Pierre Auger Observatory

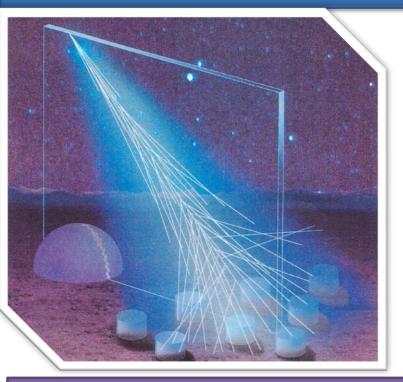
studying the universe's highest energy particles

Astronomy of ultra-high energy neutral particles with the Pierre Auger Observatory

J.L. Navarro 1 for the Pierre Auger Collaboration 2

1 Dpto. Física Teórica y del Cosmos & CAFPE, University of Granada, Spain

² Avd. San Martin Norte S/N, Malargüe, Argentina



23rd European Cosmic Ray Symposium

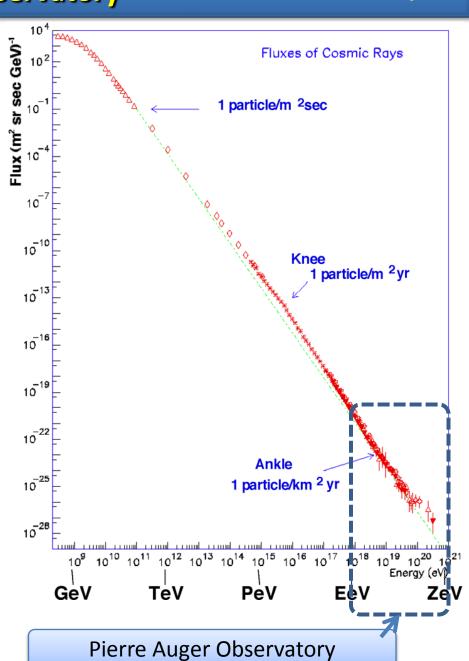
"Lomonosov University", Moscow.

July 3-7 2012

Short review of the Pierre Auger Observatory

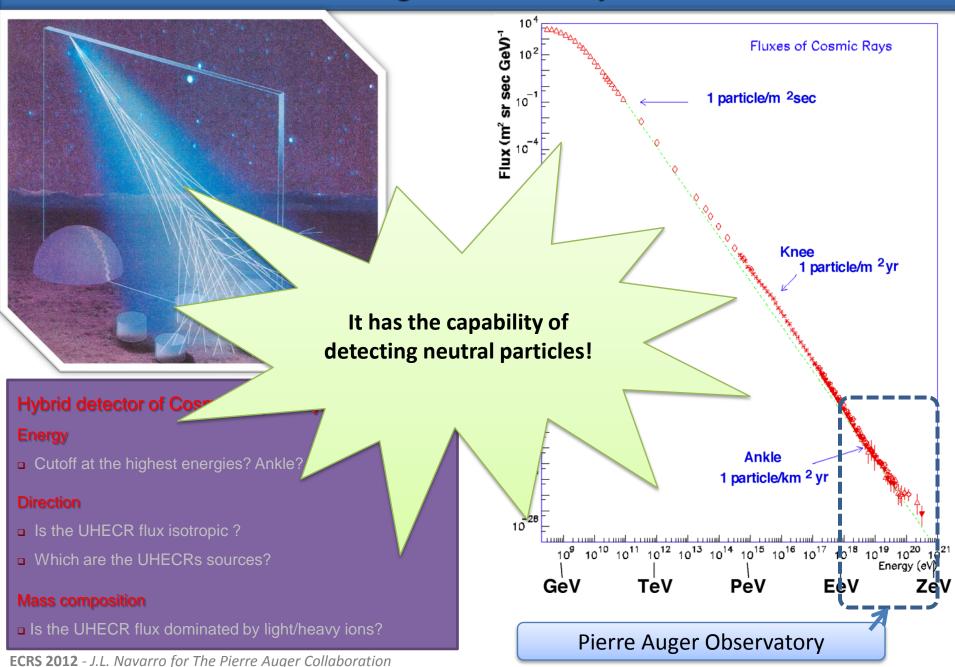
Hybrid detector of Cosmic Rays. Objectives:

Energy


Cutoff at the highest energies? Ankle?

Direction

- Is the UHECR flux isotropic?
- Which are the UHECRs sources?


Mass composition

■ Is the UHECR flux dominated by light/heavy ions?

ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

Short review of the Pierre Auger Observatory

Astronomy with neutral particles in the Pierre Auger Observatory 4/14

Three neutral particles:

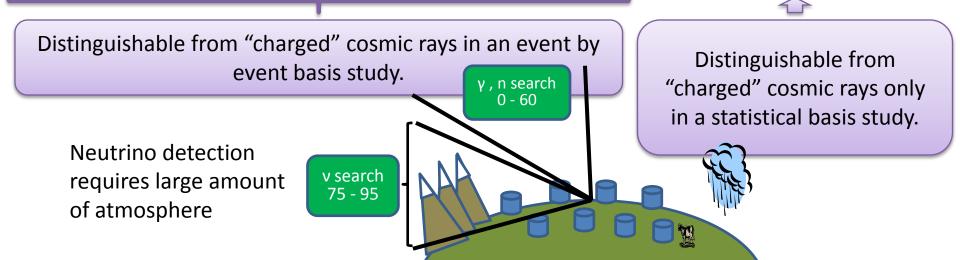
Photons:

Electromagnetic interaction

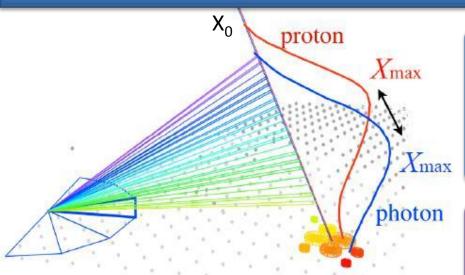
- -Deep interaction in the atmosphere
- Electromagnetic shower (high e-m content, absence of muons)

ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

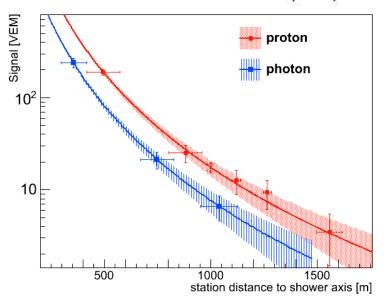
Neutrinos:


Weak interaction

- Interact at any point of atmosphere
- Hadronic +electromagneticextensive air shower

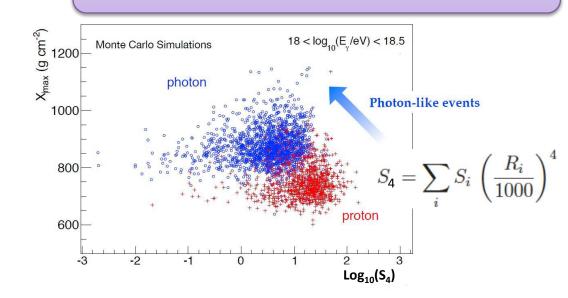

Neutrons:

Strong interaction


- Interaction at top of atmosphere
- Hadronic extensive air shower

Photon analysis at the Pierre Auger Observatory

Hybrid events Fluorescence detector (FD) + SD



Photon signature:

- Big value of X_{Max} from fluorescence detector
- Smaller signal in surface detectors (S_b) and less stations triggered.

Event Selection:

- X_{Max} fully contained in field of view
- Zenith angle < 60°
- At least 4 active stations within 2 km of axis

ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

Photon analysis at the Pierre Auger Observatory

ຸ ຮູ້ 1200

[©] 1100

× 1000

900

800

700

proton

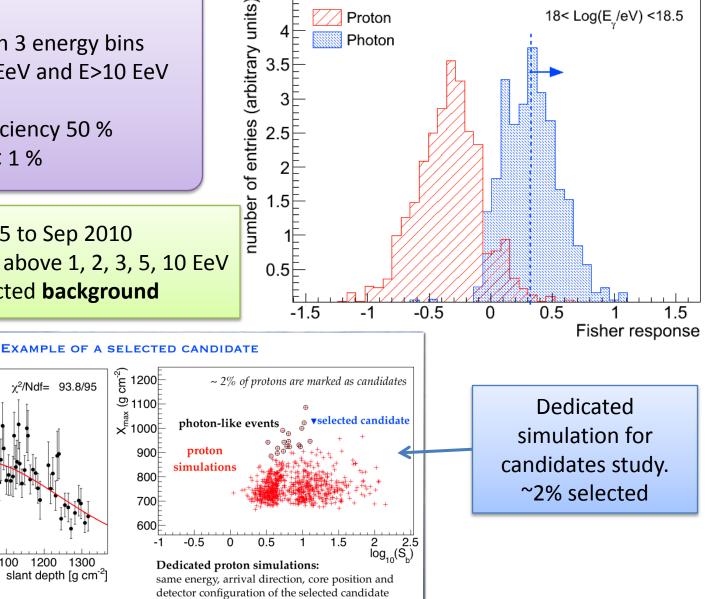
Photon Selection:

- Fisher Discriminant in 3 energy bins 1 - 3 EeV, 3 - 10 EeV and E>10 EeV
- Energy resolution

 E_{γ} [EeV] = 1.18 ± 0.09

 $[gcm^{-2}] = 1023 \pm 10$

 $dE/dX [PeV/(g cm^{-2})]$


- Photon selection efficiency 50 %
- Proton Background < 1 %</p>

Search Period: Jan 2005 to Sep 2010 **6, 0, 0, 0 candidates** above 1, 2, 3, 5, 10 EeV Compatible with expected background

 $\chi^2/Ndf = 93.8/95$

1200 1300

slant depth [q cm⁻²]

ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

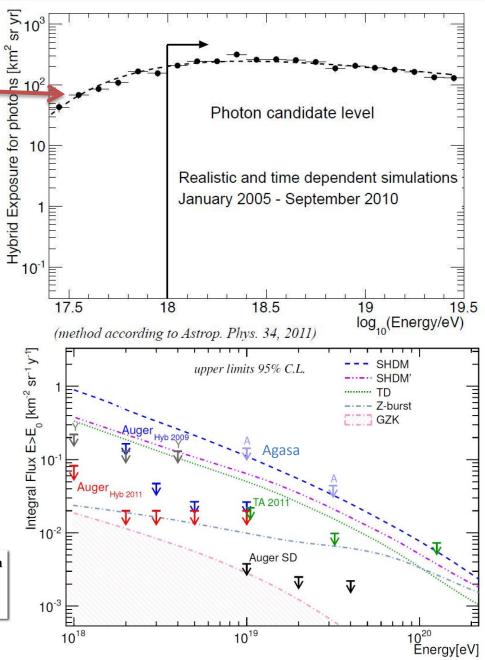
Photon analysis at the Pierre Auger Observatory

$$\Phi_{\gamma}^{95CL} = \frac{N_{\gamma}^{95CL}(E_{\gamma} > E_{0})}{\mathcal{E}_{\gamma, \text{min}}}$$

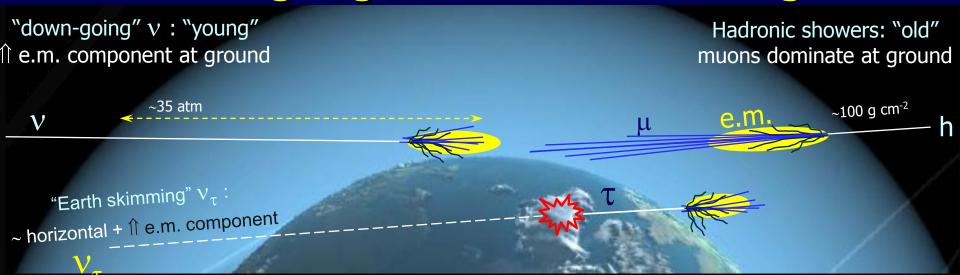
 $\mathcal{E}_{\gamma, ext{min}}$ is the exposure for the search period

 N_{γ}^{95CL} is the number of observed candidates with energy E $_{\rm v}$ above E $_{\rm 0}$ (Poisson 95%)

E [EeV]	N _y	φ _γ ^{95CL} E _γ >E ₀ [km ⁻² sr ⁻¹ yr ⁻¹]
1	6	8.2 x 10 ⁻²
2	0	2.0 x 10 ⁻²
3	0	2.0 x 10 ⁻²
5	0	2.0 x 10 ⁻²
10	0	2.0 x 10 ⁻²


Systematic uncertainties:

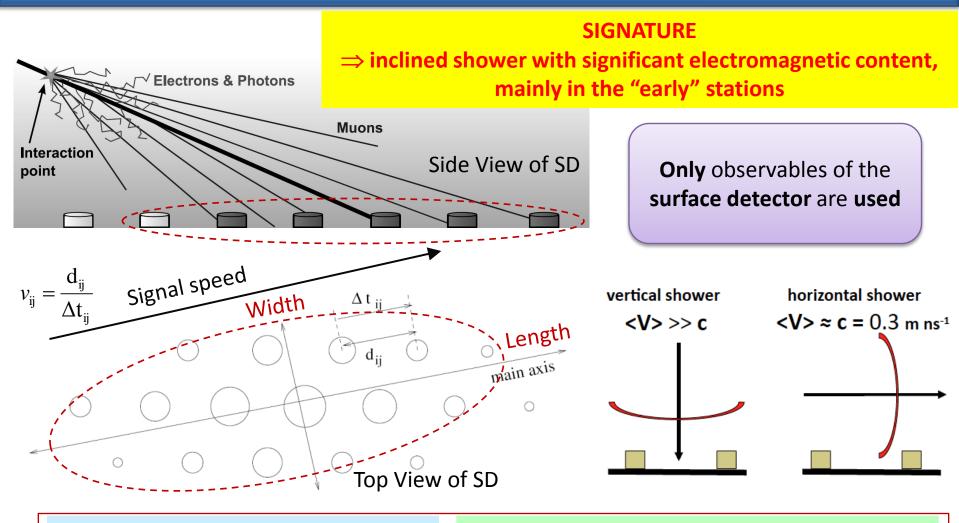
 $^{+15\%}_{-36\%}$ (E₀ > 1 EeV)


 $^{+20\%}_{-64\%} (E_0 = 1 \text{ EeV})$

Upper limits to the integral photon fraction assuming the **Auger Spectrum** (F. Salamida for the Pierre Auger Collaboration, ICRC 2011)

0.4%, 0.5%, 1.0%, 2.6% and 8.9% @ E>1, 2, 3, 5 and 10 EeV

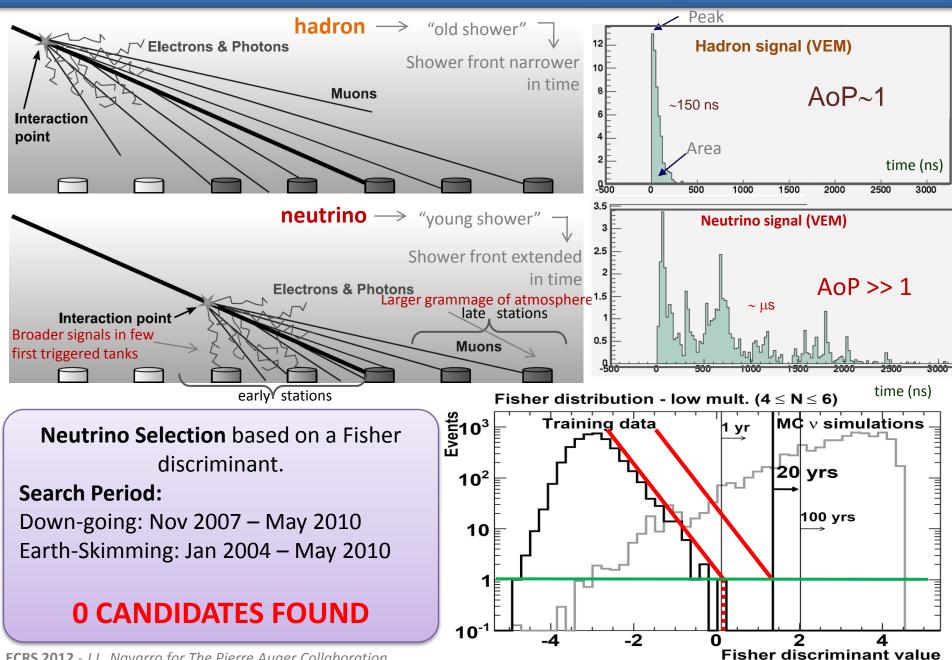
Neutrinos at the Pierre Auger: Two analyses, "down going" and "Earth-skimming"


"down going" neutrinos

- \uparrow Sensitivity to ALL ν flavours
- ↑ Sensitive to ALL interaction channels (CC & NC)
- \uparrow Large solid angle (75° \rightarrow 90°)
- ↓ Dilute mass target (air)

"Earth skimming" tau neutrinos

- \uparrow τ travels long distances in the Earth without losing too much E before decaying
- \downarrow Sensitivity to v_{τ} CC channel
- \downarrow Small solid angle (90° 95°)
- ↑ Dense mass target (Earth crust)


Neutrino analysis at the Pierre Auger Observatory

- > **Down-going** $(\theta > 75^{\circ})$
- At least 4 triggered stations
- *<signal speed> < 0.31 m ns⁻¹
- $\star L/W > 3$

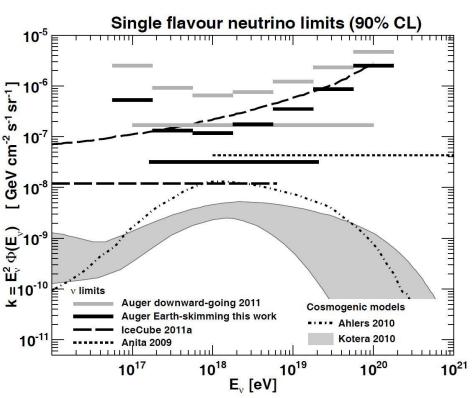
- > Earth-skimming $(90 < \theta < 95^\circ)$
- At least 3 triggered stations
- * 0.29 m ns⁻¹ < < signal speed> < 0.31 m ns⁻¹

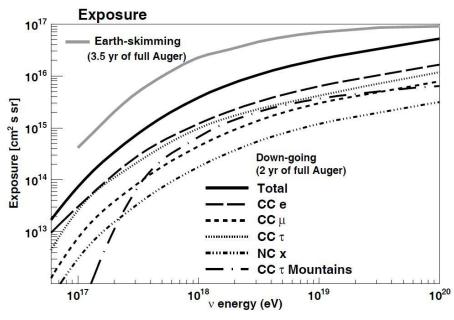
Neutrino analysis at the Pierre Auger Observatory

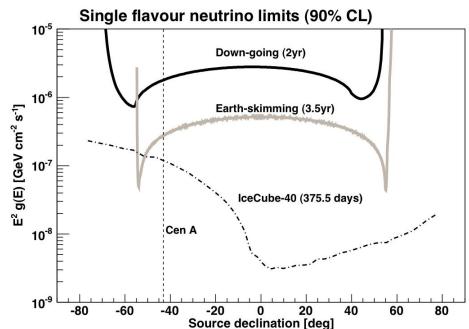
ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

Neutrino analysis at the Pierre Auger Observatory

Integrated Neutrino Limits:


Down-going: 1.7 x 10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹


Earth-skim.: $2.8 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$


Limit to Cen A flux:

Down-going: 1.75 x 10⁻⁶ GeV cm⁻² s⁻¹

Earth-skim.: $3.17 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1}$

Neutron analysis at the Pierre Auger Observatory

Neutrons

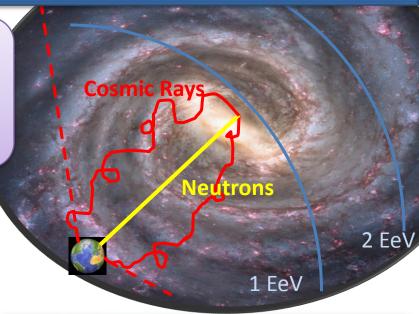
- Unstable: Only galactic neutrons detectable
- Neutral: Travel in straight lines

Two approaches:

Blind Search of over-densities

Angular resolution:

- 1.8° if E>1EeV
- 1.5° if E>2EeV


Li-Ma significance study

Targeted Search

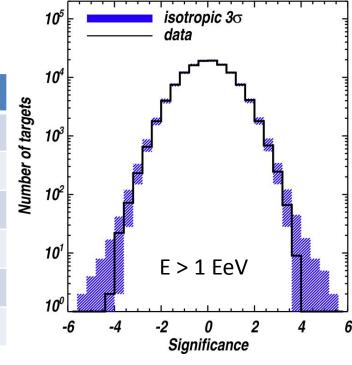
Search excess in gamma-ray sources

Two set of sources from:

- Fermi Lat point source catalog
- H.E.S.S. source catalog

Neutron analysis at the Pierre Auger Observatory

No significant excess found. Upper Limits: [km⁻² yr⁻¹]


- 0.024 for E € [1,2] EeV
- 0.014 for E € [2,3] EeV
- 0.026 for E ≥ 1 EeV

No significant excess found in any analysis.

Data scanned from Jan 2004 to Oct 2010

0.06		سىسىرى مىمەردىن مىسىمىي	90					
0.05	Server			30				
0.04	/		60	GC	300	240180		
0.03				=30				
0.02				-60				
0.01				-90-5-5-6		E > 1 EeV		

Set of Sources	Energy Bin [EeV]	S _{staked}
	1 – 2	2.07
Fermi LAT Point Source Catalog	2 – 3	0.51
Source Catalog	≥ 1	2.35
	1 – 2	-0.75
H.E.S.S. Source Catalog	2 – 3	-0.40
Catalog	≥ 1	-0.89

Summary

- •The Pierre Auger Observatory is a hybrid detector of Cosmic Rays that has the capability of detecting neutral primaries.
- •We have placed stringent limits to the flux of incoming photons, neutrinos and neutrons.

For **detailed** information on **photon and neutron analysis** refer to:

The Pierre Auger Collaboration, "The Pierre Auger Observatory III: Other Astrophysical Observations", Contributions to the 32nd International Cosmic Ray Conference, 2011

arXiv:1107.4805v1

For **detailed** information on **neutrino analysis** refer to:

The Pierre Auger Collaboration, "Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory", Physical Review D 84, 122005 (2011)

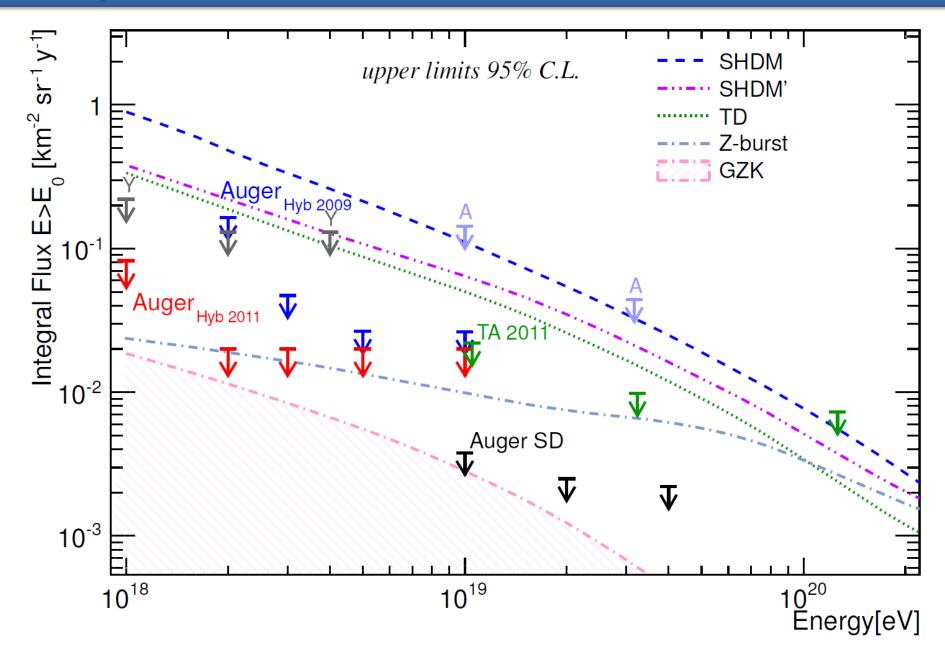
arXiv:1202.1493

More results in:

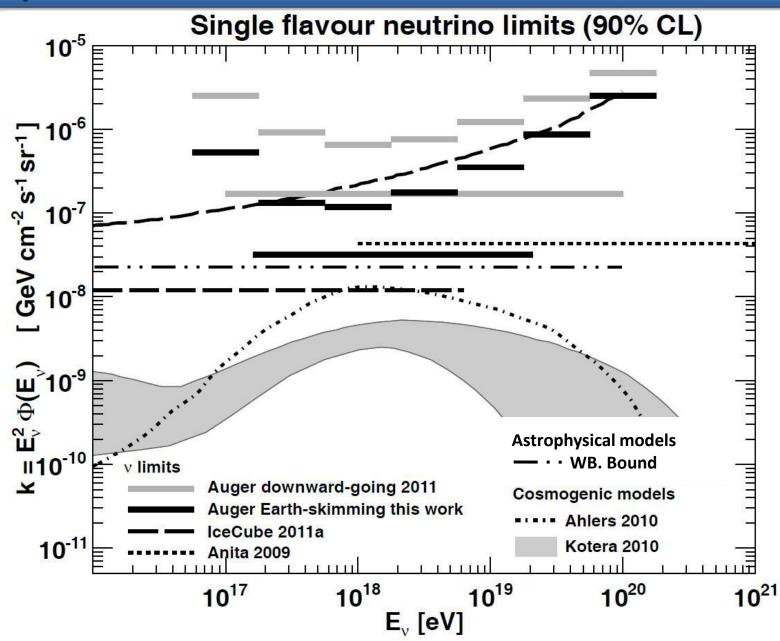
www.auger.org

ECRS 2012 - J.L. Navarro for The Pierre Auger Collaboration

Backup


Backup – Photons - Summary

- Fit Gaisser Hillas χ^2 < 2.5
- X_{max} in the field of view
- Energy uncertainty < 20%
- Cherenkov light contamination < 50%
- Only periods with good measurement of aerosols and no clouds.
- At least 4 SD active within 2 km from the axis.
- QGSJETII and FLUKA hadronic models used.
- Fisher Trained with 30000 proton and photon CORSIKA showers.
- Hadronic background checked with 1000 simulations


Uncertainties:

- ΔX_{max} = 13 g cm⁻², +1 (-2) candidates above 1 EeV, 0 in other energies. +10%, -25% lim.
- $\Delta Sb = 5\%$
- Exposure 5%
- Energy scale 22%, +1 (-4) cand. above 1 EeV, 0 in other en.
 - --> +14%, -54% above 1EeV, +6%,-7% other en.

Backup - Photons

Backup – Neutrino Result

Neutron analysis at the Pierre Auger Observatory

Neutrons

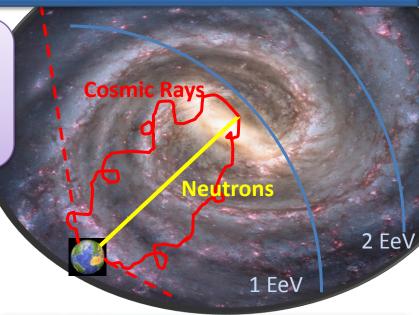
- Unstable: Only galactic neutrons detectable
- Neutral: Travel in straight lines

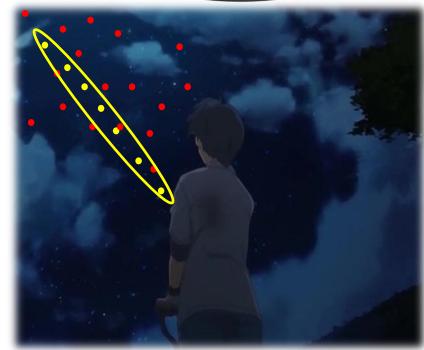
Two approaches:

Blind Search of over-densities

Angular resolution:

- 1.8° if E>1EeV
- 1.5° if E>2EeV


Li-Ma significance study


Targeted Search

Search excess in gamma-ray sources

Two set of sources from:

- Fermi Lat point source catalog
- H.E.S.S. source catalog

Backup – Neutron summary

- Mean free path before decay: 9.2 E /EeV kpc
- Distance to galactic center: 8.3 kpc
- Galactic radius: 15 kpc
- Only SD events with θ < 60°
- Systematic uncertainty in energy determination: 22 %
- Angular resolution (68% containment radius)
 - 1.8 above 1 EeV
 - 1.5 above 2 EeV
 - ~10% influence in total systematic
- HEALPIX with resolution $N_{side} = 128$
- Limit computed at 95% cl with Zech (1989) approach.

Backup – Neutron Targeted Search

Fermi LAT Point Source Catalog				H.E.S.S. Source Catalog			
Name 1FGL	L [deg]	B [deg]	Distance [kpc]	Name HESS	L [deg]	B [deg]	Distance [kpc]
J0835.3-4510	263.55	-2.79	0.29 ± 0.02	J0852-463	266.28	-1.24	0.2
J1709.7-4429	343.10	-2.69	1.4 - 3.6	J0835-455	263.85	-3.09	0.29
J1856.1+0122	34.70	-0.42	2.8	J1713-397	347.28	-0.38	1
J1809.8-2332	7.39	-1.99	1.7 ± 1.0	J1616-508	332.39	-0.14	6.5
J1801.3-2322c	6.57	-0.21	1.9	J1825-137	17.82	-0.74	3.9
J1420.1-6048	313.54	0.23	5.6 ± 1.7	J1708-443	343.04	-2.38	2.3
J1018.6-5856	248.32	-1.70	2.2	J1514-591	320.33	-1.19	5.2
J1028.4-5819	285.06	-0.49	2.3 ± 0.7	J1809-193	10.92	0.08	3.7
J1057.9-5226	285.98	6.65	0.7 ± 0.2	J1442-624	315.41	-2.30	2.5
J1418.7-6057	313.33	0.14	2 - 5	J1640-465	338.32	-0.02	8.6