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Abstract

We write down a minimal basis for dimension-six gauge-invariant four-fermion

operators, with some operator replacements with respect to previous ones which

make it simpler for calculations. Using this basis we classify all four-fermion op-

erator contributions involving one or two top quarks. Taking into account the

different fermion chiralities, possible colour contractions and independent flavour

combinations, a total number of 572 gauge-invariant operators are involved. We

apply this to calculate all three-body top decay widths t → dkuid̄j , t → dke
+
i νj ,

t → ukuiūj , t → uke
+
j e

−

i , t → ukν̄jνi (with i, j, k generation indices) mediated by

dimension-six four-fermion operators, including the interference with the Stan-

dard Model amplitudes when present. All single top production cross sections in

pp, pp̄ and e+e− collisions are calculated as well, namely uidk → djt, d̄jdk → ūit,

uid̄j → d̄kt, uiuk → ujt, uiūj → ūkt, e+e− → ūkt and the charge conjugate

processes. We also compute all top pair production cross sections, ūiuj → tt̄,

d̄idj → tt̄, uiuj → tt and e+e− → tt̄. Our results are completely general, without

assuming any particular relation among effective operator coefficients.

1 Introduction

Indirect searches for physics at scales not directly accessible have proved to be fruitful in

the past as, for instance, the successful prediction of the top quark mass from radiative

corrections has shown. Above the electroweak symmetry breaking scale, new physics

not directly observed can be probed by parameterising its effects in terms of an effective

Lagrangian involving only the Standard Model (SM) fields and invariant under the SM

gauge symmetry SU(3)c × SU(2)L × U(1)Y [1–3],

Leff =
∑ Cx

Λ2
Ox + . . . , (1)

where Ox are dimension-six gauge-invariant operators, Λ is the new physics scale and Cx

are complex constants. Effects of dimension-eight and higher-order operators are sup-

pressed by at least 1/Λ4, and are ignored in this work. Dimension-six gauge-invariant
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operators were classified in Refs. [3, 4], totalling 81 operators up to (many combi-

nations of) flavour indices. Later, several of these operators have been found to be

redundant [5, 6] and the original list has been significantly reduced.

For top physics, the most relevant dimension-six operators are (i) those yielding

top tri-linear couplings with a W , Z, photon, gluon or Higgs boson; (ii) four-fermion

ones. The former have been classified in Refs. [6] and a minimal set of top anomalous

couplings has been obtained by dropping redundant operators. For the latter, the aim

of this paper is precisely to perform such a classification, concentrating on the operators

involving one or two top quarks. These operators can mediate top three-body decays,

single top production in association with a light quark and top pair production. They

will therefore be probed with a high precision at the Large Hadron Collider (LHC),

which is expected to produce top quarks copiously. The phenomenology of top-gauge

boson operators using a minimal basis has been investigated in detail in Refs. [7, 8].

For four-fermion operators, there is yet a wide field to be explored.

We will begin our task by writing down a new, completely general, basis for

dimension-six four-fermion operators. We will prove that it is equivalent to previ-

ous ones [3,4] with some redundant operators dropped and few operator replacements

which make our basis more “symmetric”. We will find some advantages when using

it. First, amplitude calculations are more straightforward, as the colour and isospin

structures at the operator level are simpler. Secondly, the results obtained for many

observables of interest (as for instance cross sections and decay widths) are very simple

in this basis due to its symmetry, and interferences between operators and also with

SM contributions are trivial in most cases. For specific processes a different, particular

operator selection may reduce further the interferences and give slightly more compact

expressions but, in general, the expressions obtained in our basis are quite simple,

given the large number of parameters involved. And, in any case, expressions for ob-

servables in terms of a different operator set are straightforward to obtain, as we will

occassionally do in order to compare with previous literature.

After introducing our basis we will classify all four-fermion operators which give

contributions to the effective Lagrangian involving one or two top quarks. Taking into

account the different fermion chiralities, colour contractions and independent flavour

combinations, a total number of 572 gauge-invariant operators are involved. But re-

markably, all the contributions to the Lagrangian we are interested in can be neatly

summarised in few tables of easy reading, which we expect will be useful for future

four-fermion operator studies, at the very least for bookkeeping purposes. This classi-

fication allows to easily find out which gauge-invariant operators generate four-fermion

terms with one top quark, with two top quarks, or both, and the relations between
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these contributions implied by gauge symmetry. The type of the terms generated de-

termines the processes to which gauge-invariant operators can contribute, and in which

their presence can be probed. Thus, relations between four-fermion contributions imply

relations between processes in which new physics may manifest itself.

As a first application of this classification, we calculate all three-body top decay

widths, single top and top pair cross sections in pp, pp̄ and e+e− collisions, including

dimension-six four-fermion operators, the SM contribution and their interference. They

are:

• Charged current decays t → dkuidj, t → dke
+
i νj and production processes uidk →

djt, d̄jdk → ūit, uid̄j → d̄kt (the charge conjugate processes are also understood).

They involve SM contributions, which are very suppressed by small Cabibbo-

Kobayashi-Maskawa (CKM) mixing angles V3k for k = 1, 2, as well as four-fermion

ones.

• Flavour-changing neutral (FCN) decays t → ukuiūj, t → uke
+
j e

−

i , t → ukν̄jνi

and production processes uiuk → ujt, uiūj → ūkt, e+e− → ūkt which do not

take place at the tree level in the SM and are suppressed at one loop by the

Glashow-Iliopoulos-Maiani mechanism [9]. In this case, SM contributions can

be safely neglected. (Strictly speaking, four-fermion amplitudes do not involve

neutral currents, but it is still useful to use this notation for processes with four

quarks of charge 2/3.)

• Top pair production processes: tt̄ production ūiuj → tt̄, d̄idj → tt̄, e+e− → tt̄,

which have a SM contribution, and like-sign top pair production uiuj → tt which

is absent in the SM at the tree level. In particular, we give expressions to calculate

the top forward-backward (FB) asymmetry at Tevatron including all contributing

four-fermion operators.

The explicit expressions provided for these observables are relatively simple. Neverthe-

less, there are a plethora of processes studied and keeping a reasonable paper length

requires some amount of compact notation, giving observables such as cross sections in

terms of gauge-invariant operator coefficients and numerical factors, collected in tables

for LHC with a centre of mass (CM) energy of 14 and 7 TeV, and for Tevatron.

It is not our aim to explore the phenomenological consequences of the results derived

in this paper, although we will in some cases comment about the implications of these

results. Such studies, to be properly addressed, require either to treat the independent

parameters (operator coefficients) as effectively independent, or a well-based assump-

tion regarding the relations among them. After all, a gauge-invariant operator basis
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is a basis in which heavy new physics contributions can be parameterised. One would

not expect that any kind of new physics, when integrated out from the Lagrangian,

yields effective operators with unrelated coefficients, all of the same order and with-

out “cancellations”. On the contrary, the opposite behaviour is often found [10, 11]:

heavy new physics when integrated out gives effective operators with correlated coef-

ficients. With this philosophy, we will ignore the common prejudice which sets to zero

the coefficients of operators containing terms which could affect B physics, invoking

the absence of cancellations between effective operator contributions. That possibility,

which may appear to be a “fine tuning”, may well be only an effect of the choice of

basis. Examples are known [10,12] for which these apparent cancellations are not only

natural but required by the nature of the new heavy physics which is integrated out to

yield effective operators.

A final point deserves mention here. In our calculations we keep terms linear in

operator coefficients, proportional to 1/Λ2, and quadratic ones proportional to 1/Λ4.

This is not inconsistent despite the fact that we ignore dimension-eight and higher-

order operators. For processes without a SM contribution, and for fermion chiralities

which do not interfere with the SM amplitudes, the lowest-order term is the 1/Λ4 one,

and higher-dimension operators give contributions suppressed by higher powers of Λ.

Therefore, the expansion is consistent. For fermion chiralities interfering with the SM,

dimension-six operators give linear 1/Λ2 and quadratic 1/Λ4 terms, while dimension-

eight operators would give 1/Λ4 and 1/Λ8 contributions. In this case, 1/Λ4 terms are

sub-leading and could be dropped, but we still keep them (there is no harm in doing

that, and they can always be discarded a posteriori) as part of a complete calculation

to order 1/Λ4, with some missing 1/Λ4 contributions from dimension-eight operators

interfering with the SM amplitude.

The necessity to keep quadratic terms in calculations should be clear for many

reasons. First, there are many new physics effects that cannot be properly addressed

only with the operators interfering with the SM. Actually, operators which do not have

interference with the SM are the ones mediating genuinely new physics effects, beyond

corrections to SM processes. FCN processes, which are extremely suppressed within

the SM, constitute one classical example but there are several other ones, as chirality-

breaking effects for light quarks (see Ref. [12] for a detailed discussion). Such effects,

absent in the SM, could then be visible even if suppressed by 1/Λ4. On the other

hand, nothing guarantees that, if new heavy physics manifests itself at low energies,

it can be parameterised precisely by the operators interfering with the SM. A third

reason is that, as we will find in the following, the quadratic 1/Λ4 corrections from

non-interfering operators can be in some cases as large as the linear 1/Λ2 corrections
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from interference terms.

The rest of this paper is structured as follows. In section 2 we write our four-

fermion operator basis and in section 3 we classify the four-fermion contributions to

the Lagrangian involving one or two top quarks. The explicit calculations of top decay

widths are presented in section 4, cross sections for single top production are given

in section 5 and for top pair production in section 6. We summarise our results in

section 7.

2 Four-fermion operator basis

We follow the notation in Refs. [3,4] for gauge-invariant operators, introducing flavour

indices i, j, k, l = 1, 2, 3. The left-handed weak SU(2)L doublets are qLi, ℓLi and the

right-handed singlets uRi, dRi, eRi. The Pauli matrices are τ I , I = 1, 2, 3, the Gell-

Mann matrices λa, a = 1, . . . , 8, normalised to tr(λaλb) = 2δab, and ǫ = iτ 2. Fermion

fields are ordered according to their spinorial index contraction. In operators with four

quark fields, the subindices a, b indicate the pairs with colour indices contracted, if

this pairing is different from the one for the spinorial contraction. Our basis consists

of the following operators:

(i) L̄LL̄L operators

Oijkl
qq = 1

2
(q̄Liγ

µqLj)(q̄LkγµqLl) , Oijkl
qq′ = 1

2
(q̄Liaγ

µqLjb)(q̄LkbγµqLla) ,

Oijkl
ℓq = (ℓ̄Liγ

µℓLj)(q̄LkγµqLl) , Oijkl
ℓq′ = (ℓ̄Liγ

µqLj)(q̄LkγµℓLl) ,

Oijkl
ℓℓ = 1

2
(ℓ̄Liγ

µℓLj)(ℓ̄LkγµℓLl) . (2)

(ii) R̄RR̄R operators

Oijkl
uu = 1

2
(ūRiγ

µuRj)(ūRkγµuRl) , Oijkl
dd = 1

2
(d̄Riγ

µdRj)(d̄RkγµdRl) ,

Oijkl
ud = (ūRiγ

µuRj)(d̄RkγµdRl) , Oijkl
ud′ = (ūRiaγ

µuRjb)(d̄RkbγµdRla) ,

Oijkl
eu = (ēRiγ

µeRj)(ūRkγµuRl) , Oijkl
ed = (ēRiγ

µeRj)(d̄RkγµdRl) ,

Oijkl
ee = 1

2
(ēRiγ

µeRj)(ēRkγµeRl) . (3)

(iii) L̄RR̄L operators

Oijkl
qu = (q̄LiuRj)(ūRkqLl) , Oijkl

qu′ = (q̄LiauRjb)(ūRkbqLla) ,

Oijkl
qd = (q̄LidRj)(d̄RkqLl) , Oijkl

qd′ = (q̄LiadRjb)(d̄RkbqLla) ,

Oijkl
ℓu = (ℓ̄LiuRj)(ūRkℓLl) , Oijkl

ℓd = (ℓ̄LidRj)(d̄RkℓLl) ,

Oijkl
qe = (q̄LieRj)(ēRkqLl) , Oijkl

qde = (ℓ̄LieRj)(d̄RkqLl) ,

Oijkl
ℓe = (ℓ̄LieRj)(ēRkℓLl) . (4)
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(iv) L̄RL̄R operators

Oijkl
qqǫ = (q̄LiuRj)

[

(q̄Lkǫ)
TdRl

]

, Oijkl
qqǫ′ = (q̄LiauRjb)

[

(q̄Lkbǫ)
TdRla

]

,

Oijkl
ℓqǫ = (ℓ̄LieRj)

[

(q̄Lkǫ)
TuRl

]

, Oijkl
qℓǫ = (q̄LieRj)

[

(ℓ̄Lkǫ)
TuRl

]

. (5)

All the remaining four-fermion operators written in Refs. [3,4] but not included in our

list can be written in terms of these, using the completeness relations for Pauli and

Gell-Mann matrices

3
∑

I=1

(τ I)ij(τ
I)kl = 2

(

δilδkj − 1
2
δijδkl

)

,

8
∑

a=1

(λa)ij(λ
a)kl = 2

(

δilδkj − 1
3
δijδkl

)

, (6)

and Fierz rearrangements

(ĀLγ
µBL)(C̄LγµDL) = (ĀLγ

µDL)(C̄LγµBL) ,

(ĀRγ
µBR)(C̄RγµDR) = (ĀRγ

µDR)(C̄RγµBR) ,

(ĀRγ
µBR)(C̄LγµDL) = −2(C̄LBR)(ĀRDL) , (7)

where A,B,C,D are four-component spinors of the chirality indicated in each case.

Explicitly, the operators written in Refs. [3, 4] but missing from our list are

O
(3,ijkl)
ℓℓ = 1

2
(ℓ̄Liγµτ

IℓLj)(ℓ̄Lkγ
µτ IℓLl) = 2Oilkj

ℓℓ − Oijkl
ℓℓ ,

O(8,1,ijkl)
qq = 1

2
(q̄Liγµλ

aqLj)(q̄Lkγ
µλaqLl) = 2Oijkl

qq′ − 2
3
Oijkl

qq ,

O(1,3,ijkl)
qq = 1

2
(q̄Liγµτ

IqLj)(q̄Lkγ
µτ IqLl) = 2Oilkj

qq′ − Oijkl
qq ,

O(8,3,ijkl)
qq = 1

2
(q̄Liγµλ

aτ IqLj)(q̄Lkγ
µλaτ IqLl) = 4Oilkj

qq + 2
3
Oijkl

qq − 2Oijkl
qq′ − 4

3
Oilkj

qq′ ,

O
(3,ijkl)
ℓq = (ℓ̄Liγµτ

IℓLj)(q̄Lkγ
µτ IqLl) = 2Oilkj

ℓq′ − Oijkl
ℓq ,

O(8,ijkl)
uu = 1

2
(ūRiγµλ

auRj)(ūRkγ
µλauRl) = 2Oilkj

uu − 2
3
Oijkl

uu ,

O
(8,ijkl)
dd = 1

2
(d̄Riγµλ

adRj)(d̄Rkγ
µλadRl) = 2Oilkj

dd − 2
3
Oijkl

dd ,

O
(8,ijkl)
ud = (ūRiγµλ

auRj)(d̄Rkγ
µλadRl) = 2Oilkj

ud′ − 2
3
Oijkl

ud ,

O(8,ijkl)
qu = (q̄Liλ

auRj)(ūRkλ
aqLl) = 2Oijkl

qu′ − 2
3
Oijkl

qu ,

O
(8,ijkl)
qd = (q̄Liλ

adRj)(d̄Rkλ
aqLl) ,= 2Oijkl

qd′ − 2
3
Oijkl

qd ,

O(8,ijkl)
qqǫ = (q̄Liλ

auRj)
[

(q̄Lkǫ)
TλadRl

]

= 2Oijkl
qqǫ′ − 2

3
Oijkl

qqǫ . (8)

Some of these relations have previously been obtained in Ref. [13]. In summary: in

our basis we have (i) dropped from the list in Refs. [3, 4] the unnecessary operators
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O
(3,ijkl)
ℓℓ , O(1,3,ijkl)

qq , O(8,3,ijkl)
qq , O(8,ijkl)

uu and O
(8,ijkl)
dd ; (ii) replaced six operators,

O(8,1,ijkl)
qq → Oijkl

qq′ = 1
3
Oijkl

qq + 1
2
O

(8,1,ijkl)
qq ,

O
(3,ijkl)
ℓq → Oijkl

ℓq′ = 1
2
Oilkj

ℓq + 1
2
O

(3,ilkj)
ℓq ,

O
(8,ijkl)
ud → Oijkl

ud′ = 1
3
Oilkj

ud + 1
2
O

(8,ilkj)
ud ,

O(8,ijkl)
qu → Oijkl

qu′ = 1
3
Oijkl

qu + 1
2
O

(8,ijkl)
qu ,

O
(8,ijkl)
qd → Oijkl

qd′ = 1
3
Oijkl

qd + 1
2
O

(8,ijkl)
qd ,

O(8,ijkl)
qqǫ → Oijkl

qqǫ′ =
1
3
Oijkl

qqǫ + 1
2
O

(8,ijkl)
qqǫ . (9)

We see that these substitutions lead to a larger “symmetry” in our basis than in the

previous ones, which is apparent with a glance at Eqs. (2)–(5). In particular, our

operators do not involve λa (nor τ I) matrices but instead we have operators Oijkl
qq′ , Oijkl

ud′ ,

Oijkl
qu′ , Oijkl

qd′ and Oijkl
qqǫ′ in which the colour and spinorial indices are contracted between

different quarks pairs. This obviously simplifies amplitude calculations because the

λa
ijλ

a
kl colour sums do not have to be done case by case. But a more important advantage

is that operators with the same quark fields but different colour contractions, e.g. Oijkl
ud

and Oijkl
ud′ , correspond to the two possible colour flows in the four-fermion amplitudes

and only interfere when all colours are equal. These interferences are trivial (100%

constructive), take the same form in most processes and are easy to parameterise. The

symmetry in our basis leads to simple expressions for top decay widths and production

cross sections, as it will be seen in sections 4–6.

3 Four-fermion contributions

In this section we provide a complete list of independent four-fermion operators which

give Lagrangian terms with one or two top quarks. We use the shorthand

αx =
Cx

Λ2
(10)

to easy the notation, and perform Fierz rearrangements of L̄RR̄L terms. We classify

the operators according to the four-fermion terms they give, which in turn determine

the processes to which they can contribute. We find it also convenient to separate the

four-fermion operators giving terms with a b quark (which is the SU(2)L partner of the

top) from those giving lighter down-type quarks dk, k = 1, 2.
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3.1 Four-fermion terms tb̄ūidj, tt̄ūiuj, tt̄d̄idj

Four-fermion terms in these three groups arise from four-quark gauge invariant opera-

tors with two flavour indices equal to three. Often, the same gauge-invariant operator

gives contributions in more than one of these groups. For this reason it is convenient

to study them together, allowing for an easy comparison between the different four-

fermion contributions. Needless to say, the links between terms in the different groups

are due to the gauge symmetry.

The gauge-invariant operators giving four-fermion terms tb̄ūidj, tt̄ūiuj and tt̄d̄idj

(plus the Hermitian conjugate), with ui,j = u, c, di,j = d, s, b, are collected in Table 1.

We also give the number of independent operators in each case. Note that, for example,

O3123
qq = O3213†

qq and these two operators are not independent. The same applies to other

flavour combinations not listed, involving different index ordering.

tb̄ūidj tt̄ūiuj tt̄d̄idj # tb̄ūidj tt̄ūiuj tt̄d̄idj #

O3ji3

qq(
′) X X – 10 O3ji3

qu(′) – X – 6

Oij33

qq(
′) – X X 12 Oij33

qd(
′) X – – 12

Oij33
uu – X – 3 O3ji3

qd(
′) – – X 12

O3ji3
uu – X – 3 Oi33j

qqǫ(
′) X – X 12

Oi33j

ud(
′) X – – 12 O33ij

qqǫ(
′) X – X 12

O33ij

ud(
′) – – X 12 O3ij3

qqǫ(
′) X – – 12

O33ij

qu(′) X X – 12 Oji33

qqǫ(
′) X – – 8

Oi33j

qu(′) – X X 12

Table 1: Gauge-invariant operators giving four-fermion terms tb̄ūidj, tt̄ūiuj and tt̄d̄idj

(plus the Hermitian conjugate). The number of independent operators is also indicated.

Operators involving tb̄ūidj fields contribute to the top three-body decay t → buid̄j

and processes related by crossing symmetry and/or charge conjugation, such as single

top production in hadron collisions, uib → djt, d̄jb → ūit and uid̄j → b̄t. For each

set of fields t, b̄, ūi, dj there are 16 independent four-fermion terms, in 4 vector and 4

scalar structures, each with two possible colour contractions. Symbolically, we have

L̄LL̄L , L̄LR̄R , R̄RL̄L , R̄RR̄R ,

L̄aLbL̄bLa , L̄aLbR̄bRa , R̄aRbLbLa , R̄aRbR̄bRa ,

L̄RL̄R , R̄LR̄L (two orderings) ,

L̄aRbL̄bRa , R̄aLbR̄bLa (two orderings) . (11)
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All the resulting effective Lagrangian terms are collected in Table 2, with their cor-

responding effective operator coefficients. We only show the terms involving t fields,

the Hermitian conjugate ones t̄buid̄j have the complex conjugate coefficients. In these

tables, the coefficient of each four-fermion term in the Lagrangian can be read by sim-

ply intersecting the corresponding row and column. In the case of L̄RL̄R and R̄LR̄L

terms the dots stand for the insertion of the two fields in the upper row, in the or-

der specified (their chirality is determined by the fields in the left column, that is,

b̄Lt = b̄LtR, b̄Rt = b̄RtL). The L̄LL̄L coefficients, which are not all independent, are

shown separately. The coefficients of Hermitian operators can be assumed real without

loss of generality; they are shown over a gray background.

➀ (ūLγµtL) (c̄LγµtL)

(b̄Lγ
µdL) α3113

qq α3213∗
qq /2

(b̄Lγ
µsL) α3213

qq /2 α3223
qq

(b̄Lγ
µbL) α3313

qq /2 α3323
qq /2

➁ (ūLbγµtLa) (c̄LbγµtLa)

(b̄Laγ
µdLb) α3113

qq′ α3213∗
qq′ /2

(b̄Laγ
µsLb) α3213

qq′ /2 α3223
qq′

(b̄Laγ
µbLb) α3313

qq′ /2 α3323
qq′ /2

(ūLiγµtL) (ūRiγµtR)

(b̄Lγ
µdLj) ➀ −α33ij

qu′ /2

(b̄Rγ
µdRj) −αij33

qd′ /2 αi33j
ud

(ūLibγµtLa) (ūRibγµtRa)

(b̄Laγ
µdLjb) ➁ −α33ij

qu /2

(b̄Raγ
µdRjb) −αij33

qd /2 αi33j
ud′

dj t t dj

(b̄L · ) (ūLi · ) −αi33j
qqǫ α33ij

qqǫ

(b̄R · ) (ūRi · ) −α3ij3∗
qqǫ αji33∗

qqǫ

djb ta tb dja

(b̄La · ) (ūLib · ) −αi33j
qqǫ′ α33ij

qqǫ′

(b̄Ra · ) (ūRib · ) −α3ij3∗
qqǫ′ αji33∗

qqǫ′

Table 2: Four-fermion contributions with tb̄ūidj fields, being i = 1, 2, j = 1, 2, 3. For

L̄RL̄R and R̄LR̄L terms the dots stand for the insertion of the fields in the upper row.

Real coefficients are shown over a gray background.

Operators involving tt̄ūiuj fields contribute for example to top pair production in

hadron collisions, ūiuj → tt̄. There are 10 independent four-fermion terms, all of vector

type, with two possible colour contractions,

L̄LL̄L , R̄RR̄R ,

L̄LR̄R , R̄RL̄L (three terms) ,

L̄aLbL̄bLa , R̄aRbR̄bRa ,

L̄aLbR̄bRa , R̄aRbL̄bLa (three terms) . (12)

The relevant four-fermion terms are collected in Table 3. Notice that many of them
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are not independent, but related by Hermitian conjugation. In the upper and middle

tables the dots stand for the insertion of the fields in the second row (the chirality of the

latter is determined by the fields in the left column); the resulting bilinear multiplies

the corresponding one in the first row. The coefficients of Hermitian operators can be

assumed to be real and are shown over a gray background.

⊗(t̄LγµtL) ⊗(t̄RγµtR)
u c u c

(ūLγ
µ · ) α1133

qq + α3113
qq′ (α1233

qq + α3213
qq′ )/2 −α1331

qu′ −α1332
qu′ /2

(c̄Lγ
µ · ) (α1233∗

qq + α3213∗
qq′ )/2 α2233

qq + α3223
qq′ −α1332∗

qu′ /2 −α2332
qu′

(ūRγ
µ · ) −α3113

qu′ −α3213
qu′ /2 α1133

uu α1233
uu /2

(c̄Rγ
µ · ) −α3213∗

qu′ /2 −α3223
qu′ α1233∗

uu /2 α2233
uu

⊗(t̄LbγµtLa) ⊗(t̄RbγµtRa)
ub cb ub cb

(ūLaγ
µ · ) α1133

qq′ + α3113
qq (α1233

qq′ + α3213
qq )/2 −α1331

qu −α1332
qu /2

(c̄Laγ
µ · ) (α1233∗

qq′ + α3213∗
qq )/2 α2233

qq′ + α3223
qq −α1332∗

qu /2 −α2332
qu

(ūRaγ
µ · ) −α3113

qu −α3213
qu /2 α3113

uu α3213
uu /2

(c̄Raγ
µ · ) −α3213∗

qu /2 −α3223
qu α3213∗

uu /2 α3223
uu

(ūLiγµtL) (ūRiγµtR)

(t̄Lγ
µuLj) – −α33ij

qu′ /2

(t̄Rγ
µuRj) −α33ji∗

qu′ /2 –

(ūLibγµtLa) (ūRibγµtRa)

(t̄Laγ
µuLjb) – −α33ij

qu /2

(t̄Raγ
µuRjb) −α33ji∗

qu /2 –

Table 3: Four-fermion contributions with tt̄ūiuj fields, being i, j = 1, 2. In the upper

and middle tables the dots stand for the insertion of the fields in the second row;

a multiplication by the corresponding bilinear in the first row is understood. Real

coefficients are shown over a gray background.

We point out that we have used Fierz identities to rewrite some terms such as

(t̄Lγ
µuLj)(ūLiγµtL), which arise from independent gauge-invariant operators, in order

to have as few different four-fermion structures as possible. Thus, the number of

independent four-fermion terms is 10, while the number of operator coefficients is 12.

Operators involving tt̄d̄idj fields also contribute to top pair production, d̄idj → tt̄.

There are 16 independent four-fermion terms, 8 of vector and 8 of scalar type, with two

possible colour contractions, as in Eqs. (11). The relevant four-fermion terms and their

coefficients are collected in Table 4. As in the previous examples, the dots stand for the
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insertion of the field(s) in the upper rows and the multiplication by the corresponding

bilinear, if so indicated. The coefficients of Hermitian operators can be assumed real

and are shown over a gray background.

⊗(t̄LγµtL) ⊗(t̄RγµtR)
d s b d s b

(d̄Lγ
µ · ) α1133

qq α1233
qq /2 α1333

qq /2 −α1331
qu′ −α1332

qu′ /2 −α1333
qu′ /2

(s̄Lγ
µ · ) α1233∗

qq /2 α2233
qq α2333

qq /2 −α1332∗
qu′ /2 −α2332

qu′ −α2333
qu′ /2

(b̄Lγ
µ · ) α1333∗

qq /2 α2333∗
qq /2 α3333

qq −α1333∗
qu′ /2 −α2333∗

qu′ /2 −α3333
qu′

(d̄Rγ
µ · ) −α3113

qd′ −α3213
qd′ /2 −α3313

qd′ /2 2α3311
ud α3312

ud α3313
ud

(s̄Rγ
µ · ) −α3213∗

qd′ /2 −α3223
qd′ −α3323

qd′ /2 α3312∗
ud 2α3322

ud α3323
ud

(b̄Rγ
µ · ) −α3313∗

qd′ /2 −α3323∗
qd′ /2 −α3333

qd′ α3313∗
ud α3323∗

ud 2α3333
ud

⊗(t̄LbγµtLa) ⊗(t̄RbγµtRa)
db sb bb db sb bb

(d̄Laγ
µ · ) α1133

qq′ α1233
qq′ /2 α1333

qq′ /2 −α1331
qu −α1332

qu /2 −α1333
qu /2

(s̄Laγ
µ · ) α1233∗

qq′ /2 α2233
qq′ α2333

qq′ /2 −α1332∗
qu /2 −α2332

qu −α2333
qu /2

(b̄Laγ
µ · ) α1333∗

qq′ /2 α2333∗
qq′ /2 α3333

qq′ −α1333∗
qu /2 −α2333∗

qu /2 −α3333
qu

(d̄Raγ
µ · ) −α3113

qd −α3213
qd /2 −α3313

qd /2 2α3311
ud′ α3312

ud′ α3313
ud′

(s̄Raγ
µ · ) −α3213∗

qd /2 −α3223
qd −α3323

qd /2 α3312∗
ud′ 2α3322

ud′ α3323
ud′

(b̄Raγ
µ · ) −α3313∗

qd /2 −α3323∗
qd /2 −α3333

qd α3313∗
ud′ α3323∗

ud′ 2α3333
ud′

dj t t dj

(d̄Li · ) (t̄L · ) −α33ij
qqǫ αi33j

qqǫ

(d̄Ri · ) (t̄R · ) −α33ji∗
qqǫ αj33i∗

qqǫ

djb ta tb dja

(d̄Lia · ) (t̄Lb · ) −α33ij
qqǫ′ αi33j

qqǫ′

(d̄Ria · ) (t̄Rb · ) −α33ji∗
qqǫ′ αj33i∗

qqǫ′

Table 4: Four-fermion contributions with tt̄d̄idj fields, being i, j = 1, 2, 3. For vector

terms the dots stand for the insertion of the fields in the second row; a multiplication

by the corresponding bilinear in the first row is understood. For L̄RL̄R and R̄LR̄L

terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

3.2 Four-fermion terms tb̄eiν̄j, tt̄eiēj, tt̄νiν̄j

These four-fermion terms arise from gauge invariant operators with two quarks and

two leptons, with the two quark flavour indices equal to three and the lepton indices
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arbitrary. The list of gauge-invariant operators and the type(s) of terms they give is

presented in Table 5, including the number of independent operators in each case.

tb̄eiν̄j tt̄eiēj tt̄νiν̄j # tb̄eiν̄j tt̄eiēj tt̄νiν̄j #

Oji33
ℓq – X X 6 O3ij3

qe – X – 6

Oj33i
ℓq′ X – X 6 Oji33

qde X – – 9

Oji33
eu – X – 6 Oji33

ℓqǫ X X – 9

Oj33i
ℓu – X X 6 O3ij3

qℓǫ X X – 9

Table 5: Gauge-invariant operators giving four-fermion terms tb̄eiν̄j, tt̄eiēj and tt̄νiν̄j

(plus the Hermitian conjugate). The number of independent operators is also indicated.

Four-fermion terms with fields tb̄eiν̄j contribute to three-body top decays t → be+i νj ,

being i, j = 1, 2, 3. Because νR fields are not introduced, there are only four Lorentz

structures, two of vector and two of scalar type,

L̄LL̄L , R̄RL̄L ,

L̄RL̄R (two orderings) . (13)

The contributions to the effective Lagrangian are the ones in Table 6, plus the Hermi-

tian conjugate. The coefficients of Hermitian operators can be assumed real without

loss of generality. They are displayed over a gray background.

➂ (ν̄eLγµtL) (ν̄µLγµtL) (ν̄τLγµtL)

(b̄Lγ
µeL) 2α1331

ℓq′ α2331
ℓq′ α3331

ℓq′

(b̄Lγ
µµL) α2331∗

ℓq′ 2α2332
ℓq′ α3332

ℓq′

(b̄Lγ
µτL) α3332∗

ℓq′ α3332∗
ℓq′ 2α3333

ℓq′

(ν̄LjγµtL)

(b̄Lγ
µeLi) ➂

(b̄Rγ
µeRi) −αji33

qde /2

ei t t ei

(b̄L · ) (ν̄Lj · ) α3ij3
qℓǫ −αji33

ℓqǫ

Table 6: Four-fermion contributions with tb̄eiν̄j fields, with i, j = 1, 2, 3. For L̄RL̄R

terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

Lagrangian terms with fields tt̄eiēj are involved for example in top pair production

at a future linear collider, e+e− → tt̄. These terms arise in eight possible Lorentz

structures, four vector and four scalar terms,

L̄LL̄L , L̄LR̄R , R̄RL̄L , R̄RR̄R ,

L̄RL̄R , R̄LR̄L (two orderings) . (14)
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All contributions to the effective Lagrangian are collected in Table 7. The coefficients

of Hermitian operators are shown over a gray background.

⊗(t̄LγµtL) ⊗(t̄RγµtR)
e µ τ e µ τ

(ēLγ
µ · ) 2α1133

ℓq α2133∗
ℓq α3133∗

ℓq −α1331
ℓu −α2331∗

ℓu /2 −α3331∗
ℓu /2

(µ̄Lγ
µ · ) α2133

ℓq 2α2233
ℓq α3233∗

ℓq −α2331
ℓu /2 −α2332

ℓu −α3332∗
ℓu /2

(τ̄Lγ
µ · ) α3133

ℓq α3233
ℓq 2α3333

ℓq −α3331
ℓu /2 −α3332

ℓu /2 −α3333
ℓu

(ēRγ
µ · ) −α3113

qe −α3123∗
qe /2 −α3133∗

qe /2 2α1133
eu α2133∗

eu α3133∗
eu

(µ̄Rγ
µ · ) −α3123

qe /2 −α3223
qe −α3233∗

qe /2 α2133
eu 2α2233

eu α3233∗
eu

(τ̄Rγ
µ · ) −α3133

qe /2 −α3233
qe /2 −α3333

qe α3133
eu α3233

eu 2α3333
eu

ei t t ei

(t̄L · ) (ēLj · ) −α3ij3
qℓǫ αji33

ℓqǫ

(t̄R · ) (ēRj · ) −α3ji3∗
qℓǫ αij33∗

ℓqǫ

Table 7: Four-fermion contributions with tt̄eiēj fields, with i, j = 1, 2, 3. For vector

terms the dots stand for the insertion of the fields in the second row; a multiplication

by the corresponding bilinear in the first row is understood. For L̄RL̄R and R̄LR̄L

terms the dots stand for the insertion of the fields in the upper row. Real coefficients

are shown over a gray background.

We also give for completeness the tt̄νiν̄j terms, although they seem to have little

relevance for phenomenology. After using Fierz rearrangements on some terms, there

are only two independent structures,

L̄LL̄L , L̄LR̄R , (15)

with three independent operator coefficients for each set of fields tt̄νiν̄j. We give in

Table 8 the full set of Lagrangian terms with their corresponding operator coefficients.

It is worth pointint out that, despite the fact that these four-fermion terms do not con-

tribute to lowest order processes in hadron or lepton collisions, the operators involved

can be probed either in top decays or in top pair production through the tb̄eiν̄j or tt̄eiēj
terms generated, see Table 5.

3.3 Four-fermion terms td̄kūidj, tūkūiuj, ttūkūi

These are four-fermion terms with dk = d, s (the case dk = b was presented in sec-

tion 3.1), ui,j = u, c, dj = d, s, b. They appear from four-quark gauge invariant opera-
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⊗(t̄LγµtL)
νe νµ ντ

(ν̄eLγ
µ · ) 2(α1133

ℓq + α1331
ℓq′ ) α2133∗

ℓq + α2331∗
ℓq′ α3133∗

ℓq + α3331∗
ℓq′

(ν̄µLγ
µ · ) α2133

ℓq + α2331
ℓq′ 2(α2233

ℓq + α2332
ℓq′ ) α3233∗

ℓq + α3332∗
ℓq′

(ν̄τLγ
µ · ) α3133

ℓq + α3331
ℓq′ α3233

ℓq + α3332
ℓq′ 2(α3333

ℓq + α3333
ℓq′ )

⊗(t̄RγµtR)
νe νµ ντ

(ν̄eLγ
µ · ) −α1331

ℓu −α2331∗
ℓu /2 −α3331∗

ℓu /2

(ν̄µLγ
µ · ) −α2331

ℓu /2 −α2332
ℓu −α3332∗

ℓu /2

(ν̄τLγ
µ · ) −α3331

ℓu /2 −α3332
ℓu /2 −α3333

ℓu

Table 8: Four-fermion contributions with tt̄νiν̄j fields, with i, j = 1, 2, 3. The dots

stand for the insertion of the fields in the second row; a multiplication by the corre-

sponding bilinear in the first row is understood. Real coefficients are shown over a gray

background.

tors with one or two flavour indices equal to three. (In the latter case there is no overlap

with the ones studied in section 3.1.) The gauge-invariant operators giving such terms

are collected in Table 9, also including the number of independent operators. Four-

fermion terms with two like-sign top quarks appear from the same operators giving

tūkūiuj terms, but when j = 3. Note that for Ok3ij

qu(′), O
ijk3

qu(′) and Oji3k

qqǫ(
′), O

3ijk

qqǫ(
′) there is

some double counting of flavour combinations when j = 3, and the total number of

operators in each case is 40.

td̄kūidj tūkūiuj ttūkūi # td̄kūidj tūkūiuj ttūkūi #

Okji3

qq(
′) X X X 22 Oijk3

qd(
′) X – – 24

Okji3
uu – X X 11 Oi3kj

qqǫ(
′) X – – 24

Oi3kj

ud(
′) X – – 24 O3ijk

qqǫ(
′) X – – 24

Ok3ij

qu(′) X X X 24 Oji3k

qqǫ(
′) X – – 16

Oijk3

qu(′) – X X 16

Table 9: Gauge-invariant operators giving four-fermion terms td̄kūidj, tūkūiuj and

ttūkūi (plus the Hermitian conjugate). The number of independent operators is also

indicated.

Operators involving td̄kūidj fields mediate top three-body decays t → dkuid̄j and

single top production uidk → djt, d̄jdk → ūit and uid̄j → d̄kt. These processes already
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take place in the SM but their amplitudes are very suppressed by small CKM mixings

V3k. As in the case dk = b, for each set of fields t, d̄k, ūi, dj there are 16 independent

four-fermion terms, 8 of vector and 8 of scalar type, with two possible colour contrac-

tions, summarised in Eqs. (11). The corresponding Lagrangian terms which involve t

fields are collected in Table 10. The L̄LL̄L operator coefficients are shown separately

because they are not all independent. In particular, we note that O2313
qq and O2313

qq′ give

two different four-fermion terms in each table.

➃ (ūLγµtL) (c̄LγµtL)

(d̄Lγ
µdL) α1113

qq /2 α1123
qq /2

(d̄Lγ
µsL) α1213

qq /2 α1223
qq /2

(d̄Lγ
µbL) α1313

qq α2313
qq /2

(s̄Lγ
µdL) α2113

qq /2 α2123
qq /2

(s̄Lγ
µsL) α2213

qq /2 α2223
qq /2

(s̄Lγ
µbL) α2313

qq /2 α2323
qq

➄ (ūLbγµtLa) (c̄LbγµtLa)

(d̄Laγ
µdLb) α1113

qq′ /2 α1123
qq′ /2

(d̄Laγ
µsLb) α1213

qq′ /2 α1223
qq′ /2

(d̄Laγ
µbLb) α1313

qq′ α2313
qq′ /2

(s̄Laγ
µdLb) α2113

qq′ /2 α2123
qq′ /2

(s̄Laγ
µsLb) α2213

qq′ /2 α2223
qq′ /2

(s̄Laγ
µbLb) α2313

qq′ /2 α2323
qq′

(ūLiγµtL) (ūRiγµtR)

(d̄Lkγ
µdLj) ➃ −αk3ij

qu′ /2

(d̄Rkγ
µdRj) −αijk3

qd′ /2 αi3kj
ud

(ūLibγµtLa) (ūRibγµtRa)

(d̄Lkaγ
µdLjb) ➄ −αk3ij

qu /2

(d̄Rkaγ
µdRjb) −αijk3

qd /2 αi3kj
ud′

dj t t dj

(d̄Lk · ) (ūLi · ) −αi3kj
qqǫ αk3ij

qqǫ

(d̄Rk · ) (ūRi · ) −α3ijk∗
qqǫ αji3k∗

qqǫ

djb ta tb dja

(d̄Lka · ) (ūLib · ) −αi3kj
qqǫ′ αk3ij

qqǫ′

(d̄Rka · ) (ūRib · ) −α3ijk∗
qqǫ′ αji3k∗

qqǫ′

Table 10: Four-fermion contributions with td̄kūidj fields, being i, k = 1, 2, j = 1, 2, 3.

For L̄RL̄R and R̄LR̄L terms the dots stand for the insertion of the fields in the upper

row.

On the other hand, four-fermion operators giving tūkūiuj terms mediate top FCN

decays t → ukuiūj, with i, j, k = 1, 2, as well as several single top production processes

such as uiuk → ujt, uiūj → ūkt. Since there are two identical (up to flavour indices)

fields ui, uk, there are only 6 independent four-fermion structures,

L̄LL̄L , L̄LR̄R , R̄RL̄L , R̄RR̄R ,

L̄aLbR̄bRa , R̄aRbL̄bLa . (16)

The resulting Lagrangian terms are presented in Table 11, where the hermitian con-

jugate ones are also understood. We have rewritten the (ūLkaγ
µuLjb)(ūLibγµtLa) con-
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(ūLiγµtL) (ūRiγµtR)

(ūLkγ
µuLj) (αkji3

qq + αijk3
qq′ )/2 −αk3ij

qu′ /2

(ūRkγ
µuRj) −αijk3

qu′ /2 αkji3
uu /2

(ūLibγµtLa) (ūRibγµtRa)

(ūLkaγ
µuLjb) – −αk3ij

qu /2

(ūRkaγ
µuRjb) −αijk3

qu /2 –

Table 11: Four-fermion contributions with tūkūiuj fields, with i, j, k = 1, 2.

tributions from Okji3
qq′ using a Fierz rearrangement and included them in the left table.

We point out that there is no analog to Okji3
uu with a different colour index contrac-

tion: these operators are redundant as we indicated in section 2. It is also worthwhile

remarking here that, since there are two light ū-type fields, in general each term will

give two contributions to the amplitudes. This multiplicity will be carefully dealt with

in the calculations performed in the following sections.

For operators with two like-sign top quarks, charge conservation requires that the

two other fields are light up-type quarks ui, uk. With two identical t fields, for L̄LL̄L

and R̄RR̄R operators the index combinations with i and k interchanged actually cor-

respond to the same operator. There are only four independent structures for them,

L̄LL̄L , R̄RR̄R , L̄LR̄R , L̄aLbR̄bRa , (17)

as the other possibilities are equivalent due to the presence of two t fields. The resulting

terms are collected in Table 12. In the upper table, the half below the diagonal is

identically equal to the one above, with exchange of the two bilinears. In the second

(ūLγµtL) (c̄LγµtL) (ūRγµtR) (c̄RγµtR)

(ūLγ
µtL) (α1313

qq + α1313
qq′ )/2 (α1323

qq + α1323
qq′ )/2 −α1313

qu′ /2 −α1323
qu′ /2

(c̄Lγ
µtL) – (α2323

qq + α2323
qq′ )/2 −α2313

qu′ /2 −α2323
qu′ /2

(ūRγ
µtR) – – α1313

uu /2 α1323
uu /2

(c̄Rγ
µtR) – – – α2323

uu /2

(ūLbγµtLa) (c̄LbγµtLa) (ūRbγµtRa) (c̄RbγµtRa)

(ūLaγ
µtLb) – – −α1313

qu /2 −α1323
qu /2

(c̄Laγ
µtLb) – – −α2313

qu /2 −α2323
qu /2

(ūRaγ
µtRb) – – – –

(c̄Raγ
µtRb) – – – –

Table 12: Four-fermion contributions with ttūiūk fields, with i, k = 1, 2.
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table, L̄LL̄L terms have been Fierz-rewritten into the first table and R̄RR̄R terms are

identical to the ones already included there.

3.4 Four-fermion terms td̄keiν̄j, tūkeiēj, tūkνiν̄j

These four-fermion terms with k = 1, 2 are analogous to the ones with k = 3 previously

classified in section 3.2. They arise from gauge invariant operators with two quarks and

two leptons, with only one quark flavour index equal to three and the lepton indices

arbitrary. The list of gauge-invariant operators producing these terms can be found in

Table 13, including the number of independent operators.

td̄keiν̄j tūkeiēj tūkνiν̄j # td̄keiν̄j tūkeiēj tūkνiν̄j #

Ojik3
ℓq – X X 18 Ojik3

qde X – – 18

Oj3ki
ℓq′ X – X 18 Ojik3

ℓqǫ X X – 18

Ojik3
eu – X – 18 Oij3k

ℓqǫ – X – 18

Oj3ki
ℓu – X X 18 Okij3

qℓǫ X X – 18

Okij3
qe – X – 18 O3jik

qℓǫ – X – 18

Table 13: Gauge-invariant operators giving four-fermion terms td̄keiν̄j , tūkeiēj and

tūkνiν̄j (plus the Hermitian conjugate). The number of independent operators is also

indicated.

Operators with fermion fields td̄keiν̄j can mediate top semileptonic decays t →
dke

+
i νj (k = 1, 2, i, j = 1, 2, 3). These decays take place in the SM when i = j, i.e. if

lepton flavour is conserved, but are suppressed by small CKM matrix elements. There

are only four possible Lorentz structures, two of vector and two of scalar type, as in

Eqs. (13). The resulting four-fermion contributions are given in Table 14, being the

Hermitian conjugate terms also present in the Lagrangian.

(ν̄LjγµtL)

(d̄Lkγ
µeLi) αj3ki

ℓq′

(d̄Rkγ
µeRi) −αjik3

qde /2

ei t t ei

(d̄Lk · ) (ν̄Lj · ) αkij3
qℓǫ −αjik3

ℓqǫ

Table 14: Four-fermion contributions with td̄keiν̄j fields, being k = 1, 2, i, j = 1, 2, 3.

For L̄RL̄R terms the dots stand for the insertion of the fields in the upper row.

Four-fermion operators with fields tūkeiēj can mediate top FCN decays t → uke
+
i e

−

j

and single top production e+e− → tūk, absent in the SM at the tree level. There are
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eight possible Lorentz structures for these four-fermion terms, four of vector type and

four scalar, as in Eqs. (14). All the possible four-fermion terms with their corresponding

coefficients are collected in Table 15. As before, the Hermitian conjugate terms are also

present in the Lagrangian and their coefficients are the complex conjugate of the ones

shown.

(ūLkγµtL) (ūRkγµtR)

(ēLjγ
µeLi) αjik3

ℓq −αj3ki
ℓu /2

(ēRjγ
µeRi) −αkij3

qe /2 αjik3
eu

ei t t ei

(ūLk · ) (ēLj · ) −αkij3
qℓǫ αjik3

ℓqǫ

(ūRk · ) (ēRj · ) −α3jik∗
qℓǫ αij3k∗

ℓqǫ

Table 15: Four-fermion contributions with tūkeiēj fields, being k = 1, 2, i, j = 1, 2, 3.

For L̄RL̄R and R̄LR̄L terms the dots stand for the insertion of the fields in the upper

row.

Finally, the tūkνiν̄j terms can also mediate top FCN decays t → ukνiν̄j. After using

a Fierz rearrangement, there are only two possible Lorentz structures of vector type,

as it happens for tt̄νiν̄j terms in Eq. (15). The resulting Lagrangian contributions are

collected in Table 16. (The Hermitian conjugate are also understood.)

(ūLkγµtL) (ūRkγµtR)

(ν̄Ljγ
µνLi) αjik3

ℓq + αj3ki
ℓq′ −αj3ki

ℓu /2

Table 16: Four-fermion contributions with tūkνiν̄j fields, being k = 1, 2, i, j = 1, 2, 3.

4 Top decay widths

In this section we calculate and present in turn the partial widths for the several three-

body decays mediated by four-fermion operators: charged current decays t → dkuid̄j

and t → dke
+
i νj (where now dk = d, s, b can be discussed together), and FCN decays

t → ukuiūj, t → uke
+
i e

−

j , t → ukν̄iνj. For top antiquark decays, the partial widths are

the same as the ones shown, but replacing CKM mixing elements and effective operator

coefficients by the complex conjugate. We obtain the top partial widths by integrating

the corresponding squared amplitudes over three-body phase space, taking all final

state particles massless. For charged current processes a SM contribution, mediated

precisely by an on-shell W boson, is present. In these cases we perform the exact

integrals including the W boson propagator and then make an expansion in ΓW/MW ,

keeping the necessary terms. Trace manipulations are done using FORM [18].
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We only consider interferences between four-fermion operators which do not require

chirality flips of light quarks. Also, most interferences between the SM and four-fermion

amplitudes are suppressed by a light u, d, c, s quark or lepton mass. The only exception

is for decays t → dkuib̄, where there are some interferences suppressed by mb which

we also neglect. These decays have SM amplitudes already suppressed by small CKM

mixings Vub or Vcb, anyway.

4.1 t → dkuid̄j

This decay can already take place in the SM, with an intermediate on-shell W boson.

Integrating in three-body phase space and taking the leading terms in ΓW/MW , we

obtain

ΓSM =
g2mt

192π

[

mt

MW

]2

|V3k|2|Vij|2(1− 3x4
W + 2x6

W ) , (18)

with xW = MW/mt. This result corresponds to the SM width for t → dkW times the

branching ratio for W → uid̄j.

For each set of indices i, j, k there are 16 four-fermion terms in the amplitude, 8

corresponding to the colour flow ta → dkauibd̄jb (with a, b colour indices) and 8 for

ta → dkbuiad̄jb. Both sets have a 100% constructive interference for a = b, which

happens for one third of the colour combinations. In order to write the partial widths

in a more compact form, it is then very useful to define functions

Π(x, y) = |x|2 + |y|2 + 2

3
Rexy∗ ,

Π(x, y, u, v) = xy∗ + uv∗ +
1

3
xv∗ +

1

3
uy∗ , (19)

which satisfy Π(x, x, y, y) = Π(x, y), Π(x, x) = 8/3|x|2. With this notation, the four-

fermion contributions for j, k 6= 3 read

Γ4F =
mt

2048π3

[mt

Λ

]4

×
{

Π(Ckji3
qq , Ckji3

qq′ ) + 4Π(C i3kj
ud , C i3kj

ud′ ) + Π(Ck3ij
qu′ , C

k3ij
qu ) + Π(C ijk3

qd′ , C ijk3
qd )

+Π(C i3kj
qqǫ , C i3kj

qqǫ′ ) + Π(Ck3ij
qqǫ , Ck3ij

qqǫ′ ) + Π(C3ijk
qqǫ , C3ijk

qqǫ′ ) + Π(Cji3k
qqǫ , Cji3k

qqǫ′ )

+ Re
[

Π(C i3kj
qqǫ , Ck3ij

qqǫ′ , C
i3kj
qqǫ′ , C

k3ij
qqǫ ) + Π(C3ijk

qqǫ , Cji3k
qqǫ′ , C

3ijk
qqǫ′ , C

ji3k
qqǫ )

]}

. (20)

When one of these indices equals three, substitutions in the L̄LL̄L coefficients of

Eq. (20) may have to be performed because not all flavour combinations arise from

independent operators, and some of them (in particular, the Hermitian ones) give a

contribution twice larger. According to Tables 2 and 10,
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• for k = 3 (decay t → buid̄k), C
kji3

qq(
′) must be replaced by 2C3ii3

qq(
′) (which are real) if

i = j, and by C3ij3∗

qq(
′) if i > j;

• for j = 3 (decay t → dkuib̄), C
kji3

qq(
′) must be replaced by 2C i3i3

qq(
′) if i = k, and by

C i3k3
qq(

′) if i > k.

The interference between four-fermion operators and the SM amplitude is

Γint =
g2mt

512π3

[mt

Λ

]2 {

Re
[

V3kV
∗

ij(C
kji3
qq′ + 1

3
Ckji3

qq )
]

(Ω−

R + Ω+
R)

−Im
[

V3kV
∗

ij(C
kji3
qq′ + 1

3
Ckji3

qq )
]

(Ω−

I + Ω+
I )
}

, (21)

where the kinematic factors Ω±

R,I arise from the three-body phase space integration for

invariant masses muid̄j
< MW (Ω−

R,I) and muid̄j
> MW (Ω+

R,I). The first term between

the curly brackets, proportional to the real part of coupling products, corresponds

to the off-peak interference (in which the W propagator is almost real), whereas the

second term with the imaginary part is the peak contribution, where the W propagator

is imaginary. The corresponding phase space factors are

Ω−

R ≃ −9

2
x4
W +

11

3
x6
W + (1− 3x4

W + 2x6
W ) log

ΓW

MW

+ 3π
ΓW

mt

(x3
W − x5

W ) ,

Ω+
R ≃ −5

6
− 2x2

W +
13

2
x4
W − 11

3
x6
W + (1− 3x4

W + 2x6
W ) log

m2
t −M2

W

ΓWMW

+3π
ΓW

mt

(x3
W − x5

W ) ,

Ω−

I ≃ Ω+
I ≃ π

2
(1− 3x4

W + 2x6
W ) . (22)

As it is expected, for the real part of the interference term there is a large cancellation

in the total rate between the two phase space regions muid̄j
< MW and muid̄j

> MW ,

in which the W boson propagator changes sign. For mt = 175 GeV, MW = 80.4 GeV,

ΓW = 2.14 GeV, we have Ω−

R = −3.367, Ω+
R = 3.385 and the sum Ω−

R + Ω+
R = 0.018

is 200 times smaller. On the other hand, the interference of the imaginary part is

practically equal at both sides of the peak. For illustration, we show in Fig. 1 the

normalised ud̄ invariant mass distribution for the decay t → bud̄ within the SM and

with C3113
qq′ = 10, Λ = 1 TeV. It has been obtained numerically by implementing in the

generator Protos [19] the four-fermion vertices. As a cross-check of our results, it has

been verified that the numerical values of the interference and quadratic contributions

coincide with the analytical ones in Eqs. (21) and (20). We observe that the leading

four-fermion operator contributions, suppressed with respect to the SM one by the

ratio

ηCC
dec ≡

3

8π2

[

MW

Λ

]2

Ω±

R ≃ 8.2× 10−4 1

Λ2
TeV2 , (23)
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Figure 1: Normalised ud̄ invariant mass distribution for the decay t → bud̄ within the

SM and with C3113
qq′ = 10, Λ = 1 TeV.

are rather small even for relatively large value of the effective operator coefficients.

Therefore, the presence of four-fermion operators with fields td̄kūidj can better be

detected in single top production, which is discussed in section 5.1.

Finally, we point out that only Okji3
qq and Okji3

qq′ interfere with the SM amplitude in

the limit of vanishing ui, d̄j masses. (The same coefficient replacements indicated above

have to be performed for specific values of indices.) The colour flow for the amplitude

with Okji3
qq′ is the same as the SM one, ta → dkauibd̄jb, and hence the interference takes

place for all colour combinations; for Okji3
qq the flow is the other one and thus the 1/3

factor multiplying its coefficient.

4.2 t → dke
+
i νj

This leptonic decay is much simpler than its hadronic counterpart in the previous

subsection, because there is only one colour flow and fewer gauge-invariant operators

with these fields. As a result, only 4 four-fermion terms contribute to the amplitude (see

Tables 6 and 14). The SM and four-fermion contributions, as well as their interference,

are

ΓSM =
g2mt

576π

[

mt

MW

]2

|V3k|2δij(1− 3x4
W + 2x6

W ) ,

Γ4F =
mt

6144π3

[mt

Λ

]4 [

4|Cj3ki
ℓq′ |2 + |Cjik3

qde |2 + |Ckij3
qℓǫ |2 + |Cjik3

ℓqǫ |2 + ReCkij3
qℓǫ Cjik3∗

ℓqǫ

]

,

Γint =
g2mt

768π3

[mt

Λ

]2

δij

{

Re [V3kC
j3ki
ℓq′ ](Ω−

R + Ω+
R)− Im [V3kC

j3ki
ℓq′ ](Ω−

I + Ω+
I )
}

. (24)
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For k = 3 (decay t → be+i νj) the coefficients Cj3ki
ℓq′ must be replaced by 2C i33i

ℓq′ (which

are real) if i = j, and by C i3kj∗
ℓq′ if i > j.

The leading effects of four-fermion operators in this decay, namely the interference

with the Oℓq′ operators, are suppressed by (MW/Λ)2 and numerical factors with respect

to the leading SM contribution. Still, this decay may be the only place to probe these

operators because they do not contribute to single top production in hadron collisions.

As we can see from Tables 5 and 13, Oℓq′ cannot be probed in e+e− collisions either.

On the other hand, for k = 1, 2, Oj3ki
ℓq′ also give tūkνiν̄j terms which can mediate a FCN

decay t → ukν̄iνj , discussed in section 4.4.

4.3 t → ukuiūj

This decay does not have a SM contribution but the calculation of the width is still

non-trivial due to the presence of two up-type quarks in the final state. We have to

distinguish the cases i 6= k and i = k. In the first case there are 12 contributions to the

amplitude, 6 corresponding to operators (ūiuj) (ūkt) and 6 to (ūkuj) (ūit), with i and

k interchanged. There are two colour flows ta → ukauibūjb and ta → ukbuiaūjb which

only interfere for a = b. After averaging over colours, the resulting partial width can

be compactly written as

Γ4F =
mt

2048π3

[mt

Λ

]4 [

Π(Ckji3
qq + C ijk3

qq′ , C ijk3
qq + Ckji3

qq′ ) + Π(Ckji3
uu , C ijk3

uu )

+Π(Ck3ij
qu′ , C

k3ij
qu ) + Π(C i3kj

qu′ , C
i3kj
qu ) + Π(C ijk3

qu′ , C
ijk3
qu ) + Π(Ckji3

qu′ , C
kji3
qu )

]

.

(25)

When i = k there are 6 operators and only one colour flow, ta → uiauibūjb, because

the two quarks uia, uib are precisely distinguished by colour when a 6= b. Whereas, for

a = b they are identical particles and the amplitudes get two contributions from each

Lagrangian term (with a 1/2 symmetry factor). The final result, after colour averaging,

is

Γ4F =
mt

2048π3

[mt

Λ

]4
[

4
3
|C iji3

qq + C iji3
qq′ |2 + 4

3
|C iji3

uu |2 +Π(C i3ij
qu′ , C i3ij

qu )

+Π(C iji3
qu′ , C

iji3
qu )

]

. (26)

The latter expression (independently calculated) corresponds to Eq. (25) setting i =

k and dividing by two (note that Π(x, x) = 8/3|x|2). This relation can be easily

understood from the previous considerations:

• Case a 6= b: for i 6= k there are two sets of contributing operators which differ by

the interchange i ↔ k, each set contributing to one of the possible colour flows.

22



For i = k there is only one set and only one colour flow. Then, setting i = k in

the partial width counts twice each contribution.

• Case a = b: for i 6= k there are two contributions from operators differing by

the exchange of i and k while for i = k each operator gives two terms in the

amplitude because the two final state ui quarks are identical. However, in the

latter case there is a symmetry factor of 1/2.

It is worthwhile pointing out that this relation for the partial widths with i 6= k and

i = k does not hold for the differential quantities, i.e. the angular distributions are not

the same.

The possible effect of FCN four-fermion operators in top decays can be measured

by the ratio of the prefactor in Γ4F over the SM width,

ηNC
dec ≡ mt/Γt

2048π3

[mt

Λ

]4

≃ 1.7× 10−6 1

Λ4
TeV4 , (27)

which determines the branching ratio for these decays, up to effective operator coeffi-

cients, once that the scale Λ is set. The small value of this quantity implies that it is

expected that new effects in FCN single top production (section 5.2) would be much

easier to spot.

4.4 t → uke
+
i e

−
j and t → ukν̄iνj

The computation of the decay rates for these processes, with a trivial colour structure

and no SM contribution, is rather straightforward. The coefficients of the eight opera-

tors contributing to t → uke
+
i e

−

j are given in Table 15. The partial width for this mode

is

Γ4F =
mt

6144π3

[mt

Λ

]4 [

4|Cjik3
ℓq |2 + 4|Cjik3

eu |2 + |Cj3ki
ℓu |2 + |Ckij3

qe |2 + |Ckij3
qℓǫ |2

+|Cjik3
ℓqǫ |2 + ReCkij3

qℓǫ Cjik3∗
ℓqǫ + |C3jik

qℓǫ |2 + |C ij3k
ℓqǫ |2 + ReC3jik

qℓǫ C ij3k∗
ℓqǫ

]

. (28)

The decay t → ukν̄iνj is completely analogous but involving only two four-fermion

terms, which can be read from Table 16. The corresponding partial width is

Γ4F =
mt

6144π3

[mt

Λ

]4 [

4|Cjik3
ℓq + Cj3ki

ℓq′ |2 + |Cj3ki
ℓu |2

]

. (29)

These FCN decays are suppressed by (mt/Λ)
4 as the previous decay t → ukuiūj but,

in contrast, the four-fermion terms involved do not contribute to single top production

at hadron colliders. For i = j = 1, tūkeē terms can be probed in single top production

at an e+e− collider, but this is not the case for other lepton flavours, nor for terms

involving two neutrinos.
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5 Single top production

After warming up with top decay width calculations, we present here the results for

crossing symmetry-related processes: single top production in association with a light

quark. Although the matrix elements are the same in both cases, in the latter the phase

space integration introduces kinematical differences among effective operator contribu-

tions, and initial state parton distribution functions (PDFs) between processes. This

makes the analysis much more cumbersome. We will discuss in turn charged current

processes at LHC and Tevatron, FCN single top production at the same machines and

single top production in e+e− collisions.

5.1 Charged current processes in pp, pp̄ collisions

These processes are the counterpart of the top decays studied in section 4.1. For a given

initial and final state there are, in addition to a SM amplitude (possibly suppressed by

small CKM matrix elements), 16 contributing four-fermion terms, 8 corresponding to

each colour flow, with 4 vector and 4 scalar Lorentz structures. All the cross sections

for these processes, namely

σ(uidk → djt) , σ(ūid̄k → d̄j t̄) ,

σ(d̄jdk → ūit) , σ(djd̄k → uit̄) ,

σ(uid̄j → d̄kt) , σ(ūidj → dkt̄) (30)

can be written as

σ = A0|V3k|2|Vij|2 +
Aint

Λ2
Re

[

V3kV
∗

ij(C
kji3
qq′ + 1

3
Ckji3

qq )
]

+
A1

Λ4

[

Π(Ckji3
qq , Ckji3

qq′ ) + 4Π(C i3kj
ud , C i3kj

ud′ )
]

+
A2

Λ4

[

Π(Ck3ij
qu′ , C

k3ij
qu ) + Π(C ijk3

qd′ , C ijk3
qd ) + Π(Ck3ij

qqǫ , Ck3ij
qqǫ′ ) + Π(Cji3k

qqǫ , Cji3k
qqǫ′ )

]

+
A3

Λ4

[

Π(C i3kj
qqǫ , C i3kj

qqǫ′ ) + Π(C3ijk
qqǫ , C3ijk

qqǫ′ )
]

+
A4

Λ4
Re

[

Π(C i3kj
qqǫ , Ck3ij

qqǫ′ , C
i3kj
qqǫ′ , C

k3ij
qqǫ ) + Π(C3ijk

qqǫ , Cji3k
qqǫ′ , C

3ijk
qqǫ′ , C

ji3k
qqǫ )

]

, (31)

where the numerical factors A0, Aint, A1−4 depend on the specific process, as well as

the collider (pp or pp̄) and CM energy. Notice that A0 times the appropriate CKM

matrix elements in the first term on Eq. (31) simply give the SM leading-order (LO)

single top cross sections for t- and s-channel single top production subprocesses. In

the above equation, the same replacements in operator coefficients done for top decays

must be performed for specific index values:
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• for k = 3, Ckji3

qq(
′) must be replaced by 2C3ii3

qq(
′) (which are real) if i = j, and by

C3ij3∗

qq(
′) if i > j;

• for j = 3, Ckji3

qq(
′) must be replaced by 2C i3i3

qq(
′) if i = k, and by C i3k3

qq(
′) if i > k.

The factors Ai for LHC with 14 TeV are collected in Table 17, for 7 TeV in Table 18

and for Tevatron in Table 19. They have been computed using CTEQ6L1 PDFs [20]

with Q = mt. There are more sophisticated factorisation scale choices for which SM

single top LO cross sections are closer to next-to-leading order ones, but we prefer

this simpler one, also bearing in mind that we are mainly interested in four-fermion

contributions.

For s-channel production, it is remarkable to find that the quadratic contributions

from some four-fermion operators which do not interfere with the SM amplitude can

be as large as those from the interference terms. For example, setting i = j = 1, k = 3

and neglecting CKM mixing for simplicity we have

σint(ud̄ → b̄t) =
4.92

Λ2
Re

[

C3113
qq′ + 1

3
C3113

qq

]

pb · TeV2 ,

σ4F(ud̄ → b̄t) =
4.78

Λ4

[

|C3311
qu′ |2 + |C3311

qu |2 + 2
3
ReC3311

qu′ C3311∗
qu

]

pb · TeV4 + . . . ,

(32)

where we have omitted quadratic contributions from other operators in the second

equation. For s-channel production the quadratic term is large because it is not sup-

pressed by the s-channel W propagator as the linear and SM terms are. In contrast,

for the t-channel processes ub → bt and d̄b → ūt the interference terms (Aint) are a

factor of five larger than the quadratic ones (A1−4).

It is also worth comparing the four-fermion operator effects in top decays and single

top production. In the former processes, the leading corrections are proportional to the

small ratio ηCC
dec in Eq. (23), of order 10−3. On the other hand, for single top production

the leading effects, relative to the SM cross sections, are proportional to

ηCC
prod ≡ Aint/Λ

2

A0
. (33)

For example, for ub → dt at LHC (with 14 and 7 TeV) this ratio is around ηCC
prod =

0.1/Λ2 TeV2, 100 times larger than ηCC
dec . This means that it will be difficult, using

bounds from other processes, to get rid of possible four-fermion operator contributions

to t-channel single top production to obtain a model-independent measurement of

Vtb [14].
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uidk → djt A0 Aint A1 A2, A3 A4

i = 1 k = 1 437 -51.6 14.9 5.03 -4.82 t

55.3 -5.33 0.530 0.185 -0.161 t̄

i = 2 k = 1 81.7 -8.10 0.915 0.317 -0.281 t

30.9 -2.88 0.247 0.087 -0.073 t̄

i = 1 k = 2 187 -19.6 2.91 0.997 -0.911 t

36.3 -3.42 0.310 0.109 -0.093 t̄

i = 2 k = 2 19.5 -1.78 0.142 0.050 -0.042 t/t̄

i = 1 k = 3 106 -10.7 1.27 0.438 -0.390 t

17.4 -1.59 0.123 0.044 -0.036 t̄

i = 2 k = 3 8.89 -0.784 0.054 0.019 -0.015 t/t̄

d̄jdk → ūit A0 Aint A1, A2 A3, A4

j = 1 k = 1 120 -9.93 0.783 2.28 t/t̄

j = 2 k = 1 85.7 -6.86 0.475 1.37 t

33.9 -2.54 0.133 0.380 t̄

j = 1 k = 2 33.9 -2.54 0.133 0.380 t

85.7 -6.86 0.475 1.37 t̄

j = 2 k = 2 21.7 -1.60 0.078 0.221 t/t̄

j = 1 k = 3 16.4 -1.19 0.054 0.154 t

46.0 -3.53 0.205 0.588 t̄

j = 2 k = 3 10.2 -0.724 0.031 0.088 t/t̄

uid̄j → d̄kt A0 Aint A1, A3 A2, A4

i = 1 j = 1 3.92 2.46 1.63 4.78 t

2.24 1.28 0.65 1.89 t̄

i = 1 j = 2 3.07 1.81 1.00 2.90 t

0.713 0.345 0.108 0.309 t̄

i = 1 j = 3 1.89 1.03 0.441 1.28 t

0.363 0.164 0.044 0.124 t̄

i = 2 j = 1 0.615 0.292 0.087 0.247 t

1.47 0.782 0.317 0.913 t̄

i = 2 j = 2 0.404 0.184 0.049 0.139 t/t̄

i = 2 j = 3 0.193 0.083 0.019 0.053 t/t̄

Table 17: Numerical factors for single top cross sections at LHC with 14 TeV. The

units of A0, Aint and A1−4 are pb, pb · TeV2 and pb · TeV4, respectively. The labels

t, t̄ indicate whether the factors correspond to the processes in the left column or the

charge conjugate.
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uidk → djt A0 Aint A1 A2, A3 A4

i = 1 k = 1 192 -21.0 3.21 1.10 -1.01 t

14.0 -1.24 0.0811 0.0290 -0.0230 t̄

i = 2 k = 1 22.8 -2.07 0.148 0.0527 -0.0430 t

6.86 -0.586 0.0336 0.0121 -0.0094 t̄

i = 1 k = 2 61.7 -5.93 0.533 0.187 -0.159 t

8.43 -0.731 0.0445 0.0160 -0.0125 t̄

i = 2 k = 2 3.98 -0.334 0.181 0.0660 -0.00498 t/t̄

i = 1 k = 3 30.7 -2.82 0.211 0.0749 -0.0616 t

3.51 -0.294 0.0159 0.00580 -0.00437 t̄

i = 2 k = 3 1.56 -0.128 0.00624 0.00229 -0.00167 t/t̄

d̄jdk → ūit A0 Aint A1, A2 A3, A4

j = 1 k = 1 39.0 -2.95 0.146 0.418 t/t̄

j = 2 k = 1 25.3 -1.86 0.0844 0.239 t

8.05 -0.558 0.0205 0.0573 t̄

j = 1 k = 2 8.05 -0.558 0.0205 0.0573 t

25.3 -1.86 0.0844 0.239 t̄

j = 2 k = 2 4.74 -0.322 0.0112 0.0311 t/t̄

j = 1 k = 3 3.36 -0.225 0.00746 0.0205 t

11.8 -0.835 0.0331 0.0928 t̄

j = 2 k = 3 1.92 -0.127 0.00402 0.0110 t/t̄

uid̄j → d̄kt A0 Aint A1, A3 A2, A4

i = 1 j = 1 1.60 0.876 0.319 0.917 t

0.807 0.400 0.118 0.337 t̄

i = 1 j = 2 1.16 0.590 0.187 0.535 t

0.187 0.0783 0.0159 0.0441 t̄

i = 1 j = 3 0.623 0.291 0.0753 0.213 t

0.0827 0.0325 0.0058 0.0161 t̄

i = 2 j = 1 0.156 0.0635 0.0121 0.0334 t

0.470 0.215 0.0528 0.149 t̄

i = 2 j = 2 0.0934 0.0368 0.0067 0.0184 t/t̄

i = 2 j = 3 0.0384 0.0143 0.0023 0.0062 t/t̄

Table 18: Numerical factors for single top cross sections at LHC with 7 TeV. The

units of A0, Aint and A1−4 are pb, pb · TeV2 and pb · TeV4, respectively. The labels

t, t̄ indicate whether the factors correspond to the processes in the left column or the

charge conjugate.
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uidk → djt A0 Aint A1 A2, A3 A4

i = 1 k = 1 4230 -330 12.8 48.3 -3.16 t/t̄

i = 2 k = 1 443 -32.3 1.06 0.408 -0.245 t/t̄

i = 1 k = 2 1800 -138 5.22 1.97 -1.27 t/t̄

i = 2 k = 2 59.5 -4.09 0.117 0.046 -0.025 t/t̄

i = 1 k = 3 599 -44.4 1.53 0.583 -0.359 t/t̄

i = 2 k = 3 16.2 -1.09 0.030 0.012 -0.0061 t/t̄

d̄jdk → ūit A0 Aint A1, A2 A3, A4

j = 1 k = 1 4640 -302 8.46 22.9 t/t̄

j = 2 k = 1 605 -36.1 0.821 2.15 t/t̄

j = 1 k = 2 605 -36.1 0.821 2.15 t/t̄

j = 2 k = 2 86.3 -4.89 0.098 0.251 t/t̄

j = 1 k = 3 189 -11.0 0.234 0.607 t/t̄

j = 2 k = 3 24.1 -1.34 0.026 0.066 t/t̄

uid̄j → d̄kt A0 Aint A1, A3 A2, A4

i = 1 j = 1 285 120 20.3 55.4 t/t̄

i = 1 j = 2 47.7 16.2 1.98 5.25 t/t̄

i = 1 j = 3 16.8 5.34 0.583 1.53 t/t̄

i = 2 j = 1 12.7 3.92 0.408 1.06 t/t̄

i = 2 j = 2 1.85 0.518 0.046 0.116 t/t̄

i = 2 j = 3 0.513 0.138 0.012 0.028 t/t̄

Table 19: Numerical factors for single top cross sections at Tevatron. The units of A0,

Aint and A1−4 are fb, fb · TeV2 and fb ·TeV4, respectively. The labels t/t̄ indicate that

the factors are equal for the processes in the left column and the charge conjugate.

Besides, we point out that can recover previous results [15] by setting C3ij3
qq′ ≡

2(Λ2/v2)Vij G4f (with G4f a real parameter). Summing all contributions from the dif-

ferent sub-processes in Table 17 we get the inclusive t- and s-channel cross sections for

LHC at 14 TeV

σt = σ0
t (1− 2.95G4f + . . . ) ,

σs = σ0
s(1 + 19.43G4f + . . . ) , (34)

where σ0
t,s are the SM cross sections and the dots stand for quadratic terms which, as

we have found, can be of the same size as the linear ones for s-channel production.

These equations agree very well with Ref. [15], and the small differences (-3.5% and

-1.1%, respectively) in the coefficients of G4f can be attributed to a different choice of
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PDFs or factorisation scale.

5.2 Flavour-changing neutral processes in pp, pp̄ collisions

There are several processes of FCN single top production in hadron collisions, absent

in the SM, to which four-fermion operators can contribute,

uiuk → ujt ,

ūiūk → ūj t̄ ,

uiūj → ukt . (35)

They are related by crossing symmetry and/or charge conjugation to the FCN top

decays studied in section 4.2, and thus have the same matrix elements, with 12 four-

fermion terms (from 14 operators) contributing to the amplitudes for i 6= k and 6 terms

(from 7 operators) for i = k. In the former case, the cross sections can be written as

σ =
B1

Λ4

[

Π(Ckji3
qq + C ijk3

qq′ , C ijk3
qq + Ckji3

qq′ ) + Π(Ckji3
uu , C ijk3

uu )
]

+
B2

Λ4

[

Π(Ck3ij
qu′ , C

k3ij
qu ) + Π(C ijk3

qu′ , C
ijk3
qu )

]

+
B3

Λ4

[

Π(C i3kj
qu′ , C

i3kj
qu ) + Π(Ckji3

qu′ , C
kji3
qu )

]

. (36)

These equations are also valid for i = k, with a 1/2 symmetry factor for uiuk → ujt and

ūiūk → ūj t̄ absorbed into the definition of the corresponding Bi coefficients (see the

discussion in section 4.3 regarding the relation between i 6= k and i = k). Alternatively,

one can also use a simpler expression obtained from the one above by setting i = k,

σ =
B1

Λ4

[

8
3
|C iji3

qq + C iji3
qq′ |2 + 8

3
|C iji3

uu |2
]

+
B2 +B3

Λ4

[

Π(C i3ij
qu′ , C

i3ij
qu ) + Π(C iji3

qu′ , C
iji3
qu )

]

. (37)

The factors Bi for LHC with 14 TeV are given in Table 20, for 7 TeV in Table 21 and

for Tevatron in Table 22. They are computed using CTEQ6L1 PDFs [20] with Q = mt.

These FCN processes have been previously considered in Ref. [16] but unfortunately

the cross sections provided are totally inclusive, summing charged current processes

from several flavours as well, and a direct comparison with their results is difficult.

The relative size of FCN single top production with respect to SM processes can be

appreciated by calculating the ratios

ηNC
prod ≡ B/Λ4

σSM

(38)
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uiuk → ujt B1 B2, B3

i = 1 k = 1 14.9 5.03 t

0.214 0.0747 t̄

i = 1 k = 2 1.95 0.674 t

0.195 0.0690 t̄

i = 2 k = 2 0.0431 0.0153 t/t̄

uiūj → ukt B1, B3 B2

i = 1 j = 1 1.35 3.95 t/t̄

i = 1 j = 2 0.674 1.95 t

0.0690 0.195 t̄

i = 2 j = 1 0.0690 0.195 t

0.674 1.95 t̄

i = 2 j = 2 0.0307 0.0864 t/t̄

Table 20: Numerical factors for single top cross sections at LHC with 14 TeV. The

units of B1−3 are pb · TeV4. The labels t, t̄ indicate whether the factors correspond to

the processes in the left column or the charge conjugate.

uiuk → ujt B1 B2, B3

i = 1 k = 1 3.33 1.14 t

0.0316 0.0114 t̄

i = 1 k = 2 0.337 0.119 t

0.0260 0.00942 t̄

i = 2 k = 2 0.00517 0.00189 t/t̄

uiūj → ukt B1, B3 B2

i = 1 j = 1 0.259 0.740 t/t̄

i = 1 j = 2 0.119 0.337 t

0.00942 0.0260 t̄

i = 2 j = 1 0.00942 0.0260 t

0.119 0.337 t̄

i = 2 j = 2 0.00380 0.0104 t/t̄

Table 21: Numerical factors for single top cross sections at LHC with 7 TeV. The units

of B1−3 are pb · TeV4. The labels t, t̄ indicate whether the factors correspond to the

processes in the left column or the charge conjugate.

uiuk → ujt B1 B2, B3

i = 1 k = 1 7.49 2.81 t/t̄

i = 1 k = 2 2.64 1.01 t/t̄

i = 2 k = 2 0.0262 0.0104 t/t̄

uiūj → ukt B1, B3 B2

i = 1 j = 1 48.0 132 t/t̄

i = 1 j = 2 1.01 2.64 t/t̄

i = 2 j = 1 1.01 2.64 t/t̄

i = 2 j = 2 0.0210 0.0530 t/t̄

Table 22: Numerical factors for single top cross sections at Tevatron. The units of

B1−3 are fb · TeV4. The labels t/t̄ indicate that the factors are equal for the processes

in the left column and the charge conjugate.

of the FCN cross sections (up to effective operator coefficients) over the SM single top

cross section. For uu → ut this ratio takes values up to ηNC
prod = 0.067/Λ4 TeV4, which

is 4 × 104 times larger than the corresponding quantity ηNC
dec in the top decay, making

very interesting the study of four-fermion operator effects in single top production.
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5.3 Single top production in e+e− collisions

Single top production in e+e− collisions constitutes the best process to probe tūkeē

four-fermion terms, if a high-energy International Linear Collider (ILC) is built. The

cross section for e+e− → ūkt with longitudinally polarised beams is

σ(e+Re
−

L ) =
s

8πΛ4

β2

(1 + β)3
[

4|C11k3
ℓq |2 + |C13k1

ℓu |2
]

(3 + β) ,

σ(e+Le
−

R) =
s

8πΛ4

β2

(1 + β)3
[

4|C11k3
eu |2 + |C13k1

qe |2
]

(3 + β) ,

σ(e+Le
−

L ) =
s

8πΛ4

β2

(1 + β)3
[

|Ck113
qℓǫ |2(3 + β) + 6|C11k3

ℓqǫ |2(1 + β)

+6ReCk113
qℓǫ C11k3∗

ℓqǫ (1 + β)
]

,

σ(e+Re
−

R) =
s

8πΛ4

β2

(1 + β)3
[

|C311k
qℓǫ |2(3 + β) + 6|C113k

ℓqǫ |2(1 + β)

+6ReC311k
qℓǫ C113k∗

ℓqǫ (1 + β)
]

, (39)

being
√
s the CM energy and β = (s − m2

t )/(s + m2
t ) the top velocity in the CM

frame. Note that for e+ the subindex indicates the helicity, not the chirality. For

ukt̄ production the cross sections are the same. Our expressions for the vector terms

(first two equations) agree with those in Ref. [17], as it can be seen by translating

our notation, VLL ≡ C11k3∗
ℓq , VRR ≡ C11k3∗

eu , VLR ≡ −C13k1∗
ℓu /2, VRL ≡ −Ck113∗

qe /2.1

For the scalar terms, our operators O311k
qℓǫ and O113k

ℓqǫ are equivalent to SRR and TRR in

that reference (the last one obtained by a Fierz transformation of a scalar term) while

our operators Ok113
qℓǫ and O11k3

ℓqǫ were not included. As it can be found from Table 15,

these operators generate terms (ūLk eR)(ēL tR) and (ūLk tR)(ēL eR), respectively, plus

the Hermitian conjugate. In the notation of Ref. [17], they would correspond to SLL

terms.

6 Top pair production

For top pair production in hadron and e+e− collisions the multiplicity of sub-processes

is much smaller than for single top production. However, the matrix elements (and thus

the total cross sections) are complicated by the presence of more interference terms,

proportional to m2
t , which are not present in processes with three light quarks. We will

first study tt̄ production at LHC and Tevatron. The conspicuous process of like-sign

1Notice a missing factor of 1/2 in Eq. (32) of Ref. [17], because the total cross section is the average

of the polarised ones.
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top pair production in hadron collisions will be discussed in detail next. Finally, we

will turn our attention to tt̄ production in e+e− collisions.

6.1 tt̄ production in pp, pp̄ collisions

We consider here the processes ūiuj → tt̄, d̄idj → tt̄, with i, j = 1, 2, for which there is

a SM QCD contribution when i = j. (We do not include electroweak tt̄ production in

our calculations.) For ūiuj there are, in addition, 12 independent four-fermion terms

resulting from 14 effective operators, 6 terms for the colour flow ūibuja → tat̄b and 6 for

ūiauja → tbt̄b. For d̄idj there are 16 independent four-fermion terms, 8 for each colour

flow. We have checked that our matrix elements coincide with Ref. [21], for the subset

of operators considered there. For uiūi → tt̄ the SM plus four-fermion contributions

are

σ(uiūi) = D0 +
Dint

Λ2

[

C ii33
qq′ + C3ii3

qq + C3ii3
uu − C i33i

qu − C3ii3
qu

]

+
D1

Λ4

[

Π(C ii33
qq + C3ii3

qq′ , C
ii33
qq′ + C3ii3

qq ) + Π(C ii33
uu , C3ii3

uu )

+Π(C i33i
qu′ , C i33i

qu ) + Π(C3ii3
qu′ , C3ii3

qu )
]

+
D2

Λ4
Π(C33ii

qu′ , C33ii
qu )

+
D3

Λ4

[

Π(C ii33
qq + C3ii3

qq′ , C
i33i
qu′ , C ii33

qq′ + C3ii3
qq , C i33i

qu )

+Π(C3ii3
qu′ , C ii33

uu , C3ii3
qu , C3ii3

uu )
]

, (40)

and for flavour-nondiagonal processes the four-fermion cross sections are

σ(uc̄, cū) =
D1

Λ4

[

Π(C1233
qq + C3213

qq′ , C1233
qq′ + C3213

qq ) + Π(C1233
uu , C3213

uu )

+Π(C1332
qu′ , C1332

qu ) + Π(C3213
qu′ , C3213

qu )
]

+
D2

Λ4

[

Π(C3312
qu′ , C3312

qu ) + Π(C3321
qu′ , C3321

qu )
]

+
D3

Λ4
Re

[

Π(C1233
qq + C3213

qq′ , C1332
qu′ , C1233

qq′ + C3213
qq , C1332

qu )

+Π(C3213
qu′ , C1233

uu , C3213
qu , C3213

uu )
]

, (41)

The numerical coefficients Di are collected in Table 23 for LHC at 14 TeV, in Table 24

for the same collider at 7 TeV and in Table 25 for Tevatron. We have used CTEQ6L1

PDFs with a factorisation scale Q = mt. Notice that, except for different PDFs, the

cross sections for uc̄ and cū are equal, involving the same set of operator coefficients.

It is remarkable that at LHC with 14 TeV the quadratic terms multiplying D2, corre-

sponding to four-fermion terms which do not interfere with the SM, give a contribution
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which can be comparable to the interferences of other operators. For example,

σint(uū) =
9.04

Λ2

[

C1133
qq′ + C3113

qq + C3113
uu − C1331

qu − C3113
qu

]

pb · TeV2 ,

σ4F(uū) =
6.82

Λ4

[

|C3311
qu′ |2 + |C3311

qu |2 + 2
3
ReC3311

qu′ C3311∗
qu

]

pb · TeV4 + . . . , (42)

where we have omitted other contributions in the second equation. Therefore, these

operators are worth being investigated in detail, as well as the ones interfering with

the SM. For did̄i → tt̄ the SM plus four-fermion contributions are

σ(did̄i) = D0 +
Dint

Λ2

[

C ii33
qq′ + 2C33ii

ud′ − C i33i
qu − C3ii3

qd

]

+
D1

Λ4

[

Π(C ii33
qq , C ii33

qq′ ) + 4Π(C33ii
ud , C33ii

ud′ ) + Π(C i33i
qu′ , C i33i

qu )

+Π(C3ii3
qd′ , C

3ii3
qd ) + 1

2
Π(C i33i

qqǫ′ , C
i33i
qqǫ )

]

+
D2

Λ4

[

Π(C33ii
qqǫ , C

33ii
qqǫ′ ) + ReΠ(C33ii

qqǫ , C
i33i
qqǫ′ , C

33ii
qqǫ′ , C

i33i
qqǫ )

]

+
D3

Λ4

[

Π(C ii33
qq , C i33i

qu′ , C ii33
qq′ , C

i33i
qu ) + 2Π(C3ii3

qd′ , C
33ii
ud , C3ii3

qd , C33ii
ud′ )

]

, (43)

and for flavour non-diagonal combinations we have

σ(ds̄, sd̄) =
D1

Λ4

[

Π(C1233
qq , C1233

qq′ ) + 4Π(C3312
ud , C3312

ud′ ) + Π(C1332
qu′ , C1332

qu )

+Π(C3213
qd′ , C3213

qd ) + Π(C1332
qqǫ′ , C

1332
qqǫ ) + Π(C2331

qqǫ′ , C
2331
qqǫ )

]

+
D2

Λ4

[

Π(C3312
qqǫ , C3312

qqǫ′ ) + Π(C3321
qqǫ , C3321

qqǫ′ ) + ReΠ(C3312
qqǫ , C1332

qqǫ′ , C
3312
qqǫ′ , C

1332
qqǫ )

+ReΠ(C3321
qqǫ , C2331

qqǫ′ , C
3321
qqǫ′ , C

2331
qqǫ )

]

+
D3

Λ4
Re

[

Π(C1233
qq , C1332

qu′ , C1233
qq′ , C1332

qu ) + 2Π(C3213
qd′ , C3312

ud , C3213
qd , C3312

ud′ )
]

.

(44)

The coefficients Di for these processes can be found in Tables 23, 24 and 25 as well.

We point out that again there are effective operators which do not interfere with the

SM but can give quadratic contributions of the same order of the interference terms at

a CM energy of 14 TeV. For example,

σint(dd̄) =
5.51

Λ2

[

C1133
qq′ + 2C3311

ud′ − C1331
qu − C3113

qd

]

pb · TeV2 ,

σ4F(dd̄) =
3.88

Λ4

[

|C3311
qqǫ′ |2 + |C3311

qqǫ |2 + 2
3
ReC3311

qqǫ′ C
3311∗
qqǫ

]

pb · TeV4 + . . . , (45)

with additional terms omitted in the second equation.

For Tevatron, it is also of interest to provide expressions for the FB asymmetry

of the top quark, motivated by an apparent disagreement between the CDF [22] and
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ūiuj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 42.5 9.04 4.72 6.82 -1.07

i = 1 j = 2 – – 0.0494 0.138 -0.0209

i = 2 j = 1 – – 0.564 1.61 -0.158

i = 2 j = 2 2.11 0.348 0.0820 0.113 -0.0393

d̄idj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 26.4 5.51 2.70 3.88 -0.648

i = 1 j = 2 – – 0.103 0.290 -0.0377

i = 2 j = 1 – – 0.399 1.14 -0.110

i = 2 j = 2 4.56 0.802 0.230 0.322 -0.0916

Table 23: Numerical factors for tt̄ cross sections at LHC with 14 TeV. The units of D0,

Dint and D1−3 are pb, pb · TeV2 and pb · TeV4, respectively.

ūiuj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 14.6 2.69 0.796 1.11 -0.309

i = 1 j = 2 – – 0.00532 0.0143 -0.00329

i = 2 j = 1 – – 0.00847 0.234 -0.0387

i = 2 j = 2 0.323 0.0477 0.00780 0.104 -0.00524

d̄idj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 8.70 1.58 0.440 0.614 -0.181

i = 1 j = 2 – – 0.0127 0.0344 -0.00713

i = 2 j = 1 – – 0.0609 0.169 -0.0272

i = 2 j = 2 0.903 0.141 0.0270 0.0364 -0.0157

Table 24: Numerical factors for tt̄ cross sections at LHC with 7 TeV. The units of D0,

Dint and D1−3 are pb, pb · TeV2 and pb · TeV4, respectively.

D0 [23] measurements and the SM prediction. Let θ be the angle between the top

quark momentum in the tt̄ rest frame and the incoming proton momentum. The FB

asymmetry is

AFB =
σ(cos θ > 0)− σ(cos θ < 0)

σ(cos θ > 0) + σ(cos θ < 0)
. (46)

If this asymmetry is originated by new heavy physics contributing to uū → tt̄, dd̄ → tt̄,

it can be parameterised in terms of gauge-invariant effective operators. In order to

calculate this asymmetry in the presence of four-fermion operators, we give here the
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ūiuj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 4780 717 110 145 -79.2

i = 1 j = 2 – – 0.295 0.735 -0.292

i = 2 j = 1 – – 0.295 0.735 -0.292

i = 2 j = 2 1.18 0.137 0.0123 0.0149 -0.0142

d̄idj → tt̄ D0 Dint D1 D2 D3

i = 1 j = 1 868 120 15.3 19.7 -12.9

i = 1 j = 2 – – 0.235 0.587 -0.238

i = 2 j = 1 – – 0.235 0.587 -0.238

i = 2 j = 2 6.82 0.806 0.0752 0.0916 -0.0836

Table 25: Numerical factors for tt̄ cross sections at Tevatron. The units of D0, Dint

and D1−3 are fb, fb · TeV2 and fb · TeV4, respectively.

forward and backward cross sections

σF ≡ σ(cos θ > 0) , σB ≡ σ(cos θ < 0) , (47)

for uū → tt̄, dd̄ → tt̄ at the tree level. For the former process they are

σF,B(uū) = 2.39 pb +
DF,B

int

Λ2

[

C1133
qq′ + C3113

qq + C3113
uu

]

− D̃F,B
int

Λ2

[

C1331
qu + C3113

qu

]

+
DF,B

1

Λ4

[

Π(C1133
qq + C3113

qq′ , C1133
qq′ + C3113

qq ) + Π(C1133
uu , C3113

uu )
]

+
D̃F,B

1

Λ4

[

Π(C1331
qu′ , C1331

qu ) + Π(C3113
qu′ , C3113

qu )
]

+
0.0725 pb · TeV4

Λ4
Π(C3311

qu′ , C3311
qu )

−0.0395 pb · TeV4

Λ4

[

Π(C1133
qq + C3113

qq′ , C1331
qu′ , C1133

qq′ + C3113
qq , C1331

qu )

+Π(C3113
qu′ , C1133

uu , C3113
qu , C3113

uu )
]

, (48)

being the numerical constants

DF
int = D̃B

int = 0.499 pb · TeV2 , DB
int = D̃F

int = 0.219 pb · TeV2 ,

DF
1 = D̃B

1 = 0.0890 pb · TeV4 , DB
1 = D̃F

1 = 0.0209 pb · TeV4 . (49)

Obviously, σ = σF + σB. The numerical coefficients of quadratic terms are about 1/5

of the linear ones, so these terms can be ignored in a first approximation, provided

that Λ & 1 TeV and the operator coefficients are of order unity. For the latter process
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the forward and backward cross sections are

σF,B(dd̄) = 0.434 pb +
DF,B

int

Λ2

[

C1133
qq′ + 2C3311

ud′

]

− D̃F,B
int

Λ2

[

C1331
qu + C3113

qd

]

+
DF,B

1

Λ4

[

Π(C1133
qq , C1133

qq′ ) + 4Π(C3311
ud , C3311

ud′ )
]

+
D̃F,B

1

Λ4

[

Π(C1331
qu′ , C1331

qu ) + Π(C3113
qd′ , C3113

qd ) + 1
2
Π(C1331

qqǫ′ , C
1331
qqǫ )

]

+
9.86 fb · TeV4

Λ4
Π(C3311

qqǫ , C3311
qqǫ′ ) +

DF,B
2

Λ4
ReΠ(C3311

qqǫ , C1331
qqǫ′ , C

3311
qqǫ′ , C

1331
qqǫ )

−6.47 fb · TeV4

Λ4

[

Π(C1133
qq , C1331

qu′ , C1133
qq′ , C1331

qu )

+2Π(C3113
qd′ , C3311

ud , C3113
qd , C3311

ud′ )
]

, (50)

with the numerical constants

DF
int = D̃B

int = 0.0808 pb · TeV2 , DB
int = D̃F

int = 0.0388 pb · TeV2 ,

DF
1 = D̃B

1 = 12.1 fb · TeV4 , DB
1 = D̃F

1 = 3.22 fb · TeV4 ,

DF
2 = 5.42 fb · TeV4 , DB

2 = 14.3 fb · TeV4 . (51)

In this case the quadratic terms are multiplied by small numerical factors, and can be

dropped in a first approximation. The FB asymmetry can be obtained just summing

the uū and dd̄ contributions and using Eq. (46). Besides, we note that, among the

seven operators which interfere with the SM amplitudes and could give sizeable contri-

butions to the FB asymmetry, one (O3113
qq ) is also involved in single top production (see

section 5.1). If the FB asymmetry can be explained by new physics which manifests as

four-fermion effective operators, related effects might be seen in single top production

at LHC as well.

6.2 Like-sign top pair production in pp, pp̄ collisions

The process uiuj → tt is rather interesting due to its potentially large cross section, in

particular for the case of two initial u valence quarks, and its striking signature of two

like-sign top quarks. For i 6= j the matrix element is similar to the one for t → uiuiūj,

uiui → tuj, except for some extra interference terms proportional to m2
t , which did not

appear in the former processes because uj was taken massless. The cross sections can
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be written as

σ(uc, ūc̄) =
E1

Λ4

[

|C1323
qq + C1323

qq′ |2 + |C1323
uu |2

]

+
E2

Λ4

[

Π(C1323
qu′ , C1323

qu ) + Π(C2313
qu′ , C2313

qu )
]

+
E3

Λ4

{

Re
[

C1323
qu′ C1323∗

qu + C2313
qu′ C2313∗

qu

]

+1
6

[

|C1323
qu′ |2 + |C1323

qu |2 + |C2313
qu′ |2 + |C2313

qu |2
]}

, (52)

with E1−3 numerical factors, whose values for LHC at 14 TeV, LHC at 7 TeV and

Tevatron are given in Tables 26, 27 and 28, respectively, using CTEQ6L1 PDFs with a

factorisation scale Q = mt. The case i = j, with identical particles (except for colour)

in both the initial and final states, is quite singular. One of the subtleties particular

to these processes is that for different initial quark colours a, b the gauge-invariant

operators have two terms which contribute to the amplitude. For example, for i = 1

we have

(ūRγ
µtR)(ūRγµtR) → (ūRaγ

µtRa)(ūRbγµtRb) + (ūRbγ
µtRb)(ūRaγµtRa)

= 2(ūRaγ
µtRa)(ūRbγµtRb) ,

(ūLγ
µtL)(ūRγµtR) → (ūLaγ

µtLa)(ūRbγµtRb) + (ūLbγ
µtLb)(ūRaγµtRa) (53)

(no sum over a, b). For equal colours, uaua → tata there is only one such term but

amplitudes get four contributions with a 1/2 symmetry factor for identical particles,

as usual.2 After colour averaging and phase space integration, the cross sections read

σ(uiui, ūiūi) =
E1

Λ4

[

|C i3i3
qq + C i3i3

qq′ |2 + |C i3i3
uu |2

]

+
E2

Λ4

[

|C i3i3
qu′ |2 + |C i3i3

qu |2 + 2
3
ReC i3i3

qu′ C i3i3∗
qu

]

+
E3

Λ4

{

ReC i3i3
qu′ C i3i3∗

qu + 1
6

[

|C i3i3
qu′ |2 + |C i3i3

qu |2
]}

. (54)

with the factors E1−3 collected in Tables 26, 27 and 28. The large numerical value of

the coefficient E1 for initial uu states at LHC, already with a CM energy of 7 TeV,

implies an excellent sensitivity to the four-fermion operators O1313
qq(

′) and O1313
uu , namely

four-fermion terms (ūLγ
µtL)(ūLγ

µtL) and (ūRγ
µtR)(ūRγ

µtR). It is then expected that

a large scale Λ will be probed at LHC for these operators, in the clean final state of

two like-sign top quarks.

2Two contractions were missing from the amplitudes for uu, cc → tt in the first two versions of this

paper. The cross section expressions have already been corrected in Ref. [24], and numerical values

for LHC with a CM energy of 7 TeV have been given. By introducing a t-channel propagator in the

amplitudes, the results have also been compared with the cross sections for a flavour-violating Z ′

boson in Refs. [25, 26], obtaining a good agreement.
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uiuj → tt E1 E2 E3

i = 1 j = 1 75.6 9.60 -0.930 t

0.859 0.114 -0.0423 t̄

i = 1 j = 2 2.15 0.563 -0.158 t

0.184 0.0496 -0.0211 t̄

i = 2 j = 2 0.151 0.0205 -0.00977 t/t̄

Table 26: Numerical factors for like-sign top pair cross sections at LHC with 14 TeV.

The units of E1−3 are pb ·TeV4. The labels t, t̄ indicate whether the factors correspond

to the processes in the left column or the charge conjugate.

uiuj → tt E1 E2 E3

i = 1 j = 1 15.8 2.05 -0.420 t

0.102 0.0141 -0.00783 t̄

i = 1 j = 2 0.314 0.0848 -0.0389 t

0.0191 0.00534 -0.00330 t̄

i = 2 j = 2 0.0138 0.00193 -0.00132 t/t̄

Table 27: Numerical factors for like-sign top pair cross sections at LHC with 7 TeV.

The units of E1−3 are pb ·TeV4. The labels t, t̄ indicate whether the factors correspond

to the processes in the left column or the charge conjugate.

uiuj → tt E1 E2 E3

i = 1 j = 1 13.8 2.04 -1.88 t/t̄

i = 1 j = 2 0.983 0.296 -0.294 t/t̄

i = 2 j = 2 0.0204 0.00319 -0.00380 t/t̄

Table 28: Numerical factors for like-sign top pair cross sections at Tevatron. The units

of E1−3 are fb ·TeV4. The labels t/t̄ indicate that the factors are equal for the processes

in the left column and the charge conjugate.

6.3 Top pair production in e+e− collisions

We finally present results for tt̄ production at a future ILC, including all four-fermion

contributions and considering longitudinally polarised beams. The SM cross sections
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for e+e− → tt̄ are

σSM(e+Re
−

L) =
β

16π

{

s(3 + β2)
[

|VLL|2 + |VLR|2
]

+ 24m2
tVLLVLR

}

,

σSM(e+Le
−

R) =
β

16π

{

s(3 + β2)
[

|VRL|2 + |VRR|2
]

+ 24m2
tVRLVRR

}

,

σSM(e+Le
−

L) = σSM(e+Re
−

R) = 0 , (55)

with β = 1 − 4m2
t/s the top velocity in the CM frame. The “effective” couplings

apprearing in these equations are

Vij = e2
[

aeia
t
j

s2W c2W (s−M2
Z)

− Qt

s

]

, i, j = L,R , (56)

being Qt = 2/3 the top quark charge, s2W the electroweak mixing angle and

aeL = −1
2
+ s2W , aeR = s2W ,

atL = 1
2
− 2

3
s2W , atR = −2

3
s2W (57)

the chiral couplings of the electron and top quark to the Z boson. Four-fermion vector

terms can be included in Eqs. (55) simply by replacing

VLL → VLL + 2Reα1133
ℓq , VLR → VLL − Reα1331

ℓu ,

VRL → VRL − Reα3113
qe , VRR → VRR + 2Reα1133

eu . (58)

We find it more convenient, however, to give separately the interference of four-fermion

operators with the SM and full quadratic four-fermion cross sections, including opera-

tors which do not interfere. The former is

σint(e
+
Re

−

L ) =
β

8πΛ2

{

s(3 + β2)
[

2VLL ReC1133
ℓq − VLR ReC1331

ℓu

]

+12m2
t

[

2VLR ReC1133
ℓq − VLL ReC1331

ℓu

]}

,

σint(e
+
Le

−

R) =
β

8πΛ2

{

s(3 + β2)
[

2VRR ReC1133
eu − VRL ReC3113

qe

]

+12m2
t

[

2VRL ReC1133
eu − VRR ReC3113

qe

]}

, (59)

with obviously σint(e
+
Le

−

L) = σint(e
+
Re

−

R) = 0. The four-fermion polarised cross sections

are

σ4F(e
+
Re

−

L) =
β

16πΛ4

{

s(3 + β2)
[

4(ReC1133
ℓq )2 + (ReC1331

ℓu )2
]

−48m2
t ReC1133

ℓq ReC1331
ℓu

}

,

σ4F(e
+
Le

−

R) =
β

16πΛ4

{

s(3 + β2)
[

4(ReC1133
eu )2 + (ReC3113

qe )2
]

−24m2
t ReC1133

eu ReC3113
qe

}

,

σ4F(e
+
Le

−

L) = σ4F(e
+
Re

−

R) =
β

64πΛ4

{

s(3 + β2)|C3113
qℓǫ |2

+6s(1 + β2)
[

|C1133
ℓqǫ |2 + ReC3113

qℓǫ C1133∗
ℓqǫ

]}

. (60)
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Our expressions agree with the unpolarised cross sections in Ref. [27] for vector terms,

as it can be seen with the redefinitions AL ≡ 2Reα1133
ℓq − Reα1331

ℓu , BL ≡ 2Reα1133
ℓq +

Reα1331
ℓu , AR ≡ 2Reα1133

eu − Reα3113
qe , BR ≡ −2Reα1133

eu − Reα3113
qe . For scalar terms

our expressions agree as well, where comparable. Note also that cross sections for

transverse beam polarisation have been recently given in Ref. [28].

7 Summary

In this paper we have thoroughly studied the role of gauge-invariant four-fermion op-

erators in top physics. The first difficulty one has to address in such a study is merely

to collect all the relevant four-fermion operators, which is cumbersome because of the

large number of flavour combinations, not all of them independent, that can be written.

We have used a new, minimal four-fermion operator basis, which offers some ad-

vantages for calculations, to classify all gauge-invariant four-fermion operators giving

terms with one or two top quarks. (Only a handful of operators give three or four

top quarks, and their classification is straightforward.) We have given our results in

several compact tables in which the Lagrangian terms can be directly read by inter-

secting the desired row and column. Having all the possible terms classified represents

a good share of the work needed for any calculation, and so we expect that the tables

provided will be useful for future studies. A bonus of this classification is that con-

tributions from the same gauge-invariant operators to different channels can be easily

related. Just as an example: we can identify which operators produce tb̄ūd terms (and

thus contribute to single top production), which ones give tt̄ūu terms (contributing to

top pair production) and those producing both.

We have gone beyond the classification, which is already important on its own, to

provide calculations of all decay widths, single top and top pair production cross sec-

tions mediated by four-fermion operators, including the SM contribution when present.

These calculations will be valuable to guide future more detailed simulations, not only

to have “reference” numerical values to compare with, but also to identify the most use-

ful channels and the relevant operators which can be probed. In this respect, we have

found that in s-channel single top and tt̄ production there are four-fermion operators

which do not interfere with the SM amplitudes but whose quadratic 1/Λ4 contributions

to the cross sections can be as large as the linear 1/Λ2 ones from the interfering ones.

As we have argued in the introduction, quadratic corrections from such operators can

and must be included in a complete analysis, even if we have ignored sub-leading effects

from dimension-eight operators.
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The phenomenological implications of our results have not been fully addressed, for

example providing expected limits on operator coefficients. This work is left for future

detailed studies. Still, there are several interesting points which are worth remarking

here:

1. Four-fermion terms with fields td̄kūidj (including dk = b) and tūkūiuj will be

better probed in single top production than in top decays. In the former case, they

contribute to SM t- and s-channel production, while in the latter they mediate

new, FCN processes.

2. Four-fermion terms td̄keiν̄j (including dk = b) can only be probed in top decays.

Moreover, some of the gauge-invariant operators producing these terms, for ex-

ample Oℓq′, cannot be investigated in other processes as single top or top pair

production in e+e− collisions. The net contribution to the decay width of four-

fermion operators is very small, but the interference produces an asymmetry in

the distribution for invariant masses meν < MW and meν > MW , which should

be studied with more detail.

3. Operators giving ttūiūj terms will likely be probed with a good precision in like-

sign top pair production at LHC, especially for i = j = 1, where the cross sections

are potentially large and the final state relatively clean.

We have also given expressions to calculate the FB asymmetry for tt̄ production at

Tevatron including all contributing four-fermion operators, to complement present

studies [21].

In summary, we have provided in this paper a roadmap for future studies of gauge-

invariant four-fermion operators in top physics, which we expect will be useful now

that the era of precision measurements in the top sector has just begun.
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