−Em;

464 th_prop(Em_pos(j))=Em−sep;

465 end

466 end

467

468 for j=1:length(th_prop)

469 if th_prop(j)≤0

470 th_prop(j)=0.001;

471 end

472 end

473 % Likelihood value for proposal values

474

475 lik=ip_fun(parameters_la,parameters_in,layers,...

476 interfaces,th_prop',model_m,std_mod_error,delay);

477

478

479

480 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

481 %%%%%%%%%%%%%%%%%%%%%% METROPOLIS−HASTING TEST %%%%%%%%%%%%%%%%%%%%%%%%%%

482 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

483

484 % Prior PDF (proposal values)

485 prior=prod(lognpdf(th_prop,mu,sigma));

486

487 % Posterior PDF (Bayes' Theorem)

488 trgt_prop=lik*prior;

489

490 % M−H ratio

491 ratio=trgt_prop/target(k−1);

492

493 % Value to compare with the random number

494 alfa=min(1,ratio);
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495

496 % Random number comparison

497 if alfa≥rand

498

499 th(:,k)=th_prop'; % To store the proposal values

500 target(k)=trgt_prop; % To store the proposal PDF values

501 cont=cont+1; % Acceptance counter

502

503 else

504

505 th(:,k)=th(:,k−1); % Take the previous parameters

506 target(k)=target(k−1); % Take the previous PDF proposal

507 end

508

509 % Cumulative acceptance rate

510 acc_rate(k)=cont/k; % Must be in [0.2,0.4];

511

512

513 % To draw the acceptance ratio and the cumulative proposal mean

514 if cont2==contstop

515

516 k1=n(cont_n)*contstop+1;

517 cont_n=cont_n+1;

518 % Burn−in and MH analysis

519 %matlabpool open 6

520 for i=k1:numel(target(1:k)) %parfor

521 Exp_value(i)=(acc_sum+sum(target(k1:i)))/i;

522 end

523 %matlabpool close

524 acc_sum=sum(target(:));

525

526

527 cont2=0; % Start again the counter to draw

528 close all
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529 %[left bottom width height]

530 set(gcf,'PaperUnits','centimeters','PaperPosition',[1 1 18 9]);

531

532 subplot(1,2,1)

533 plot(Exp_value,'color','k')

534 axis 'square'

535 gca;

536

537 subplot(1,2,2)

538 plot(acc_rate,'color','k')

539 axis 'square'

540 print('−depsc')

541

542 % Calculate the burn−period and the limit

543 if k>cont_burn_limit

544 cont_limit=cont_limit+1;

545 [burn_period limit(cont_limit)]=burn_limit(Exp_value,...

546 cont_pos_vector,x,k,stabilization);

547

548 % Estimate the convergence of the target PDF

549 if cont_limit>2

550 mean1=mean(Exp_value(limit(cont_limit−2):limit(cont_limit−1)));

551 mean2=mean(Exp_value(limit(cont_limit−1):limit(cont_limit)));

552 porc_stab=(mean2−mean1)/mean1;

553 if abs(porc_stab)<.005

554 stabilization=true;

555 [burn_period limit(cont_limit)]=burn_limit(Exp_value,...

556 cont_pos_vector,x,k,stabilization);

557 end

558 end

559 end

560 end

561

562 % Accepntance rate checkout
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563 cont2=cont2+1;

564

565

566 if rem(x,2)==0 % In interfaces

567

568 % First checkout

569 if k==cont_ini_fctr_prop && (acc_rate(k)>0.41 || acc_rate(k)<0.19)

570 if acc_rate(k) > 0.81

571 fctr_prop=fctr_prop*1.5;

572 k=1;

573 th(:,2:end)=[]; target(2:end)=[];

574 cont_n=1; cont2=2; acc_sum=0; cont=0;

575 clear Exp_value acc_rate

576 elseif acc_rate(k) < 0.81 && acc_rate(k) > 0.5

577 fctr_prop=fctr_prop*1.4;

578 k=1;

579 th(:,2:end)=[]; target(2:end)=[];

580 cont_n=1; cont2=2; acc_sum=0; cont=0;

581 clear Exp_value acc_rate

582 elseif acc_rate(k) < 0.5 && acc_rate(k) > 0.4

583 fctr_prop=fctr_prop*1.2;

584 k=1;

585 th(:,2:end)=[]; target(2:end)=[];

586 cont_n=1; cont2=2; acc_sum=0; cont=0;

587 clear Exp_value acc_rate

588 elseif acc_rate(k) < 0.23 && acc_rate(k) > 0.1

589 fctr_prop=fctr_prop*0.8;

590 k=1;

591 th(:,2:end)=[]; target(2:end)=[];

592 cont_n=1; cont2=2; acc_sum=0; cont=0;

593 clear Exp_value acc_rate

594 elseif acc_rate(k) < 0.1

595 fctr_prop=fctr_prop*0.6;

596 k=1;
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597 th(:,2:end)=[]; target(2:end)=[];

598 cont_n=1; cont2=2; acc_sum=0; cont=0;

599 clear Exp_value acc_rate

600 end

601

602 else

603 good_rate_ini=true;

604 end

605

606 % Last checkout

607 if k==cont_fctr_prop && (acc_rate(k)>0.41 || acc_rate(k)<0.19)

608 if acc_rate(k) > 0.81

609 fctr_prop=fctr_prop*1.8;

610 k=1;

611 th(:,2:end)=[]; target(2:end)=[];

612 cont_n=1; cont2=2; acc_sum=0; cont=0;

613 clear Exp_value acc_rate

614 elseif acc_rate(k) < 0.81 && acc_rate(k) > 0.6

615 fctr_prop=fctr_prop*1.6;

616 k=1;

617 th(:,2:end)=[]; target(2:end)=[];

618 cont_n=1; cont2=2; acc_sum=0; cont=0;

619 clear Exp_value acc_rate

620 elseif acc_rate(k) < 0.6 && acc_rate(k) > 0.39

621 fctr_prop=fctr_prop*1.4;

622 k=1;

623 th(:,2:end)=[]; target(2:end)=[];

624 cont_n=1; cont2=2; acc_sum=0; cont=0;

625 clear Exp_value acc_rate

626 elseif acc_rate(k) < 0.23 && acc_rate(k) > 0.1

627 fctr_prop=fctr_prop*0.4;

628 k=1;

629 th(:,2:end)=[]; target(2:end)=[];

630 cont_n=1; cont2=2; acc_sum=0; cont=0;
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631 clear Exp_value acc_rate

632 elseif acc_rate(k) < 0.1

633 fctr_prop=fctr_prop*0.2;

634 k=1;

635 th(:,2:end)=[]; target(2:end)=[];

636 cont_n=1; cont2=2; acc_sum=0; cont=0;

637 clear Exp_value acc_rate

638 end

639 else

640 good_rate=true;

641 end

642 else % In layers

643 % First checkout

644 if k==cont_ini_fctr_prop && (acc_rate(k)>0.45 || acc_rate(k)<0.19)

645 if acc_rate(k) > 0.8

646 fctr_prop=fctr_prop*1.5;

647 k=1;

648 th(:,2:end)=[]; target(2:end)=[];

649 cont_n=1; cont2=2; acc_sum=0; cont=0;

650 clear Exp_value acc_rate

651 elseif acc_rate(k) < 0.8 && acc_rate(k) > 0.6

652 fctr_prop=fctr_prop*1.3;

653 k=1;

654 th(:,2:end)=[]; target(2:end)=[];

655 cont_n=1; cont2=2; acc_sum=0; cont=0;

656 clear Exp_value acc_rate

657 elseif acc_rate(k) < 0.6 && acc_rate(k) > 0.4

658 fctr_prop=fctr_prop*1.15;

659 k=1;

660 th(:,2:end)=[]; target(2:end)=[];

661 cont_n=1; cont2=2; acc_sum=0; cont=0;

662 clear Exp_value acc_rate

663 elseif acc_rate(k) < 0.23 && acc_rate(k) > 0.1

664 fctr_prop=fctr_prop*0.7;
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665 k=1;

666 th(:,2:end)=[]; target(2:end)=[];

667 cont_n=1; cont2=2; acc_sum=0; cont=0;

668 clear Exp_value acc_rate

669 elseif acc_rate(k) < 0.1

670 fctr_prop=fctr_prop*0.5;

671 k=1;

672 th(:,2:end)=[]; target(2:end)=[];

673 cont_n=1; cont2=2; acc_sum=0; cont=0;

674 clear Exp_value acc_rate

675 end

676

677 else

678 good_rate_ini=true; % Can go on

679 end

680 % Last checkout

681 if k==cont_fctr_prop && (acc_rate(k)>0.39 || acc_rate(k)<0.05)

682 if acc_rate(k) > 0.8

683 fctr_prop=fctr_prop*1.8;

684 k=1;

685 th(:,2:end)=[]; target(2:end)=[];

686 cont_n=1; cont2=2; acc_sum=0; cont=0;

687 clear Exp_value acc_rate

688 elseif acc_rate(k) < 0.8 && acc_rate(k) > 0.6

689 fctr_prop=fctr_prop*1.6;

690 k=1;

691 th(:,2:end)=[]; target(2:end)=[];

692 cont_n=1; cont2=2; acc_sum=0; cont=0;

693 clear Exp_value acc_rate

694 elseif acc_rate(k) < 0.6 && acc_rate(k) > 0.39

695 fctr_prop=fctr_prop*1.4;

696 k=1;

697 th(:,2:end)=[]; target(2:end)=[];

698 cont_n=1; cont2=2; acc_sum=0; cont=0;
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699 clear Exp_value acc_rate

700 elseif acc_rate(k) < 0.23 && acc_rate(k) > 0.1

701 fctr_prop=fctr_prop*0.4;

702 k=1;

703 th(:,2:end)=[]; target(2:end)=[];

704 cont_n=1; cont2=2; acc_sum=0; cont=0;

705 clear Exp_value acc_rate

706 elseif acc_rate(k) < 0.1

707 fctr_prop=fctr_prop*0.2;

708 k=1;

709 th(:,2:end)=[]; target(2:end)=[];

710 cont_n=1; cont2=2; acc_sum=0; cont=0;

711 clear Exp_value acc_rate

712 end

713

714 else

715 good_rate=true; % Can go on

716 end

717 end

718

719 end % End the Metropolis−Hasting algorithm

720

721 limite=limit(end);

722 fprintf(['Acabo la iteracion: ',num2str(x)],'\n')

723

724 % Evidence computation for model−class assessment

725 [Expinfgain(:,x) Expctdlglikhd(x) Logev(:,x)]=damage_evidence(delay,...

726 interfaces,layers,model_m,mu,parameters_la,parameters_in,prop_stdv,...

727 sigma,std_mod_error,prior_samples,target,th,burn_period,limit)

728

729 % Store the samples of the selected parameter

730 th_final{x}=th(:,burn_period:limite);

731

732 % Clear useless variables
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733 clearvars −except GENERAL_STOP stop_cond pos_med th_var th_final...

734 Expctdlglikhd_var Prob_var Logev_var Expinfgain Expctdlglikhd Logev...

735 z x pos_ch pos_vector pos_in_la cont_pos_vector Expinfgain_var

736

737 end % End the For that went through each layer and interface

738

739

740

741 % Position of the best parameter

742 for i=1:length(Logev(end,:))

743 if mean(Logev(:,i),1)==0

744 Logev(:,i)=−1000000

745 end

746 end

747

748 % Plausibilities of each Model−class

749 med_logev=mean(Logev);

750 for i=1:length(Logev)

751 prob_post(i)=(exp(med_logev(i))*(1/length(Logev)))/...

752 (sum(exp(med_logev))*(1/length(Logev)));

753 end

754

755 %pos_max=find(mean(Logev,1)==max(mean(Logev,1)));

756 pos_max=find(prob_post==max(prob_post));

757

758 aux_var=prob_post;

759 aux_var(:,pos_max)=[];

760

761 pos_max1=find(aux_var==max(aux_var));

762 pos_ch=pos_max;

763

764 % Layer of interface

765 if rem(pos_ch,2)==0

766 interfaz=true;



75

767 else

768 interfaz=false;

769 end

770

771 % Stop condition

772 cont_pos_vector=cont_pos_vector+1;

773

774 stop_cond(cont_pos_vector)=med_logev(pos_ch);

775 if cont_pos_vector>1

776 if stop_cond(cont_pos_vector)−stop_cond(cont_pos_vector−1)≤0

777 GENERAL_STOP=true;

778 end

779 end

780

781

782 % Store the position of the parameters

783 pos_vector(cont_pos_vector)=pos_ch;

784

785 % Store the information about layer or interface

786 pos_in_la(cont_pos_vector)=interfaz;

787

788 % Store the Expected Information Gained

789 Expinfgain_var{cont_pos_vector}=Expinfgain;

790

791 % Store the Expected Log−Likelihood

792 Expctdlglikhd_var{cont_pos_vector}=Expctdlglikhd;

793

794 % Store the Log−Evidence

795 Logev_var{cont_pos_vector}=Logev;

796

797 % Store the Plausibilities

798 Prob_var{cont_pos_vector}=prob_post;

799

800 % Store the samples of the selected parameter



76

801 th_var{1}=th_final{pos_ch};

802

803 % Store the mean of the samples of the selected parameters because it

804 % will be the new mean of these parameters in the next stage

805 pos_med=[];

806 pos_med=mean(th_var{1,1},2);

807

808 % Save the inforamtion for each stage

809 save(['matrix_dimensions_424E_test_',num2str(cont_pos_vector)...

810 ,'_batida.mat'],'pos_vector','Expinfgain_var',...

811 'Expctdlglikhd_var','Logev_var','Prob_var','th_var',...

812 'stop_cond','pos_med')

813

814 % Clear the useless variables

815 clear th_final pos_max aux_var pos_max1 pos_ch ...

816 Expinfgain Expctdlglikhd Logev th_var

817 end
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Subroutines

B.1 Likelihood function

1 % Likelihood function (cost functional )

2

3 function lik=ip_fun(parameters_la,parameters_in,layers,...

4 interfaces,th,model_m,std_mod_error,delay)

5 ip_vars;

6

7 % Residual (here you can define filters, calibrations)

8 residual =feval(nresidual,parameters_la,parameters_in,...

9 layers,interfaces,th,model_m,delay);

10

11 % Likelihood function

12 for i=1:length(residual(end,:))

13 % Cost functional (norm L2) (vectorized)

14 f(i) = −.5*sum(residual(:,i).^2);

15 lik_signal(i) = exp(f(i)/std_mod_error^2);

16 end

17 lik=prod(lik_signal);

18

77
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19

20 end

B.2 Residual

1 % Residual

2 function residual = fpx_residual(parameters_la,parameters_in,...

3 layers,interfaces,th,model_m,delay)

4 fpx_vars;

5 ip_vars;

6

7 % Model (here can define parametrizations)

8 model = feval(nmodel,parameters_la,parameters_in,layers,...

9 interfaces,th,model_m);

10 msn = feval(nmea,model,0); % simulated observation

11 tmsn = find(msn == max(msn),1);

12

13

14 for a=1:length(fpx_mod),

15 fpx_modelxx=fpx_mod{a};

16 eval(nexperiment); % Load signal

17 mxn=ip_meax(:); % Experimental observation

18 tmxn = find(mxn == max(mxn),1); % Synchronize at maximum signal time

19 msn_sync = interp1(1:length(msn),...

20 msn,tmsn−tmxn+(1:length(msn))','linear',0);

21 residual(:,a) = mxn−msn_sync; % Residual

22 end;

23

24 end

B.3 Definition of model parameters
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1 %% Model definition

2

3 function model=model_def(parameters_la,parameters_in,...

4 layers,interfaces,th,model_m)

5 % Extract the different values

6

7 % Loop into the layers

8 pos=1;

9 for j=1:length(parameters_la)

10 pos=pos;

11 for i=1:length(layers)

12 model_m(2*layers(i)−1,parameters_la(j))=th(pos);

13 pos=pos+1;

14 end

15 end

16 % Loop into the interfaces

17 for j=1:length(parameters_in)

18 pos=pos;

19 for i=1:length(interfaces)

20 model_m(2*interfaces(i),parameters_in(j))=th(pos);

21 pos=pos+1;

22 end

23 end

24

25 %% Save structure data

26 model=struct('nam','fpx', 't',(0:.005e−6:9.995e−6)','m',model_m,

...

27 'freqc',5e6,'f','f5m','x','a05m1',

...

28 'parn',{{'Thickness, {\it t} (mm)'

...

29 'Young modulus, {\it E} (GPa)'

...
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30 'Density, \rho (kg/m^3)'

...

31 'Rayleigh damping, \alpha'

...

32 'Poisson ratio, \nu'}});

33

34 end

B.4 Burn-in period calculation code

1

2 function [burn_period limit]=burn_limit(Exp_value,cont_pos_vector,...

3 x,k,stabilization)

4

5

6 if stabilization==true

7 %% With the mean

8 if cont_pos_vector==0 || cont_pos_vector==1

9

10 inc=10^cont_pos_vector;

11

12 elseif cont_pos_vector==2

13 if rem(x,2)==0

14 inc=round(6^cont_pos_vector);

15 else

16 inc=round(3.5^cont_pos_vector);

17 end

18 elseif cont_pos_vector==3

19 if rem(x,2)==0

20 inc=round(6^cont_pos_vector);

21 else

22 inc=round(2^cont_pos_vector);

23 end
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24 elseif cont_pos_vector>3

25 if rem(x,2)==0

26 inc=round(log2(k)*100);

27 else

28 inc=round(2^cont_pos_vector);

29 end

30 end

31

32 burn_good=false;

33 step=1;

34 while burn_good==false

35 %inc=round(log2(k)*100);

36 cont=0;

37 for i=1:inc:length(Exp_value)

38 cont=cont+1;

39 if (i+inc)<length(Exp_value)

40 med_int(cont)=mean(Exp_value(inc:i+inc));

41 else

42 med_int(cont)=med_int(cont−1);

43 end

44 end

45

46 for i=1:length(med_int)−1

47 med_int1(i)=abs((med_int(i+1)−med_int(i))/med_int(i+1));

48 end

49

50 for i=length(med_int1):−1:1

51 if med_int1(i)>0.001 && (i+1)*inc<length(Exp_value)

52 burn_period=(i+1)*inc

53 break

54 end

55 end

56

57 %% With the slope
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58

59 inc1=20;

60 cont=0;

61 for i=1:inc1:length(Exp_value)

62 %i

63 cont=cont+1;

64 if (i+inc1)<length(Exp_value)

65 grad(cont)=(Exp_value(i+inc1)−Exp_value(i))/(inc1);

66 else

67 grad(cont)=grad(cont−1);

68 end

69 end

70

71 % thre_burn=max(grad)/(.5*abs(log(max(Exp_value1))));

72 thre_lim=min(grad)/1000;

73

74 cont=0;

75 for i=1:length(grad)−1

76

77 if grad(i+1)−grad(i)<thre_lim

78 limit=(i+1)*inc1;

79 end

80

81 end

82

83

84 % If failed here once more, try to increment

85 % this inc in a thrid hypothetic step in this while.

86

87 if step<3 || burn_period<(limit)

88 if burn_period<(limit)

89 burn_good=true;

90 else

91 if inc≤3
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92 inc=1; burn_good=true;

93 else

94 inc=round(inc/3);

95 end

96 clear grad med_int med_int1

97 end

98 elseif burn_period≥(limit)

99 if inc≤3

100 inc=1; burn_good=true;

101 else

102 inc=round(inc*200);

103 end

104 clear grad med_int med_int1

105 end

106 step=step+1;

107 end

108

109

110 else

111 %% With the slope

112

113 inc1=20;

114 cont=0;

115 for i=1:inc1:length(Exp_value)

116 cont=cont+1;

117 if (i+inc1)<length(Exp_value)

118 grad(cont)=(Exp_value(i+inc1)−Exp_value(i))/(inc1);

119 else

120 grad(cont)=grad(cont−1);

121 end

122 end

123

124 % thre_burn=max(grad)/(.5*abs(log(max(Exp_value1))));

125 thre_lim=min(grad)/1000;
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126

127 cont=0;

128 for i=1:length(grad)−1

129

130 if grad(i+1)−grad(i)<thre_lim

131 limit=(i+1)*inc1;

132 end

133

134 end

135 burn_period=0;

136 end

137

138 end

B.5 Model-class evidence computation code

1 % Code to compute the evidence of a model class definition

2

3

4 function [Expinfgain Expctdlglikhd Logev]=damage_evidence(delay,...

5 interfaces,layers,model_m,mu,parameters_la,parameters_in,...

6 prop_stdv,sigma,std_mod_error,prior_samples,target,th,burn,limit)

7

8 ip_vars; ip_init;

9 fpx_vars; fpx_init;

10 contsave=1;

11 cont=1;

12 %% Definition of the parameters to compute the model class evidence

13 % Definition of the amount of parameters saved

14

15 % Must be between burn and limit (must be close to the limit)

16 % This will be the "center value" of the PDF

17 if 0.6*limit(end)>burn
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18 cyc_cent1=[0.6*limit(end):(.35*limit(end)/20):.95*limit(end)];

19 elseif 0.6*limit(end)<burn && 0.79*limit(end)>burn

20 cyc_cent1=[0.8*limit(end):(.15*limit(end)/20):.95*limit(end)];

21 else

22 cyc_cent1=[(burn+1):((1*limit(end)−(burn+1))/20):1*limit(end)];

23 end

24

25 cyc_cent=round(cyc_cent1);

26 N2=1000; % Number of samples

27 N1=limit(end)−burn+1; % Number of samples

28

29 for j=1:length(cyc_cent)

30 j

31 % Selected parameters. Parameter "k"

32 th_slct=th(:,burn:limit(end));

33 % Target (proposal) values of the selected parameters

34 trgt_slct=target(burn:limit(end));

35

36 for i=1:N1

37 %i

38 if j==1

39 % Prior values of the selected parameters

40 prior_slct(i)=prod(lognpdf(th_slct(:,i),mu',sigma'));

41 % Likelihood values of the selected parameters as target/prior

42 lik_slct(i)=trgt_slct(i)./prior_slct(i);

43 end

44

45 if i==1

46 % Selected parameters around the central value

47 th_cent(:,j)=th_slct(:,cyc_cent(j)−burn);

48 % Target (proposal) values of the central values

49 trgt_cent(j)=target(cyc_cent(j)−burn);

50 % Prior values of the central parameters

51 prior_th(j)=prod(lognpdf(th_cent(:,j),mu',sigma'));
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52 % Likelihood values of the central parameters as target/prior

53 lik_cent(j)=trgt_cent(j)./prior_th(j);

54 end

55

56 %% Calculation of average goodness of fit

57 if i==N1

58 %Log−Likelihood of the selected parameters

59 Expctdlglikhd=(1/N1)*sum(log10(lik_slct(:)));

60 end

61 %% Calculation of the analytical approx of posterior

62

63 % Calculation of numerator of analytical approx. of posterior

64 % Evaluation of the proposal, centred in the selected parameters

65 % and evaluating the central values

66 eps_k(i)=mvnpdf(th_cent(:,j)',th_slct(:,i)',diag(prop_stdv.^2));

67

68 % Evaluation of the ratio between central parameters target

69 % and selected parameters target

70 tau_k(i)=min(1,trgt_cent(j)/trgt_slct(i));

71

72 end

73

74 % Numerator of the approx posterior

75 numerator(j)=1/N1*sum(eps_k.*tau_k);

76

77 % Calculation of denominator

78 % Proposed samples, N2 samples

79 prop_samples=[mvnrnd(th_cent(:,j),prop_stdv.^2,N2)];

80

81 for l=1:length(prop_samples(end,:))

82 for i=1:length(prop_samples(:,end))

83 if prop_samples(i,l)≤0

84 prop_samples(i,l)=0.001;

85 end
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86 end

87 end

88

89 for i=1:N2

90 % Prior pdf of the samples

91 prior(i)=prod(lognpdf(prop_samples(i,:),mu,sigma));

92 lik(i)=ip_fun(parameters_la,parameters_in,layers,...

93 interfaces,prop_samples(i,:),...

94 model_m,std_mod_error,delay); % Likelihood of the samples

95

96 % Target (proposal) of the proposed samples

97 target_l(i)=prior(i)*lik(i);

98

99 % Ratio between target of proposed values

100 % and the target of central value

101 rho_l(i)=min(1,target_l(i)/trgt_cent(j));

102

103 end

104 % Denominator of de approx posterior

105 denominator(j)=1/N2*sum(rho_l);

106 % Posterior approximate

107 post_approx(j)=numerator(j)/denominator(j);

108

109 %% Log−evidence for a model class

110 Logev(j)=log10(lik_cent(j))+log10(prior_th(j))−log10(post_approx(j));

111

112 %% Expected information gained

113 Expinfgain(j)=Expctdlglikhd−Logev(j);

114

115 cont=cont+1

116

117 Expinfgain_mean=mean(Expinfgain)

118

119 Expctdlglikhd



B.5 Model-class evidence computation code 88

120

121 Logev_mean=mean(Logev)

122 end

123

124 end
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