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ABSTRACT

INVERSE PROBLEM OF PREDICTING STOCHASTIC
FATIGUE DAMAGE AND RELIABILITY IN

COMPOSITES MATERIALS

The prediction of the fatigue behavior of composites materials is

an unsolved problem with important economical and safety implica-

tions. The majority of the fatigue models existing in the literature

work under restricted experimental conditions and hence they are

difficult to extend. Additionally a vast number of them are of the

deterministic type, thus they can not account the inherent variability

of the fatigue process. In this work, a stochastic phenomenological

evolutive damage model is presented as an extension of the classic

model of Bogdanoff and Kozin, based on Markov chains. New model

parameterizations are proposed and the Inverse Problem for para-

meter identification is solved from stochastic damage data by means

of a genetic algorithm. The parameter identification is done by ac-

counting all the statistical information contained within the data,

defining a new residual based on statistical distance. Additionally,

a new residual based on the concept of cumulative entropy has been

defined, which considers the information gained when predictions ap-

proach data. Finally the statistical prediction of the complete dam-

age process is introduced into the reliability formulation, leading to

a coherent prediction of the long term reliability.



RESUMEN

PROBLEMA INVERSO DE PREDICIÓN DE DAÑO
ESTOCÁSTICO POR FATIGA Y FIABILIDAD EN

MATERIALES COMPUESTOS

La predicción del comportamiento a fatiga de los materiales com-

puestos es un problema abierto con importantes implicaciones econó-

micas y de seguridad. La mayoría de los modelos de fatiga existentes

en la literatura funcionan bajo determinadas condiciones experimen-

tales por lo que son difícilmente extensibles. Adicionalmente, una

buena parte de estos modelos son de tipo determinista, por lo que no

pueden tener en cuenta la variabilidad inherente al proceso de fatiga.

En este trabajo se plantea un modelo estocástico fenomenológico de

evolución de daño, como extensión del modelo estocástico clásico de

Bogdanoff y Kozin, basado en cadenas de Markov. Se han propuesto

diferentes parametrizaciones del modelo y se ha resuelto el Problema

Inverso de identificación de parámetros a partir de datos estocásti-

cos mediante algoritmos genéticos. La identificación de parámetros

se ha realizado teniendo en cuenta toda la información estadística

contenida en los datos, mediante la definición original de un residual

basado en distancia estadística. Adicionalmente, se ha planteado un

residual basado en el concepto de entropía acumulada, que tiene en

cuenta el contenido de información ganado a medida que las predic-

ciones se aproximan a los datos. Finalmente la predicción estadística

del daño es introducida en el criterio de fallo del material compuesto,

dando lugar a una predicción coherente de la fiabilidad a largo plazo.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Composite materials are used extensively in the construction of high perfor-

mance structures such as aeronautical, marine, mechanical and civil struc-

tures, which often require high reliability standards. These structures are

typically subjected to dynamic loads and hence they are susceptible to long

term fatigue failures. The perception of the phenomenon of fatigue has been

usually associated with the behavior of homogeneous, isotropic, metallic

materials and hence there has been a strong tendency to treat fatigue in

composites as though they were metals. It has typically led to oversized

designs and more occasionally to some catastrophic failures [1].

Unlike metals, composites are inhomogeneous and anisotropic mate-

rials. They accumulate damage in a general damage area rather than a

localized area, and failure does not always occur by the propagation of a

single macroscopic crack. In addition damage starts early, after only a few

or a few hundred loading cycles, and a sharp initial reduction of the stiff-

ness is usually observed. This early damage process is caused by micro-scale

damage mechanisms, including fibre breakage, matrix cracking, debonding

and delamination. These mechanism can occur sometimes independently

1



1.1 Motivation and Objectives 2

and others interactively, and their prevalences may be strongly affected by

both materials variables and testing conditions [2, 3].

The efficient and reliable use of the composite materials in any appli-

cation will require to account for this damage accumulation process under

service conditions such as fatigue loadings. But due to the quite complex na-

ture of the fatigue phenomenon [3–5], a reliable study of the fatigue response

should take into account the inherent randomness of the process. There e-

xists physical uncertainty that comes from the material random properties,

the random spatial distribution of defects, and imperfections within the ma-

terial structure. Also, there can be loading uncertainty generated by the

randomness of the applied mechanical loads and the environmental condi-

tions. Several studies have been reported in the literature focusing on the

uncertainty of composites fatigue phenomena [6–9].

It follows that, in addition to continue understanding the physical me-

chanisms by which fatigue damage occurs in composites, new phenomeno-

logical procedures are needed to predict this cumulative process in a sta-

tistical framework, and therefore the reliability and life of the material. In

this context, the Inverse Problem together with Genetic Algorithms [10] are

shown to be effective to train stochastic damage models from nondestruc-

tive damage data. These models are able to make statistical predictions of

damage at any time and therefore allow to make predictions of the long term

reliability, by inserting them into a suitable failure criteria. This procedure

has not been reported before and hence it is the main contribution of this

research.
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1.2 Thesis Organization

This thesis is organized as follows: The present chapter deals with the

motivation and organization of the research work presented herein. Chapter

2 is dedicated to the inverse stochastic problem of predicting damage in

composites and it is presented in the format of a scientist paper prepared to

be submitted to Journal of Composite Science and Technology. Chapter 3

treats the assessment of long term reliability of composites materials under

stochastic damage conditions, which is also prepared to be submitted to

Journal of Composites Structures. Finally, this document is closed with two

appendices: Appendix A develops the formulation of the Monotonic Cubic

Hermite Interpolation while Appendix B is dedicated to the IP-MARKOV

algorithm, developed ad-hoc for this research.



Chapter 2

Inverse Stochastic Modeling for

Fatigue Damage in Composites

Fatigue in composite materials is a complex-multiscale damage cumulative

process, detectable from the beginning of the lifecycle [2, 3]. Numerous

fatigue models have been proposed in the literature, but they are difficult

to extend outside laboratory conditions. Due to the material heterogeneity

and random spatial distribution of initial defects, composites show a signifi-

cant scatter in their fatigue responses and hence deterministic models fit to

reality is only relative. A stochastic phenomenological approach that con-

siders damage evolution by means of parametrized Markov chains has been

presented in this work. Three new model parameterizations are proposed

and compared. An inverse framework has been proposed to find the optimal

model parameters that minimize the residual mismatch between model pre-

dictions and experimental data by means of a genetic algorithm. Two novel

definitions of the residual mismatch based on (1) the statistical distance and

(2) cumulative entropy have been proposed. Finally models and residuals

are ranked and compared by the cross-validation method based on their

predictability. This methodology has been validated against experimental

fatigue damage data taken from literature.

4
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2.1 Introduction

Fatigue modeling is an unsolved problem of the composites science and

technology. Several scale-level damage mechanisms such as matrix microc-

racking, fiber breakage, fiber-matrix debonding or delamination take place

early during the fatigue process within diffuse areas of the laminate [2, 3].

Their predominance and extension are subjected to uncertainty due mainly

to the random distribution of initial defects and heterogeneity [6, 11]. This

inherent uncertainty is not considered by most fatigue models, which leads

to oversized and uneconomical designs. This research proposes a novel

methodology to account for the uncertainty in fatigue damage modeling

in a coherent statistical sense.

Numerous fatigue models have been proposed since the boost in the de-

velopment of the composites technology in the early seventies. Influenced

by the metal fatigue experience (S-N curves), life models were the first to

be accepted and used. Because fatigue failure in composites occur very dif-

ferently than in metals, some researchers turned their attention to the real

damage mechanisms occurring along the fatigue process. Phenomenological

models were then proposed based on the progression of one or more vari-

ables related to any measurable manifestation of damage, such us stiffness

and strength reduction, delamination size or matrix crack density. Good

examples of both classes of models can be found in [12].

The vast majority of the existing fatigue models are deterministic ap-

proaches, and hence they are not able to account for the inherent variability

of the process. In many other cases fatigue models are not practical for en-

gineering purposes. Probabilistic phenomenological damage approaches are

found to be more suitable for composites materials [32] , but unfortunatelly

the extension of such methods is not as mature as deterministic models.

Bogdanoff and Kozin [7] were the first to introduce a stochastic phe-
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nomenological model to simulate the lifetime for processes of fatigue, wear

and crack propagation of engineering materials. A Markov chain model

was proposed to take into account the variability of the process and a time

transformation-condensation method was developed to take into account

the nonstationarity. Later, Rowatt and Spanos [13] extended this model

to composite materials. A time transformation-condensation method was

also applied in their work to predict the fatigue lifetime from compliance

stochastic data. Ganessan [14] discussed the limitations on the validity

of the Weibull model for fatigue damage and proposed the use of Markov

chains as a suitable approach to model the compliance evolution of com-

posites laminates. Recently, Wei and Johnson [11] have proposed a Markov

chain model to predict stochastic S-N curves from fatigue damage data.

They also provide a good review of stochastic cumulative damage models.

In all of these models, the key task is the inference of the probability

transition matrix (PTM) of the process, which summarizes the probabil-

ity transitions between damage or lifetime states, as a specified function

of some unknown parameters. Additionally, the majority of the existing

Markov fatigue models do not account explicitly for damage evolution, only

for lifetime evolution in which explicit formulas for model parameters are

available [7]. Unfortunately fatigue damage modeling in composite mate-

rials often require more complicated parameterizations and there no exists

explicit formulas to infer them. Consequently statistical superior methods

like maximum likelihood estimation [15] or numerical search strategies, as

those proposed herein, are required.

Three new Markov damage models are proposed, one stationary (model

A) based on a bilinear variation of the stationary PTM elements, and two

non stationary models (model B and C) based on a novel unitary time trans-

formation concept. Piecewise monotonic cubic splines [16, 17] are originally
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used to parameterize the time scale within the non stationary models. An

inverse procedure is proposed to find the optimal model parameters which

minimize a cost functional that summarize the mismatch between experi-

mental and model predicted measurements. All the process is conducted

by a genetic algorithm (GA) to avoid local minima. The main contribution

at this point is the formulation of two novel definitions of residuals based

upon (1) the statistical distance and (2) the cumulative entropy [18] between

model predicted and empirical distribution functions. This model strategy

allows for a robust description of the stochastic process since an unlimited

number of samples of the experimental process (coupons or specimens) can

be taken into account.

Since several models and residuals are proposed a comparative criterion

for model-residual selection is required. The cost functional is the first

available criterion to compare between models, but it is restricted to the

same residual type. In addition, it is a measure of the fitting accuracy for

a given set of data, but it does not provide information about the model

ability to fit new data. Hence the prediction error calculated by the Cross

Validation method [19–21] is proposed to be used as absolute criterion to

model-residual rank selection and also as a measure of the predictability

of a model. This task is particularly relevant given that large samples

of fatigue data are usually not available, hence complicated models trained

with a reduced experimental set can overfit data and hence reduce the model

prediction ability.

All proposed models have been able to simulate the complete experimen-

tal stochastic process with a reasonable good fit. However the predictability

of models has been rather influenced by the different parameterizations. Ad-

ditionally, the GA-driven inverse procedure has revealed efficiency in terms

of computational cost, as the convergence has taken less than one minute
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per model, with a personal computer. As a preliminary conclusion it has

been found that models with a tendency to overfit data are able to improve

their predictability when trained with the entropic residual.

2.2 Methodology

2.2.1 Cumulative damage model using Markov chains

The evolution of fatigue damage as a function of time is proposed to be

modeled by Markov chains, under the main hypothesis established by the

Markov property, which states that the future of the process depends only

on its present state, which is independent of the past. This phenomenolog-

ical stochastic approach is based on the theory of Markov chains [22] and

assumes the following underlying assumptions: [7, 13]

1. Damage is a nondecreasing random variable and it passes through an

integer and finite number of states, j = 1, 2, ..., s, until the “absorbing”

state s is reached.

2. Time is discretized within integer units of duty cycles n = 0, 1, ..., N .

One duty cycle (DC) is a suitably defined period of load cycles in

which damage is randomly accumulated.

3. Damage can only increase from a state to the next within a DC.

It follows from the previous remarks that the proposed model is a finite-

state (1), discrete-time embedded (2) Markov process in which the damage

accumulation mechanism is of the unit-jump type (3). At each integer time

n, there is an integer-valued random variable (rv) Dn called the damage

state at time n and the damage process is family of rv’s {Dn;n > 0}. This

integer-time process can also be viewed as a continuous process {D(t); t > 0}
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by taking D(t) = Dn for t ∈ [n, n+ 1), but changes only occur at integer

times, which is usually coincident with fatigue cycles.

Let then the rv Dn represents the damage state at time or duty cycle n.

Thus the probability of Dn to be in state j at time n is denoted by

P [Dn = j] = pn(j) (2.1)

The probability mass function of the rv Dn at time n is given by the (1× s)

vector

pn = {pn(1), pn(2), ..., pn(s)} (2.2)

where
s∑
j=1

pn(j) = 1 (2.3)

Let now define the probability of damage being in the state k at time

n + 1 given that the process has passed through the states {1, 2, ..., j} at

the discrete times {0, 1, ..., n}, as

p1k = P [Dn+1 = k|Dn = j,Dn−1 = j − 1, ..., D0 = 1] (2.4)

By the Markov property the future behavior of the process is independent

of its past states, since the present state is the only influencer, so that (2.4)

can be simplified as

p1k = pjk = P [Dn+1 = k|Dn = j] (2.5)

Moreover, by assumption (d) damage may increase from a given state j to

the one just above j + 1 within a DC , or in other case, it may remain in

the same state j.

Hence all possible transitions within the DC n can be summarized in a

s× s sized double-diagonal Probability Transition Matrix (PTM), as

Pn =


p
(n)
11 p

(n)
12

p
(n)
22 p

(n)
23

... ...
p
(n)
s−1,s−1 p

(n)
s−1,s

1

 (2.6)
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Additionally the PTM satisfies the Chapman-Kolmogorov identity [22], so:

s∑
k=1

p
(n)
jk = 1; j = 1, ..., s− 1 (2.7)

and hence

p
(n)
jk = 1− p(n)

jj > 0 (2.8)

From the Markov chains theory [22], the probability distribution of the

rv DN (2.2) is completely determined by the probability mass function of

the initial damage, p0, and the probability transition matrices, Pn , where

n = 0, 1, ..., N , as

pN = p0

N∏
n=0

Pn (2.9)

Equation (2.9) provides the fundamental probabilistic information of the

stochastic damage model and it is central within the methodology proposed.

2.2.2 Forward problem

The number of independent variables needed to define the Markov model

described above are N × (s − 1). The process is supposed to start at the

no-damage state, thus p0 = {1, 0, ..., 0}. An unusual stochastic process

of 5 states and 20 discrete times would have 80 variables to infer, hence

a description of the PTMs as functions of some unknown parameters is

mandatory. A two parameter model, the size s of the PTM and the ratio

r
(n)
j = p

(n)
jj /p

(n)
jk can be used as the simplest parameterization assuming a

stationary (r
(n)
j = rj) and state-independent process (rj = r) [7]. However

fatigue in composite materials is often a non-stationary and state-dependent

damage process and then require more elaborated parameterizations.

Three alternative models are proposed and compared with the sim-

plest model (sr model): A five parameter state-dependent stationary model

(model A), a six parameter state-independent non-stationary model (model

B) and a four parameter state-independent non-stationary model (model
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C). The first model assumes a monotonic bilinear variation of qj while the

PTM matrix remains invariant for the entire process. In models B and C

the nonstationarity is accounted by a transformation of the unitary time

scale x, to the transformed scale y, by means of a parameterized monotonic

cubic spline 1 y : y (x;α1, β1, α2, β2) allowing the probabilities of transition

between states p and q remain invariants during the process. Mathemati-

cally:

Model A: θA = {s, q1, qs−1, α, β}

pn = p0


p1 q1

p2 q2

... ...
ps−1 qs−1

1


n

(2.10a)

qj = q1 + (qs−1 − q1) · φ(ξ;α, β) (2.10b)

φ(ξ;α, β) =


β
α
ξ if ξ < α

β
α

(ξ − α) + β if ξ > α

(2.10c)

ξ =
j − 1

s− 1
, j = 1, ..., s (2.10d)

pj = 1− qj (2.10e)

1See Appendix A
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Model B: θB = {s, p, α1, β1, α2, β2}

pn = p0


p q

p q

... ...
p q

1


m(n)

(2.11a)

m(n) = n · y (x;α1, β1, α2, β2) (2.11b)

x, y ∈ [0, 1] (2.11c)

α1 < α2 ∈ [0, 1] (2.11d)

β1 < β2 ∈ [0, 1] (2.11e)

q = 1− p (2.11f)

Model C: θC = {s, p, α1, β1}

pn = p0


p q

p q

... ...
p q

1


m(n)

(2.12a)

m(n) = n · y (x;α1, β1) (2.12b)

x, y ∈ [0, 1] (2.12c)

α1, β1 ∈ [0, 1] (2.12d)

q = 1− p (2.12e)

2.2.3 Inverse problem

The estimation of model parameters by the Inverse Problem (IP) can be

stated as the minimization problem of the discrepancy between model pre-

dicted and experimental measurements. The approach used herein is to
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PARAMETERS
θ = {s, pi, αi, βi, . . . }

STOCHASTIC MODEL
Markov chains
Fd(D;θ, ne)

EXPERIMENTAL
stiffnes measurements

Fe(D;ne)

GENETIC ALGORITHM
crossover, mutation

min
θ

F

RESIDUAL
r(Fd, Fe)

Cost Functional
FL(r)

Figure 2.1: Inverse procedure

use a Genetic Algorithm (GA)[10] to iteratively search the set of model pa-

rameters θ that minimizes a cost functional that quantify the model-data

mismatch. Other search algorithms such gradient-based or simulated an-

nealing can be used for the same aim but GA is preferred by its efficiency

exploring the whole model space avoiding local minima.

Let Fe(D;ne) be the empirical cumulative distribution function of dam-

ageD at time ne and Fd(D;θ, ne) the CDF of damageD at time ne predicted

by a model parameterized by θ. A population Ψg = {θ(1); · · · ;θ(h)} of h

possible solutions or chromosomes is randomly generated. Each chromo-

some θ(i) is introduced as a input within the forward problem (eqs 2.10, 2.11)

and the cost functional integrates the discrepancy r between Fe(D; te) and

Fd(D;θ(i), te) along the empirical times te = {0, · · · , ne, · · · , Ne}. Genetic

operators such as crossover and mutation are iteratively applied to obtain

new populations until the maximum number of generations is reached.

Three different expressions for the evaluation of the discrepancy are

proposed based on well-established statistical distance concepts. The first

of them uses the integral of the squared difference between Fe and Fd as a

`2-norm type distance [23, 24]:

r(θ, ne) =

∫ 1

0

[Fe(D;ne)− Fd(D;θ, ne)]
2 dD (2.13)



2.2 Methodology 14

The second type proposed is a `1 variant of the former definition (2.13) and

it is defined as[25]:

r(θ, ne) =

∫ 1

0

|Fe(D;ne)− Fd(D;θ, ne)| dD (2.14)

Finally an alternative definition of residual based on the concept of cumula-

tive entropy (Ec) [18, 26] is proposed. From this concept, a modified version

of the Jensen-Shannon divergence is adopted as residual. This residual can

be interpreted as a measure of the information gained when Fd closes to Fe.

It is defined as:

r(θ, ne) = Ec
(1

2
Fd +

1

2
Fe

)
− 1

2

(
Ec(Fd) + Ec(Fe)

)
(2.15)

where

Ec = −
∫ 1

0

F (D)logF (D)dD (2.16)

The discrepancy between Fe(D; te) and Fd(D;θ, te) for all ne ∈ te is

stored within a residual vector r, defined for each candidate θ as:

r(θ) = {r(θ, 1), · · · , r(θ, Ne)} (2.17)

Since two residual vectors cannot be compared directly, a scalar number is

derived by means a cost functional F defined as the `2 norm of the residue

vector (??):

F(θ) = ‖r(θ, ne)‖2 =

√√√√ Ne∑
ne=0

r(θ, ne)2 (2.18)

To improve the identifiability and the convergence speed of the GA, an

alternative definition of the cost functional has been adopted [27]:

FL = log(F + ε) (2.19)
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where ε is a small non-dimensional value (here adopted ε = 10−20) that

ensures the existence of FL when F tends to zero.

2.2.4 Model selection by Cross Validation

Cross Validation (CV) is a standard heuristic for finding the right model

architecture among a heterogeneous class of models based on a comparative

of their prediction error (PE), i.e. the expected loss of the estimated model

evaluated on future observations [19, 28]. In the application of CV, some

samples are left out for validation (validation set), while other samples are

used for calibration (calibration set). If only one sample is left out for val-

idation, the method is known as leave-one-out cross validation (LOO-CV).

This last method has been proven to be asymptotically inconsistent, in the

sense that the PE estimation does not converge to the true PE as the data

set approaches to infinity , so it will not be used here [29]. This deficiency of

LOO-CV is overcome by using leave-multiple-out cross-validation, or sim-

ply called cross-validation, which provides a nearly unbiased estimate of the

PE.

The available data set D = {D1, . . . , DNe} is randomly split into K

disjunt subsets D1, . . . ,DK of approximately equal size. Each subset Di
contains a collection of v random variables Di = {Di1, . . . , Div} where v =

Ne/K, each one with mean and standard deviation (µDij
, σDij

)

For each i ∈ {1, · · · , K} the model candidateM is fitted on D−Di and

evaluated on Di as:

PEi =
1

v

v∑
j=1

(µDij
− µ̂Dij

)2 + (σDij
− σ̂Dij

)2 (2.20)

The prediction error calculated as (2.20) is averaged over the K folds,
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hence:

P
(n)
E =

1

K

K∑
i=1

PEi (2.21)

As the CV estimate of (PE) is a random number which depends on

a random division of the data set, the method is repeated N times using

different splits into folds in order to obtain a Monte Carlo estimation of the

random variable PE: {P (1)
E , · · · , P (n)

E , · · · , P (N)
E }.

2.3 Numerical results

2.3.1 Experimental data

In this section, the modeling procedure described above is illustrated. Stochas-

tic damage data for sixteen quasi-isotropic open-hole S2-glass laminates

have been taken from the work of Wei et al. [11]. Details regarding the

manufacture of samples, experimental set-up, measurements, etc were re-

ported in this work and hence, they are not repeated here. In essence,

each specimen is subjected to a constant amplitude T − T fatigue loading

(R = 0.1, f = 5Hz, σmax = 0.5σu) and twenty five measurements of lon-

gitudinal stiffness are registered as fatigue response within a not-regularly

spaced time interval.
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Figure 2.2: Experimental samples of damage as a stiffness reduction over
time. The scattering increase with time

The absorbing state is reached (Dne = 1) when the stiffness decreases

up to 60% of E0, as reported in [11]. Hence damage at sample time ne is

indirectly measured from the stiffness data Ene as:

Dne =


(E0 − Ene)

0.4E0

if Ene > 0.6E0

1 if Ene < 0.6E0

(2.22)

where E0 is the initial stiffness for which Dne = 0 . Damage data calculated

as (2.22) are plotted here as sample realizations in Figure 2.2.

Empirical cumulative distribution functions of damage are calculated at

each ne from damage data of the 16 specimens as:

Fe(D;ne) =
1

16

16∑
i=1

1[0,D)(D
(i)
ne

) (2.23)
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The selection of the proper value of DC is carried out by means a para-

metric study concerning the IP accuracy (FL) as a function of DC duration

in fatigue cycles. The inverse algorithm is run ten times for each DC value

and the IP error is calculated by averaging the cost functional. The process

is repeated for each model and each residual type and the results are pre-

sented in Figure 2.3. Lower values of DC lead to good fitting accuracies but

at a higher computational expense, and viceversa. Thus, as a compromise

solution, one duty cycle is taken to be 500 load cycles for this study, hence

ne =
te

500
(2.24)

where te is the number of fatigue cycles.
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Figure 2.3: Influence of the DC election over the cost functional. By
columns from left to right: Model A, model B, model C, respectively. By
rows from top to bottom: Residual 1, residual 2, residual 3, respectively.
Clearly there exists an upper accuracy limit for DC.

2.3.2 GA convergence

A high number of generations together with large populations can provide

excellent convergence results for the GA but it is at the expense of a high

computational cost. In this section the search algorithm is studied estab-

lishing a compromise between the IP accuracy and the computational cost.

In Figure 2.4 the cost functional (FL) is represented for different values of

population size and generations, for each model-residual election.
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Figure 2.4: GA convergence. By columns from left to right: Model A,
model B, model C, respectively. By rows from top to bottom: Residual 1,
residual 2, residual 3, respectively. Note that models trained with entropic
residual provides smoother GA convergences.

From Figure 2.4 the parameters for the GA search are selected.

Parameter Model A Model B Model C

Population size 50 60 50

No. of generations 60 60 50

Prob. of crossover 0.80 0.80 0.80

Prob. of mutation 0.10 0.10 0.10

Prob. of selection 0.70 0.70 0.70

Table 2.1: Parameter setup for GA

The algorithm is stopped when the total number of generation reaches

the values shown in Table 2.1 or when the convergence fall to the tolerance

limit, fixed at 10−30.
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2.3.3 Inverse problem solution

A set of optimal model parameters have been found for each model (Ta-

ble 2.2). CDFs of damage predicted by models have been compared with

those experimentally determined by Equation (2.23). Additionally, model

predicted and experimental determined mean and coefficient of variation of

damage are respectively compared and plotted in Figure 2.14.

Parameter Residual 1 Residual 2 Residual 3

MODEL A

s 24 24 26

q1 0.249181 0.280566 0.250915

qs−1 0.078543 0.078058 0.079019

α 0.122154 0.120968 0.180314

β 0.999000 0.999000 0.998997

MODEL B

s 25 25 27

p 0.880683 0.881128 0.903399

α1 0.087957 0.088012 0.157744

β1 0.076331 0.076446 0.097282

α2 0.226531 0.226555 0.281078

β2 0.357724 0.357813 0.357695

MODEL C

s 28 28 28

p 0.916719 0.914797 0.916739

α1 0.505151 0.626855 0.540549

β1 0.407527 0.540407 0.437133

MODEL sr

s 34 34 34

r 6.9719 7.0781 7.5046

Table 2.2: Inverse Problem solution.
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Figure 2.5: Model prediction of the complete stochastic process. Model A
trained with residual 1.
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Figure 2.6: Model prediction of the complete stochastic process. Model B
trained with residual 1.
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Figure 2.7: Model prediction of the complete stochastic process. Model C
trained with residual 1.
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Figure 2.8: Model prediction of the complete stochastic process. Model A
trained with residual 2.
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Figure 2.9: Model prediction of the complete stochastic process. Model B
trained with residual 2.
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Figure 2.10: Model prediction of the complete stochastic process. Model
C trained with residual 2.
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Figure 2.11: Model prediction of the complete stochastic process. Model
A trained with residual 3.
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Figure 2.12: Model prediction of the complete stochastic process. Model
B trained with residual 3.
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Figure 2.13: Model prediction of the complete stochastic process. Model
C trained with residual 3.
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Figure 2.14: Moments predicted at times not covered by data. Dashed,
solid and dot-dashed line: Model A, model B and model C, respectively.
Dots: Experimental data. Rows from up to bottom: Residual 1, residual 2,
residual 3, respectively.
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2.3.4 Cross Validation

The whole data set reported in [11] and used here consists on a collection

of 25 random variables (rv), one for each time in which damage is measured

{D1, . . . , D25}. These rv are randomly divided into ten folds (K = 10) and

the model candidate is trained and evaluated 10 times, one for each division,

following the methodology above. Given that an identical integer number

of rv occupying each fold is not possible, 5 folds are occupied by 2 rv while

the other 5 are occupied by 3 rv.

Residual
Model A Model B Model C Model sr

µ σ µ σ µ σ µ σ

1 0.0263 0.0008 0.0499 0.0069 0.0298 0.0020 0.0310 0.0007

2 0.0265 0.0006 0.0530 0.0050 0.0322 0.0049 0.0315 0.0008

3 0.0280 0.0014 0.0364 0.0029 0.0346 0.0026 0.0317 0.0008

Table 2.3: Monte Carlo estimation of mean and variance Prediction Error

The prediction error, calculated following Equation 2.20, is averaged over

the 10 divisions and the whole process is repeated 25 times to obtain N = 25

samples of the prediction error. The PE mean and standard deviation is

calculated for all models and all residuals, and are summarized in Table 2.3.

2.4 Discussion

The three models proposed are capable to accurately simulate the temporal

evolution of CDF of damage with a reduced set of parameters (Figures 2.5

to 2.13). The mean and coefficient of variation of damage are also closely

predicted at times not covered by data. In a principle, the residual election

seems not to have a decisive importance in the fitting accuracy of models,

however Figure 2.14 reveals that model B trained with residual 3 fits worse

than it does with residual 1 and 2. Additionally, if one look at Table 2.3,
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the prediction error of model B is drastically decreased when trained with

residual 3, what means that this loss of fitting accuracy is the expense of a

gain in the predictability of the model.

Regarding to the IP solution of model parameters, models trained with

residuals 1 and 2 provide almost identical solutions, varying moderately

from the solution using residual 3, as shown in Table 2.2. Moreover, it is

noted that the number of damage states increases for the “weakest”models

C and br. This is due to the fact that a higher number of states increases

the model fitting accuracy for a fixed value of DC [30], which show evidence

that the number of damage states has to be introduced within the problem,

as an optimization variable.

The selection of the suitable value of DC in units of fatigue cycles plays

an important role for the fitting accuracy of models. If DC increases the

computational cost decreases but the accuracy limit can decreases. On the

contrary, too small values of DC lead to an increase of computation time but

also to numerical imprecisions caused by raise large matrices with near zero

entries to large exponents. The sensitivity analysis presented in Figure 2.3

reflects both effects. Nonstationary models allows for higher values of DC

without loss of accuracy and they seem to be more immunes to numerical

imprecisions for low DC, hence they seem to be less sensitive than stationary

model against the choose of DC.

Relating to the predictive capacity of models evaluated by the prediction

error estimated by the (Monte Carlo) Cross-Validation method, Table 2.3

model A is the best predictor for the given set of data while model B does

worst. Model B trained with residuals 1 and 2 exhibit a clear tendency to

overfit data B, however it disappears when it is trained with residual 3. At

the moment, there is not enough information to generalize this observation,

so we prefer only to account for it.
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As a discussable limitation associated with the proposed methodology is

that it is “data-drive” in nature. Fortunately, the structure of this methodol-

ogy minimizes the amount of data needed for the model construction and is

more immune to noise data by incorporating the idea of a residual based on

statistical distance between CDF, avoiding to infer model parameters from

moments of data. This fact and its inherent simplicity greatly increases the

applicability of the method to "real life" situations.



Chapter 3

Reliability in Composites under

Damage Conditions

A statistically consistent method to asses the long term fatigue reliability in

the framework of a macro-scale cumulative damage process is proposed. The

stochastic damage model discussed in Chapter 2 is originally incorporated

into the reliability problem. It allows to account for the real “path” of

successive damage states inferred from stochastic data to predict the “path”

of the long term failure probability. This methodology is validated against

experimental data taken from the literature. A modified quadratic Tsai-Wu

failure criteria is adopted. Finally the reliability problem has been resolved

by the Monte Carlo method together with the Bootstrap technique.

3.1 Introduction

The gradual deterioration of the composite material under fatigue loadings

induces changes in both strength and stiffness and hence leads to a contin-

uous redistribution of stresses within the damage areas [31]. The reliability

assessment depends upon stresses and strengths, which are stochastic pro-

cesses under fatigue conditions. Hence the variation of the reliability along

35
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the fatigue process should be predicted by establishing consistent relation-

ships between a stochastic damage model and a failure criterion, in the

framework of the continuum damage mechanics [50]. This methodology

allows to estimate the long term fatigue reliability accounting for the real

“path” of successive damage states by a stochastic damage model inferred

from data.

In the reliability literature, only few works have considered the damage

as a variable inserted into the composite failure function to derive reliability.

Kam [32] considered a limit state function from a damage model based on

a linear relation of time to failure. Others authors considered damage as a

deterministic non linearity into the composite failure function. In the work

of Richard [33], damage was studied as an elasto-viscoplastic model to derive

relations between stress and strains. Carbillet et al. [34] derived an extension

of this work for strongly non linear behavior caused by damage. As a

drawback, all of this approaches are based on assumptions over cumulative

damage modeling. Finally, Van Paepegem and Degrieck [31, 35] proposed a

coupled formulation of reliability with damage by means of the concept of

the effective stress from the continuum damage mechanics. This approach

is follow herein.

In this paper an inverse problem is applied to infer the fatigue damage

process, modeled as parameterized Markov chains. Three different parame-

terizations for the fatigue damage model are proposed. To obtain the change

of probabilistic failure, model predicted probability distribution functions

of damage, are considered inside a failure criterion to account the reserve

of failure due to the stochastic damage accumulation. Through this, the

path of successive damage states is not only considered [31, 35] but also

the full statistical information of damage through time from data. Failure

probability is calculated by Monte Carlo method, [36] which is a numerical
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method based on computational simulations widely used in composites reli-

ability as reference or exact method [37, 38]. The boostrap method is used

to overcome the statistical uncertainty from the sampling method.

As a result of this work, distributions of failure probability over lifetime

are obtained and compared with those obtained directly from empirical

data. In order to compare the efficiency of the stochastic damage model

to derive the long term failure probability, the model is compared with

benchmark data coming from from probability density functions of damage

identified by the test of Kolmogorov-Smirnov.

3.2 Reliability Formulation

The essence of the reliability problem is the probability integral:

Pf =

∫
X|g(X)≤0

fX(X)d(X) (3.1)

where fX(X) is the probability density function of the vector of random

variables X that represent uncertain quantities that influences the state of

the structure. g(X) ≤ 0 denotes a subset of the outcome space where failure

occurs.

For mathematical analysis, it is necessary to describe the failure domain

g(X) ≤ 0 in an analytical form, which is widely named as limit state func-

tion (LSF). The next section 3.2.1 is dedicated to expose the LSF of Tsai

and Wu [39], widely used for failure analysis and reliability in composites. A

Monte Carlo method to solve numerically the integral (3.1) will be exposed

in the section 3.2.2.

Both cited topics about Equation 3.1, together with the discussion about

what to consider as random variables, take almost all the literature discus-

sion of composite reliability.
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3.2.1 Limit State Function

There are several failure criteria for unidirectional composite laminates such

as maximum stress, maximum strain, Tsai-Hill, Hoff-man, Tsai-Wu, etc [40–

43]. Under such variability of failure criteria, in certain research works of

reliability for composites materials [37, 44–47], several possibles LSF are

probed and compared to experimental or reference reliability data when

available. However, the Tsai-Wu [39] quadratic criteria is widely used in

reliability by its physical plausibility and its mature knowledge achieved

from several decades. Hence, without lack of generality, this criterion is

used herein.

The Tsai-Wu failure criterion is used to determine the failure of or-

thotropic materials and takes into account the interactions between different

stress and strength components. It is formulated as:

Fxσx + Fyσy + Fxxσ
2
x + Fyyσ

2
y + Fssσ

2
xy + 2Fxyσxσy = 1 (3.2)

where

Fx =
1

Rx

− 1

R′x
(3.3a)

Fy =
1

Ry

− 1

R′y
(3.3b)

Fxx =
1

RxR′x
(3.3c)

Fyy =
1

RyR′y
(3.3d)

Fss =
1

R2
s

(3.3e)

Fxy = −0.5
√
FxxFyy (3.3f)

The subscripts x and y indicate longitudinal and transversal orientation

respectively, while s means shear. Rx is the ultimate longitudinal tensile
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strength, R′x is the longitudinal ultimate compressive strength, Ry is the ul-

timate transverse tensile strength, R′y is the ultimate transverse compressive

strength and Rs is the in-plane shear strength.

A mathematical expression for unidirectional composite failure may be

written as follows:

g(X) = g(x1, x2, . . . , xn) 6 0 (3.4)

where g(X) represents the safety margin and X is the n-dimensional vec-

tor of random variables X = {σx, σy, σxy, Rx, R
′
x, Ry, R

′
y, Rs}. Substituting

equation (3.2) into (3.4), the limit state function g(X) at the critical point

in the composite material, becomes:

g(X) = 1− (Fxσx + Fyσy + Fxxσ
2
x + Fyyσ

2
y + Fssσ

2
xy + 2Fxyσxσy) (3.5)

3.2.2 Monte Carlo method

Given the random set X of random variables each one characterized by its

marginal density function fxi(xi), the failure probability defined in Equation

(3.1) can be written as:

Pf =

∫
X|g(X)≤0

fX(X)d(X) =∫
X

I [g(X)] fX(X)d(X)

(3.6)

where fX(X) is the joint probability distribution function for the random

variables, and I [g(X)] is an indicative function defined by:

I[g(X)] =

 1 if g(X) ≤ 0

0 if g(X) > 0
(3.7)

Unfortunately, the definition of random variables for stresses and strengths,

and the Tsai-Wu criterion lead to a very complex expression to compute

the probability of failure analytically. An effective way to compute this

probability of failure is by a Monte Carlo simulation.
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The principle of the Monte Carlo method is to sample each uncertain pa-

rameter xi by independent samples according to its density function fxi(xi).

In each iteration, a value is generated for each design variable which is then

tested in the failure criterion g(X). The failure probability will then be the

number of failure simulation respect to the total number of simulations.

Given that Equation (3.6) represents the expected value of the indicative

function (3.7), then an estimate of the failure probability can be written as:

Pf ∼=
1

ns

ns∑
j=1

I[g(Xj)] (3.8)

where ns is the number of simulations, Xj the vector of random variables

of the jth sample and
∑ns

j=1 I[g(Xj)] represents the sum of the number of

simulation in the failure domain (nf ). Equation (3.8) may also be written

as:

Pf =
nf
ns

(3.9)

In MCM a high computational cost is expected for small failure probabili-

ties, given that the total number of required simulations increases drastically

as is evidenced in Equation (3.15). Hence, attention has been focused on the

develop of more efficient simulation methods, among them the most popular

one the importance sampling method [48]. In this paper, this drawback has

been solved alternatively by a vectorized computation [49].

3.3 Reliability under damage conditions

The random accumulation of fatigue damage over time leads to a redistri-

bution of stresses and also to a strength decrease, which affects the failure

function g(X).

To use this information in a reliability model, the damage evolution

must be accounted into the failure function. To this end, a recent coupled
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approach of residual stiffness and strength to simulate the progressive failure

by a modified Tsai-Wu (or other) failure criterion, has been adopted [31].

This approach is based on the concept of the effective stress, σ̃ [50], as

the stress calculated over the effective area of the damaged cross-section A,

that resists the force F :

σ̃ =
F

A(1−D)
=

σ

1−D (3.10)

The stress and strain are related by the commonly used equation in contin-

uum damage mechanics of Lemaitre and Chaboche [51], Krajcinovic [52]:

ε =
σ̃

E0

=
σ

E0(1−D)
(3.11)

where ε is the nominal strain, E0 is the undamaged Young’s modulus and

D is a macroscopic measure for the fatigue damage, defined as D = 1−E/E0

with E the actual-residual stiffness. Then, when E = 0⇒ D = 1.

In this paper, a generalization of the damage variable is adopted to

consider failure not only when stiffness equals zero but also when it reaches

a target stiffness loss value, as follows:

D =
E0 − E

(1− ξ)E0

(3.12)

with ξ the target percentage loss of stiffness.

Following this approach, a modified Tsai-Wu failure criterion can be

achieve by considering the effective stress into the quadratic failure function.

So, the limit state function for reliability evaluation in the uniaxial case,

results as follows:

g(D) = 1−

 σ

1− D︸︷︷︸
rv


2(

1

RxR′x

)
+

 σ

1− D︸︷︷︸
rv

( 1

Rx
− 1

R′x

)
(3.13)

with Rx and R′x as indicated previously in Equations (3.3).
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The only random variable considered in this framework is the macro-

scopic damage D, as the factor that induces stochastic changes in both

stress and strengths values. Hence, a stochastic model for the evolution of

D over time together with the adoption of an appropriate failure criterion

g(D) are needed to formulate mathematically the probability integral for

the failure probability evaluation, as:

Pf =

∫
D

I [g(D)] fD(D)dD =

∫
D/g(D)≤0

fD(D)dD (3.14)

wherefD(D) is the probability density function derived from the stochastic

Markov model developed in Chapter 2 (Equation 2.9).

By the Monte Carlo method, the solution of Equation (3.14) can be

obtained as:

Pf ∼=
1

ns

ns∑
j=1

I[g(Dj)] =
nf
ns

(3.15)

where ns is the number of simulations, Dj is the random damage value

of the jth sample and
∑ns

j=1 I[g(Dj)] represents the sum of the number of

simulation in the failure domain (nf ).

Due to the stochastic information proceeding from Equation (2.9) are of

the non-parametric type, a population of samples D ⊆ D must be derived

from the model predicted density functions of damage by the Rejection

Method, Metropolis Hasting, Gibss or others [53]. In this paper, the Rejec-

tion Method with a sample size of 5000 has been used.

The statistical uncertainty associate to sampling D by rejection, derives

an error of evaluation for the failure probability once this sample has been

utilized as simulation in MCM. For conferring confidence, the calculus was

performed using the Bootstrap cross-validation technique [54], which are

Monte Carlo simulations that treat the original sample D as the pseudo-

population or as an estimate of the population by sampling B times with
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replacement over D obtaining the bootstrap replicates Db, as shown in Equa-

tion (3.16)

P̂ ∗bf = Pf (D
b) =

1

ns

ns∑
j=1

I[g(Db
j)]; b = 1 · · ·B (3.16)

In this work, B = 100 bootstraps were needed to controlled the bias in the

failure probability.

3.4 Numerical example

The proposed framework is illustrated in an example considering the pre-

viously mentioned stochastic damage data from the work of Wei et al. [11].

Details regarding the experimental set-up, measurements, etc were reported

in this work and hence, they are not repeated here. Each specimen is

subjected to a constant amplitude T − T fatigue loading (R = 0.1, f =

5Hz, σmax = 0.5σu) and twenty five measurements of longitudinal stiffness

are registered as fatigue response within a not-regularly spaced time inter-

val. A graphical representation of the damage samples coming from this

data set was reported in Figure 2.2, Chapter 2

Equation (3.16) is applied to obtain an estimation of the failure proba-

bility P̂ ∗bfti from empirical damage states Dne . The same procedure is repro-

duced with the model predicted probability functions of damage at times

not covered by data. The three Markov model parameterizations proposed

in Chapter 2 are introduced within Equation (3.16) here. Additionally, each

calculation is repeated to take into account the three definitions of residual

(Equations 2.13 to 2.15) proposed in Chapter 2, with which damage models

have been trained.

In order to compare the efficiency of the stochastic damage model pro-

posed herein and to derive a benchmark for the failure probability evolution,

the method is also repeated with new probability density functions of dam-
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age identified by the test of Kolmogorov-Smirnov with a confident level of

95%. In this last case, it was not necessary to use the bootstrap technique,

given that a parametric definition of the distribution of damage is available,

as it is provided by the test. Finally, in those calculations employing the

bootstrap technique, the maximum likelihood value of each P̂ ∗bfti estimated,

is selected as the most representative value of failure probability at each

time.
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Figure 3.1: Failure probability predicted by models trained with residual 1.
From top to bottom: Model A, model B and model C, respectively. Solid
line: Model predicted. Square marks: Predicted from empirical damage.
Circle mark: Predicted by K-S test.
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Figure 3.2: Failure probability predicted by models trained with residual 2.
From top to bottom: Model A, model B and model C, respectively. Solid
line: Model predicted. Square marks: Predicted from empirical damage.
Circle mark: Predicted by K-S test.
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Figure 3.3: Failure probability predicted by models trained with residual 3.
From top to bottom: Model A, model B and model C, respectively. Solid
line: Model predicted. Square marks: Predicted from empirical damage.
Circle mark: Predicted by K-S test.
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3.5 Conclusions

The results show general good agreement between model and experimental

predicted failure probability. However it is appreciable the use of different

parameterizations for the Markov damage models in the accuracy of the

failure probability prediction. The non stationary damage model B, which

showed the best fitting accuracies in Chapter 2, fits also better the failure

probability, as expected. This damage model also showed a considerable

tendency to overfit damage data, which went down when it was trained

with the entropic residual. Thus, it is also reasonable to expect it to predict

worse new experimental data, coming for example from a model updating

scheme.

Regarding the residual election it seems not to have a decisive impor-

tance in the fitting accuracy of the failure probability, providing almost the

same results. This can be attributed to the fact that the inherent error

of the sampling method covers the differences between using one or other

residual for the same model architecture.

Finally, it is also important to observe that the proposed framework

is general in nature and it is extensible to a broader class of materials,

given their failure criteria and a stochastic macroscopic damage model. In

composite materials, other failure criteria different than Tsai-Wu can be

used and different material variables, such us compliance, matrix cracking

density or delamination area can be established as a suitable measure of

macroscopic damage.



Appendix A

Monotone piecewise cubic

interpolation

Let the mesh {αi}ni be a partition of the unitary space X ∈ [0, 1] with

α1 < α2 · · · < αn, and let {βi} be the corresponding data points in the

transformed unitary space Y ∈ [0, 1] such that βi = βi(αi). The mesh

spacing is ∆αi+1 = αi+1 − αi and the slope between two consecutive data

points is Si+1 = ∆βi+1

∆αi+1
. The cubic Hermite interpolant is then defined as

y(x) = c1 + (x− αi)c2 + (x− αi)2c3 + (x− αi)3c4 (A.1)

where

c1 = βi (A.2a)

c2 = β̇i (A.2b)

c3 =
3Si+1 − ˙βi+1 − 2β̇i

∆αi+1

(A.2c)

c4 = −2Si+1 − ˙βi+1 − β̇i
∆α2

i+1

(A.2d)

The global monotonicity of the interpolant function (A.1) depends on

how {β̇i} are calculated. There exits several methods in the literature to
49
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approximate β̇i preserving the piecewise continuity and monotonicity [16],

among then the Fristch-Butland method [17] is adopted herein for its supe-

riority and efficiency:

β̇i =
3SiminS

i
max

Simax + 2Simin
(A.3)

where

Simin = min(Si−1, Si+1) (A.4a)

Simin = max(Si−1, Si+1) (A.4b)

Note that this method can not ensure the continuity of the second order

derivative of the interpolant, which is acceptable for our purpose.



Appendix B

IP-MARKOV algorithm

This appendix provides a summary of the algorithm IP-MARKOV devel-

oped for the research work presented herein. The code consists of a collec-

tion of MatlabR○ files developed ad hoc in conjunction with other MatlabR○

functions, among them the GA function holds a central importance. The

main structure of the algorithm is represented in Figure B.1 and a descrip-

tion of the main part of the code is provided below.

MAIN_IPM.m fmodel_

stt.m

nstt.m

nstt2.m

br.m

ga.mcrossval.m

fresiduos.m

res_3.m

res_2.m

res_1.m

Figure B.1: IP-MARKOV algorithm scheme

51
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1

2 %% MAIN_IPM.m

3

4 format compact;

5 clear all;

6 close all;

7 load newdata; %load experimental data (damage)

8 load datatime; %load experimental data (time)

9 norm_compl=newdata';

10 datatime;

11

12 global PMFe

13 global T

14 global D_e

15 global mdl

16 global R

17

18 %********************input parameters**********************

19 DC=500; %number of cycles in a DC

20 nx=2^7; %number of experimental points

21 tol=15; % percentual range (100*1/tol) tolerance of data

22 mdl='nstt'; %Model type

23 R=7; %Residual type

24 %**********************************************************

25

26 abs_st=1; %absorbing state

27 norm_compl=absrvnt(norm_compl,abs_st);

28 norm_compl=treatdata(norm_compl);

29 dutytime=datatime/DC;

30 T_e=dutytime;

31 T=T_e;

32 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

33 D_e=treatdata(D_e);

34 PMFe=treatdata(PMFe);
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35 [PMFe]=adjs_zero(PMFe);

36 mu_samples=mean(norm_compl,1);

37 desv_samples=sqrt(var(norm_compl,1,1));

38 median_samples=median(norm_compl,1);

39

40 %% GA model search

41

42 switch mdl

43

44 case 'stt'

45 InitialPopulation_Data=[24 0.267735429366 0.077890063227...

46 0.127544763315 0.998997224269];

47 OPTIONS = gaoptimset('PopulationSize',50,'Generations',65,...

48 'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

49 @gaplotdistance},'TolFun',1e−300,...

50 'MutationFcn',@mutationadaptfeasible,...

51 'InitialPopulation' ,InitialPopulation_Data);

52

53 nval=5;

54 lb=[20,0.001,0.001,0.001,0.001];

55 ub=[50,0.999,0.999,0.999,0.999];

56 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],[],[],[],...

57 lb,ub,[],OPTIONS);

58

59 save(['rslts/mat/RESULTS',num2str(R),'_DC',num2str(DC),'_',mdl])

60 M(1)=round(M(1));

61 fid = fopen(['rslts/RSLTS_R',num2str(R),'_DC',num2str(DC),'_',...

62 mdl,'.txt'], 'wt');

63

64 case 'nstt'

65 InitialPopulation_Data=[25 0.880693943710 0.087919369077...

66 0.076286122394 0.226390924072 0.357695025208];

67 OPTIONS = gaoptimset('PopulationSize',60,'Generations',50,...

68 'StallTimeLimit',...
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69 Inf,'PlotFcns',{@gaplotbestf, @gaplotdistance},...

70 'TolFun',1e−300,'InitialPopulation' ,InitialPopulation_Data);

71

72 nval=6;

73 lb=[20,0.001,0.001,0.001,0.001,0.001];

74 ub=[60,0.999,0.999,0.999,0.999,0.999];

75 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],[],[],[],...

76 lb,ub,[],OPTIONS);

77

78 save(['rslts/mat/RESULTS',num2str(R),'_DC',num2str(DC),'_',mdl])

79 M(1)=round(M(1));

80 fid = fopen(['rslts/RSLTS_R',num2str(R),'_DC',num2str(DC),...

81 '_',mdl,'.txt'], 'wt');

82

83 case 'nstt2'

84 InitialPopulation_Data=[28.3980974441175,0.916719210331823,...

85 0.505150560019371,0.407526844531409];

86 OPTIONS = gaoptimset('PopulationSize',50,'Generations',60,...

87 'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

88 @gaplotdistance},'TolFun',1e−300,...

89 'InitialPopulation' ,InitialPopulation_Data);

90

91 nval=4;

92 lb=[20,0.001,0.001,0.001];

93 ub=[50,0.999,0.999,0.999];

94 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],[],[],[],...

95 lb,ub,[],OPTIONS);

96

97 save(['rslts/mat/RESULTS',num2str(R),'_DC',num2str(DC),'_',mdl])

98 M(1)=round(M(1));

99 fid = fopen(['rslts/RSLTS_R',num2str(R),'_DC',num2str(DC),'_',...

100 mdl,'.txt'], 'wt');

101

102 case 'br'
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103 InitialPopulation_Data=[30 8.015276954562];

104 OPTIONS = gaoptimset('PopulationSize',30,'Generations',40,...

105 'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

106 @gaplotdistance},'TolFun',1e−300,'MutationFcn',...

107 @mutationadaptfeasible,'InitialPopulation',...

108 InitialPopulation_Data);

109

110 nval=2;

111 lb=[20,1];

112 ub=[50,15];

113 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],[],[],[],...

114 lb,ub,[],OPTIONS);

115

116 save(['rslts/mat/RESULTS',num2str(R),'_DC',num2str(DC),'_',mdl])

117 M(1)=round(M(1));

118 fid = fopen(['rslts/RSLTS_R',num2str(R),'_DC',num2str(DC),...

119 '_',mdl,'.txt'], 'wt');

120 end

1 %fresiduos.m

2

3 %****************************************************************

4 function objetive=fresiduos(V)

5 global PMFe

6 global T

7 global D_e

8 global R

9 global mdl

10

11 switch mdl

12

13 case 'stt'

14
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15 b=round(V(1));

16 q1=abs(V(2));

17 qb_1=abs(V(3));

18 alfa1=abs(V(4));

19 beta1=abs(V(5));

20 [PMFd,D_d]=fmodel_stt(b,q1,qb_1,alfa1,beta1,T);

21

22 case 'nstt'

23

24 b=round(V(1));

25 p=abs(V(2));

26 alfa1=abs(V(3));

27 beta1=abs(V(4));

28 alfa2=abs(V(5));

29 beta2=abs(V(6));

30 [PMFd,D_d]=fmodel_nstt(b,p,alfa1,beta1,alfa2,beta2,T);

31

32 case 'nstt2'

33

34 b=round(V(1));

35 p=abs(V(2));

36 alfa1=abs(V(3));

37 beta1=abs(V(4));

38 [PMFd,D_d]=fmodel_nstt2(b,p,alfa1,beta1,T);

39

40 case 'br'

41

42 b=round(V(1));

43 r=abs(V(2));

44 [PMFd,D_d]=fmodel_br(b,r,T);

45

46 end

47

48 if numel(PMFd)==0
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49 disp('JCHR_Warning: PMFd matrix is empty')

50 objetive=1000;

51 else

52 fctr=1;

53 obj_vector=[];

54 for i=2:size(PMFd,1)

55 obj_vector=[obj_vector;eval(['residual_R',num2str(R),...

56 '(fctr*D_e(i,:),fctr*D_d,PMFe(i,:),PMFd(i,:))'])];

57 end

58 if numel(obj_vector)==0;

59 disp('JCHR_Warning: Objetive vector is empty')

60 objetive=1000;

61 else

62 objetive=log(sqrt(sum(obj_vector.^2))+1e−20);

63 end

64 end

65 %****************************************************************

1 %fmodel_stt.m

2

3 %****************************************************************

4

5 function [PMFd,D_d,mu_d,desv_d]=fmodel_stt(b,q1,qb_1,alfa1,beta1,T)

6

7 b=round(b);

8 xd=[0 alfa1 1];

9 yd=[0 beta1 1];

10 q=q1+(qb_1−q1)*pchip(xd,yd,linspace(0,1,b−1));

11 p=1−q;

12 p=[p 1];

13 P1=diag(p);

14

15 %Initial probability distribution of damage
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16 p0=zeros(1,b);

17 p0(1,1)=1;

18 for i=1:(b−1)

19 P1(i,i+1)=q(1,i);

20 end

21 D_d=cat(2,0.01,1/b*((1:(b−1))−0.5),1);

22 PMFd=[];

23 mu_d=[];

24 desv_d=[];

25 for i=1:numel(T)

26 PTM=binprod(P1,T(i));

27 pt=p0*PTM;

28 pt=cat(2,0,pt);

29 med=sum(D_d.*pt);

30 stdev=sqrt(sum(((D_d−med).^2).*pt));

31 mu_d=[mu_d,med];

32 desv_d=[desv_d,stdev];

33 CDF_D=pt(1);

34 for n=2:numel(pt)

35 CDF_D=[CDF_D,CDF_D(n−1)+pt(n)];

36 end

37 PMFd=[PMFd;CDF_D];

38

39 end

40

41 %****************************************************************

1 %fmodel_nstt.m

2

3 %****************************************************************

4 function [PMFd,D_d,mu_d,desv_d]=fmodel_nstt(b,p,alfa1,beta1,alfa2,beta2,T)

5

6 b=round(b);
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7 alfa2m=alfa1+alfa2*(1−alfa1);

8 beta2m=beta1+beta2*(1−beta1);

9 q=1−p;

10 p0=zeros(1,b);

11 p0(1,1)=1;

12 for j=1:(b−1)

13 P1(j,j)=p;

14 P1(j,j+1)=q;

15 end

16

17 P1(b,b)=1;

18 xx=0:0.001:1;

19 x=[0 alfa1 alfa2m 1];

20 y=[0 beta1 beta2m 1];

21 yy=pchip(x,y,xx);

22 PTMy=eye(size(P1));

23 PMFd=[];

24 X=max(T);

25 t_0=0;

26 x_time=t_0+xx*(X−t_0);

27 y_time=t_0+yy*(X−t_0);

28 real_rt=interp1(y_time,x_time,T);

29 D_d=cat(2,0.01,1/b*((1:(b−1))−0.5),1);

30 mu_d=[];

31 desv_d=[];

32 for i=1:numel(real_rt)

33 if i==1

34 n=floor(real_rt(i))−0;

35 elseif real_rt(i−1)==0;

36 n=floor(real_rt(i))−ceil(real_rt(i−1));

37 else

38 n=floor(real_rt(i))−ceil(real_rt(i−1))+1;

39 end

40
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41 if n<0;

42

43 disp('JCHR_error: fmodel, line 63')

44 break

45 else

46 if n==0;

47 Qy=eye(size(P1));

48 elseif n==1

49 Qy=P1;

50 else

51 Qy=binprod(P1,n);

52 end

53 PTMy=PTMy*Qy;

54 pt=p0*PTMy;

55 pt=cat(2,0,pt);

56 med=sum(D_d.*pt);

57 stdev=sqrt(sum(((D_d−med).^2).*pt));

58 mu_d=[mu_d,med];

59 desv_d=[desv_d,stdev];

60 CDF_D=pt(1);

61 for n=2:numel(pt)

62 CDF_D=[CDF_D,CDF_D(n−1)+pt(n)];

63 end

64 PMFd=[PMFd;CDF_D];

65 end

66 end

67

68 %****************************************************************

1 %fmodel_nstt2.m

2

3 %****************************************************************

4 function [PMFd,D_d,mu_d,desv_d]=fmodel_nstt2(b,p,alfa1,beta1,T)
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5

6 b=round(b);

7 q=1−p;

8 p0=zeros(1,b);

9 p0(1,1)=1;

10 for j=1:(b−1)

11 P1(j,j)=p;

12 P1(j,j+1)=q;

13 end

14

15 P1(b,b)=1;

16 xx=0:0.001:1;

17 x=[0 alfa1 1];

18 y=[0 beta1 1];

19 yy=pchip(x,y,xx);

20 PTMy=eye(size(P1));

21 PMFd=[];

22 X=max(T);

23 t_0=0;

24 x_time=t_0+xx*(X−t_0);

25 y_time=t_0+yy*(X−t_0);

26 real_rt=interp1(y_time,x_time,T);

27 D_d=cat(2,0.01,1/b*((1:(b−1))−0.5),1);

28 mu_d=[];

29 desv_d=[];

30 for i=1:numel(real_rt)

31 if i==1

32 n=floor(real_rt(i))−0;

33 elseif real_rt(i−1)==0;

34 n=floor(real_rt(i))−ceil(real_rt(i−1));

35 else

36 n=floor(real_rt(i))−ceil(real_rt(i−1))+1;

37 end

38
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39 if n<0;

40

41 disp('JCHR_error: fmodel, line 63')

42 break

43 else

44 if n==0;

45 Qy=eye(size(P1));

46 elseif n==1

47 Qy=P1;

48 else

49 Qy=binprod(P1,n);

50 end

51 PTMy=PTMy*Qy;

52 pt=p0*PTMy;

53 pt=cat(2,0,pt);

54 med=sum(D_d.*pt);

55 stdev=sqrt(sum(((D_d−med).^2).*pt));

56 mu_d=[mu_d,med];

57 desv_d=[desv_d,stdev];

58 CDF_D=pt(1);

59 for n=2:numel(pt)

60 CDF_D=[CDF_D,CDF_D(n−1)+pt(n)];

61 end

62 PMFd=[PMFd;CDF_D];

63 end

64 end

65

66 %****************************************************************

1 %CROSSVAL_5.m

2 %****************************************************************

3 function [CV_L2]=CROSSVAL_5(r,m,nsamples,nfolds)

4
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5 load newdata;

6 load datatime;

7 norm_compl=newdata';

8 datatime;

9 global PMFe

10 global T

11 global D_e

12 global R

13 global mdl

14 nzro_compl=[];

15 for i=2:size(norm_compl,2)

16 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

17 end

18 abs_st=1;

19 nzro_compl=absrvnt(nzro_compl,abs_st);

20 nzro_compl=treatdata(nzro_compl);

21 norm_compl=nzro_compl;

22 DC=500;

23 nx=2^7;

24 tol=15;

25 mdl=m;

26 R=r;

27 N=nsamples;

28 nf=nfolds;

29 dutytime=datatime/DC;

30 Tmax=floor(max(dutytime));

31 T_e=dutytime;

32 T=T_e(2:end);

33

34 %% EVALUATION SETS

35 pkv=1:N;

36 cnt=0;

37 set1=[];set2=[];set3=[];set4=[];set5=[];

38
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39 for i=1:nf

40 r1=ceil(rand*(N−cnt)); set1=[set1,pkv(r1)];...

41 ordset1=ordvector(set1);

42 pkv=takeIND(pkv,r1);cnt=cnt+1;

43 r2=ceil(rand*(N−cnt)); set2=[set2,pkv(r2)];...

44 ordset2=ordvector(set2);

45 pkv=takeIND(pkv,r2);cnt=cnt+1;

46 r3=ceil(rand*(N−cnt)); set3=[set3,pkv(r3)];...

47 ordset3=ordvector(set3);

48 pkv=takeIND(pkv,r3); cnt=cnt+1;

49 r4=ceil(rand*(N−cnt)); set4=[set4,pkv(r4)];...

50 ordset4=ordvector(set4);

51 pkv=takeIND(pkv,r4); cnt=cnt+1;

52 r5=ceil(rand*(N−cnt)); set5=[set5,pkv(r5)];...

53 ordset5=ordvector(set5);

54 pkv=takeIND(pkv,r5); cnt=cnt+1;

55 end

56

57 evtst1=[]; Tev1=[];

58 for j=1:numel(ordset1)

59 evtst1=cat(2,evtst1,nzro_compl(:,ordset1(j)));

60 Tev1=cat(1,Tev1,T(ordset1(j)));

61 end

62 evtst2=[]; Tev2=[];

63 for j=1:numel(ordset2)

64 evtst2=cat(2,evtst2,nzro_compl(:,ordset2(j)));

65 Tev2=cat(1,Tev2,T(ordset2(j)));

66 end

67 evtst3=[]; Tev3=[];

68 for j=1:numel(ordset3)

69 evtst3=cat(2,evtst3,nzro_compl(:,ordset3(j)));

70 Tev3=cat(1,Tev3,T(ordset3(j)));

71 end

72 evtst4=[]; Tev4=[];
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73 for j=1:numel(ordset4)

74 evtst4=cat(2,evtst4,nzro_compl(:,ordset4(j)));

75 Tev4=cat(1,Tev4,T(ordset4(j)));

76 end

77 evtst5=[]; Tev5=[];

78 for j=1:numel(ordset5)

79 evtst5=cat(2,evtst5,nzro_compl(:,ordset5(j)));

80 Tev5=cat(1,Tev5,T(ordset5(j)));

81 end

82 v1=(1:N);

83 for i=1:numel(ordset1)

84 n=ordset1(i); v1=takeVAL(v1,n);

85 end

86

87 trst1=[]; T1=[];

88 for i=1:numel(v1)

89 trst1=cat(2,trst1,nzro_compl(:,v1(i)));

90 T1=cat(1,T1,T(v1(i)));

91 end

92 v2=(1:N);

93 for i=1:numel(ordset2)

94 n=ordset2(i); v2=takeVAL(v2,n);

95 end

96 trst2=[]; T2=[];

97 for i=1:numel(v1)

98 trst2=cat(2,trst2,nzro_compl(:,v2(i)));

99 T2=cat(1,T2,T(v2(i)));

100 end

101 v3=(1:N);

102 for i=1:numel(ordset3)

103

104 n=ordset3(i); v3=takeVAL(v3,n);

105 end

106 trst3=[]; T3=[];
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107 for i=1:numel(v1)

108 trst3=cat(2,trst3,nzro_compl(:,v3(i)));

109 T3=cat(1,T3,T(v3(i)));

110 end

111 v4=(1:N);

112 for i=1:numel(ordset4)

113

114 n=ordset4(i); v4=takeVAL(v4,n);

115 end

116 trst4=[]; T4=[];

117 for i=1:numel(v4)

118 trst4=cat(2,trst4,nzro_compl(:,v4(i)));

119 T4=cat(1,T4,T(v4(i)));

120 end

121 v5=(1:N);

122 for i=1:numel(ordset5)

123

124 n=ordset5(i); v5=takeVAL(v5,n);

125 end

126 trst5=[]; T5=[];

127 for i=1:numel(v5)

128 trst5=cat(2,trst5,nzro_compl(:,v5(i)));

129 T5=cat(1,T5,T(v5(i)));

130 end

131 %% K−FOLD CROSS VALIDATION

132 M_mtrx=[];

133 FVAL_mtrx=[];

134 for i=1:nf

135 train_fold=eval(['trst',num2str(i)]);

136 Ttr=eval(['T',num2str(i)]);

137 T=Ttr;

138 [D_e,PMFe]=non_smoothing(train_fold,Ttr,nx);

139 D_e=treatdata(D_e);

140 PMFe=treatdata(PMFe);
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141 [PMFe]=adjs_zero(PMFe);

142

143 switch mdl

144

145 case 'stt'

146

147 InitialPopulation_Data=[25 0.307872879831 0.082244313778,...

148 0.102992817449 0.998999986567];

149 OPTIONS = gaoptimset('PopulationSize',30,'Generations',60,...

150 'StallTimeLimit',Inf,'PlotFcns',...

151 {@gaplotbestf, @gaplotdistance},'TolFun',1e−300,...

152 'MutationFcn',@mutationadaptfeasible,...

153 'InitialPopulation',InitialPopulation_Data);

154

155 nval=5;

156 lb=[20,0.001,0.001,0.001,0.001];

157 ub=[40,0.999,0.999,0.999,0.999];

158

159 case 'nstt'

160

161 InitialPopulation_Data=[25 0.880327732772 0.087943270540,...

162 0.076286122394 0.226661946392 0.357993584874];

163 OPTIONS = gaoptimset('PopulationSize',40,'Generations',...

164 60,'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

165 @gaplotdistance},'TolFun',1e−300,...

166 'InitialPopulation' ,InitialPopulation_Data);

167

168 nval=6;

169 lb=[20,0.001,0.001,0.001,0.001,0.001];

170 ub=[50,0.999,0.999,0.999,0.999,0.999];

171

172 case 'nstt2'

173

174
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175 InitialPopulation_Data=[21 0.932380641799 0.956837454518,...

176 0.944203728701];

177 OPTIONS = gaoptimset('PopulationSize',40,'Generations',40,...

178 'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

179 @gaplotdistance},'TolFun',1e−300,'InitialPopulation',...

180 InitialPopulation_Data);

181

182 nval=4;

183 lb=[20,0.001,0.001,0.001];

184 ub=[40,0.999,0.999,0.999];

185

186

187 case 'br'

188

189 InitialPopulation_Data=[23 10.735400407087];

190 OPTIONS = gaoptimset('PopulationSize',20,'Generations',30,...

191 'StallTimeLimit',Inf,'PlotFcns',{@gaplotbestf,...

192 @gaplotdistance},'TolFun',1e−300,'MutationFcn',...

193 @mutationadaptfeasible,...

194 'InitialPopulation' ,InitialPopulation_Data);

195

196 nval=2;

197 lb=[20,1];

198 ub=[40,20];

199

200 end

201

202 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],[],[],[],lb,ub,[],OPTIONS);

203 M(1)=round(M(1));

204 M_mtrx=[M_mtrx;M];

205 FVAL_mtrx=[FVAL_mtrx,FVAL];

206

207 hold off

208 end
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209 save (['rslts/mat/CROSSVAL/RESULTS',num2str(R),'_DC',...

210 num2str(DC),'_',mdl])

211

212 %% EVALUATING MODEL

213

214 L2_norm=[];

215

216 for i=1:nf

217 eval_fold=eval(['evtst',num2str(i)]);

218 Tev=eval(['Tev',num2str(i)]);

219 [D_ev,PMFev]=non_smoothing(eval_fold,Tev,nx);

220 D_ev=treatdata(D_ev);

221 PMFev=treatdata(PMFev);

222 [PMFev]=adjs_zero(PMFev);

223

224 switch mdl

225 case 'stt'

226

227 mu_samples=mean(eval_fold,1);

228 desv_samples=sqrt(var(eval_fold,1,1));

229 b=M_mtrx(i,1);

230 q1=M_mtrx(i,2);

231 qb_1=M_mtrx(i,3);

232 alfa1=M_mtrx(i,4);

233 beta1=M_mtrx(i,5);

234 [PMFdev,D_dev,mu_dev,desv_dev]=fmodel_stt(b,q1,qb_1,...

235 alfa1,beta1,Tev);

236

237 case 'nstt'

238

239 mu_samples=mean(eval_fold,1);

240 desv_samples=sqrt(var(eval_fold,1,1));

241 b=M_mtrx(i,1);

242 p=M_mtrx(i,2);
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243 alfa1=M_mtrx(i,3);

244 beta1=M_mtrx(i,4);

245 alfa2=M_mtrx(i,5);

246 beta2=M_mtrx(i,6);

247 [PMFdev,D_dev,mu_dev,desv_dev]=fmodel_nstt(b,p,alfa1,...

248 beta1,alfa2,beta2,Tev);

249

250 case 'nstt2'

251

252 mu_samples=mean(eval_fold,1);

253 desv_samples=sqrt(var(eval_fold,1,1));

254 b=M_mtrx(i,1);

255 p=M_mtrx(i,2);

256 alfa1=M_mtrx(i,3);

257 beta1=M_mtrx(i,4);

258 [PMFdev,D_dev,mu_dev,desv_dev]=fmodel_nstt2(b,p,alfa1,...

259 beta1,Tev);

260

261 case 'br'

262

263 mu_samples=mean(eval_fold,1);

264 desv_samples=sqrt(var(eval_fold,1,1));

265 b=M_mtrx(i,1);

266 r=M_mtrx(i,2);

267 [PMFdev,D_dev,mu_dev,desv_dev]=fmodel_br(b,r,Tev);

268

269 end

270 np=numel(Tev);

271 L2_norm=[L2_norm;sqrt(sum((mu_samples−mu_dev).^2)+...

272 sum((desv_samples−desv_dev).^2))/np];

273

274 Rs=[];

275 for j=1:numel(Tev)

276 Rs=[Rs;eval(['residual_R',...
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277 num2str(R),'(D_ev(j,:),D_dev,PMFev(j,:),PMFdev(j,:))'])];

278 end

279 R_norm=[R_norm;sum(Rs)/np];

280 end

281 CV_L2=mean(L2_norm);

282 %****************************************************************

1 %********************AUXILIAR FUNCTIONS************************

2

3 function [PTM]=binprod(P,X)

4 %(computes the exact multiplication of sparse matrices

5 %raised to large exponents)

6

7 if X<0;disp('JCHR_Warning: negative time in binprod!!.

8 Converted to positive');

9 end

10

11 X=abs(round(X));

12

13 if X==1

14 PTM=P;

15 elseif X==0

16 PTM=eye(size(P));

17 else

18

19 PTM=eye(size(P)); %initialize

20 ex=0; %initialize

21

22 while X−ex>1

23

24 n=floor(log2(X−ex));

25 M=P;

26 for i=1:n
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27 M=M*M;

28 end

29 PTM=PTM*M;

30 ex=ex+2^(n); %exponent of PTM in each iteration

31

32 if ex == X;

33 break

34 PTM;

35 elseif X−ex==1

36 PTM=PTM*P;

37 break

38 end

39

40 end

41 end

1 function [D_e,PMFe]=non_smoothing(norm_compl,T,nx)

2 %(computes the raw empirical CDF of damage)

3

4 D_e=[];

5 PMFe=[];

6 D_ac=[];

7

8 for n=1:numel(T) %using not−measured data is not allowed

9

10 D_ac=[D_ac,norm_compl(:,n)];

11

12 % empirical cdf of damage for t=ti

13

14 [stairs_ecdf,Dmg] = ecdf(D_ac(:,n));

15

16 for j=1:numel(Dmg)−1

17 if Dmg(j)==Dmg(j+1) || Dmg(j+1)≤Dmg(j)
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18 Dmg(j+1)=Dmg(j)+1e−30;

19 end

20 end

21

22 PMFe=[PMFe;linspace(0,1,nx)];

23

24 D_e=[D_e;interp1(stairs_ecdf,Dmg,linspace(0,1,nx))];

25

26 end

1 function [PMFe]=adjs_zero(PMFe)

2 %(converts in absolute zeros the near−zero values...

3 %of the first column of the experimental matrix PMFe,...

4 %avoiding computational errors)

5

6 for i=1:size(PMFe,1)

7 if PMFe(i,1)>0 && PMFe(i,1)<1

8 PMFe(i,1)=0;

9 end

10 end

1

2 function M=absrvnt(M,abs_st)

3 %(modify data to account for the absorbing state, D=1)

4

5 for i=1:size(M,1)

6 for j=1:size(M,2)

7 if M(i,j)>abs_st

8 M(i,j)=abs_st;

9 end

10 end

11 end
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1 % DC−FCOST SENSITIVITY ANALYSIS

2 %************************************************************

3 format compact;

4 clear all;

5 load newdata;

6 load datatime;

7 norm_compl=newdata';

8 datatime;

9

10 global PMFe

11 global T

12 global D_e

13 global mdl

14 global R

15

16 nzro_compl=[]; %time zero is avoided (trivial case)

17 for i=2:size(norm_compl,2)

18 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

19 end

20 abs_st=1; %absorbing state

21 nzro_compl=absrvnt(nzro_compl,abs_st);

22

23 nzro_compl=treatdata(nzro_compl);

24 norm_compl=nzro_compl;

25

26 res=[6,5,7];

27 model={'stt','nstt','nstt2'};

28 FCOSTCOMP={};

29 RESCOMP={};

30

31 for k=1:numel(res)

32 for l=1:numel(model)

33

34 %input parameters
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35

36 DC=[100,300,500,1000,3000,7000,10000,20000];

37 nx=2^7;

38 tol=15;

39

40 fcostmatrix=[];

41 results=[];

42

43 for w=1:numel(DC)

44

45 results=[];

46 Nrep=5;

47 for x=1:Nrep

48

49 dutytime=datatime/DC(w); %display time data

50 Tmax=floor(max(dutytime));

51 T_e=dutytime; %experimental time

52

53 T=T_e(2:end); %vector of time where model has to be evaluated.

54 %[D_e,PMFe,bndwth,dens]=smoothing(norm_compl,T,nx,tol);

55 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

56

57 D_e=treatdata(D_e);

58 PMFe=treatdata(PMFe);

59 [PMFe]=adjs_zero(PMFe);

60

61 mu_samples=mean(norm_compl,1);

62 desv_samples=sqrt(var(norm_compl,1,1));

63 median_samples=median(norm_compl,1);

64

65 %GA model search

66

67 switch mdl

68
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69 case 'stt'

70

71 OPTIONS = gaoptimset('PopulationSize',...

72 60,'Generations',70,...

73 'StallTimeLimit', Inf,'TolFun',...

74 1e−30,'MutationFcn',@mutationadaptfeasible,...

75 'PlotFcns',{@gaplotbestf});

76

77

78 nval=5;

79 lb=[20,0.001,0.001,0.001,0.001];

80 ub=[40,0.999,0.999,0.999,0.999];

81

82 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],...

83 [],[],[],lb,ub,[],OPTIONS);

84 M(1)=round(M(1));

85 results=[results;M(1),FVAL];

86

87

88 case 'nstt'

89

90

91 OPTIONS = gaoptimset('PopulationSize',...

92 60,'Generations',55,...

93 'StallTimeLimit', Inf,'TolFun',...

94 1e−30,'MutationFcn',@mutationadaptfeasible,...

95 'PlotFcns',{@gaplotbestf});

96

97 nval=6;

98 lb=[20,0.001,0.001,0.001,0.001,0.001];

99 ub=[40,0.999,0.999,0.999,0.999,0.999];

100

101 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],...

102 [],[],[],lb,ub,[],OPTIONS);



77

103 M(1)=round(M(1));

104 results=[results;M(1),FVAL];

105

106 case 'nstt2'

107

108

109 OPTIONS = gaoptimset('PopulationSize',...

110 50,'Generations',50,...

111 'StallTimeLimit', Inf,'TolFun',...

112 1e−30,'MutationFcn',@mutationadaptfeasible,...

113 'PlotFcns',{@gaplotbestf});

114

115 nval=4;

116 lb=[20,0.001,0.001,0.001];

117 ub=[40,0.999,0.999,0.999];

118

119 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],...

120 [],[],[],lb,ub,[],OPTIONS);

121 M(1)=round(M(1));

122 results=[results;M(1),FVAL];

123

124

125 case 'br'

126

127 OPTIONS = gaoptimset('PopulationSize',...

128 30,'Generations',30,...

129 'StallTimeLimit', Inf,'TolFun',...

130 1e−30,'MutationFcn',@mutationadaptfeasible,...

131 'PlotFcns',{@gaplotbestf});

132

133 nval=2;

134 lb=[20,1];

135 ub=[40,15];

136
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137 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,[],...

138 [],[],[],lb,ub,[],OPTIONS);

139 M(1)=round(M(1));

140 results=[results;M(1),FVAL];

141

142 end

143 end

144 fcostmatrix=[fcostmatrix;DC(w),...

145 ceil(mean(results(:,1))),...

146 mean(results(:,2))];

147

148 end

149 FCOSTCOMP{k,l}=fcostmatrix

150 %RESCOMP{k,l}=results

151

152 end

153 end

154

155 %% PLOTING THE DC−FCOST CURVES

156

157 fig2=figure;

158 set(fig2,'PaperUnits','centimeters',...

159 'PaperPosition',[.5 .5 18 18]);

160 cont=1;

161 for i=1:size(FCOSTCOMP,1) %residuals

162 for j=1:size(FCOSTCOMP,2) %models

163 matrix=FCOSTCOMP{i,j};

164 subplot(size(FCOSTCOMP,1),...

165 size(FCOSTCOMP,2),cont)

166 semilogx((matrix(:,1)),matrix(:,3),'−o','color',[0 0 0])

167

168 axis square

169 %axis([0 max(T) 0 1.03*max(desv_d./mu_d)])

170 xlabel('$DC$','Interpreter','latex','FontSize',8)
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171 ylabel('$\mathcal{F}_{L}$','Interpreter',...

172 'latex','FontSize',8)

173 hold on

174 Ax1=gca;

175 set(Ax1,'Xlim',[(min(matrix(:,1))),(max(matrix(:,1)))],...

176 'Ylim',[min(matrix(:,3)),max(matrix(:,3)) ],...

177 'YGrid','on','XGrid','on','FontName','Times New Roman',...

178 'FontSize',8)

179 cont=cont+1;

180

181 end

182 end

183

184 print('−depsc',['eps\DC_comparation.eps']);

1

2 % GA CONVERGENCE ANALYSIS

3 %********************************************************

4

5 format compact;

6 clear all;

7 load newdata; norm_compl=newdata';

8 datatime;

9

10 global PMFe

11 global T

12 global D_e

13 global mdl

14 global R

15

16 %input parameters

17 DC=500; %number of cycles in a DC (≤500)

18 nx=2^7; %number of experimental points
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19 tol=15; % percentual range (100*1/tol) tolerance of data

20

21 nzro_compl=[]; %time zero is avoided (trivial case)

22 for i=2:size(norm_compl,2)

23 nzro_compl=cat(2,nzro_compl,norm_compl(:,i));

24 end

25

26 abs_st=1; %absorbing state

27 nzro_compl=absrvnt(nzro_compl,abs_st);

28

29 nzro_compl=treatdata(nzro_compl);

30 norm_compl=nzro_compl;

31

32 dutytime=datatime/DC; %display time data

33 Tmax=floor(max(dutytime));

34 T_e=dutytime; %experimental time

35

36 T=T_e(2:end); %vector of time where model has to be evaluated.

37 %[D_e,PMFe,bndwth,dens]=smoothing(norm_compl,T,nx,tol);

38 [D_e,PMFe]=non_smoothing(norm_compl,T,nx);

39

40 D_e=treatdata(D_e);

41 PMFe=treatdata(PMFe);

42 [PMFe]=adjs_zero(PMFe);

43

44 mu_samples=mean(norm_compl,1);

45 desv_samples=sqrt(var(norm_compl,1,1));

46 median_samples=median(norm_compl,1);

47

48 % GA model search

49

50 res=[6,5,7];

51 model={'stt';'nstt';'nstt2'};

52 FCOSTCOMP={};
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53 nrep=1;

54 for k=1:numel(res)

55 for l=1:numel(model)

56

57 pop=[10,20,30,50,50];

58 gen=[10,20,30,50,60];

59

60 fcostmatrix=[];

61 for i=1:numel(gen)

62 for j=1:numel(pop)

63

64 fvalrepmat=[];

65 for b=1:nrep

66

67 switch mdl

68

69 case 'stt'

70

71 OPTIONS = gaoptimset('PopulationSize',...

72 pop(j),'Generations',gen(i),...

73 'StallTimeLimit', Inf,'TolFun',...

74 1e−30,'MutationFcn',@mutationadaptfeasible,...

75 'PlotFcns',{@gaplotbestf});

76

77 nval=5;

78 lb=[20,0.001,0.001,0.001,0.001];

79 ub=[40,0.999,0.999,0.999,0.999];

80

81 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,...

82 [],[],[],[],lb,ub,[],OPTIONS);

83

84

85 case 'nstt'

86
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87 OPTIONS = gaoptimset('PopulationSize',...

88 pop(j),'Generations',gen(i),...

89 'StallTimeLimit', Inf,'TolFun',...

90 1e−30,'MutationFcn',@mutationadaptfeasible,...

91 'PlotFcns',{@gaplotbestf});

92

93 nval=6;

94 lb=[20,0.001,0.001,0.001,0.001,0.001];

95 ub=[50,0.999,0.999,0.999,0.999,0.999];

96

97 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,...

98 [],[],[],[],lb,ub,[],OPTIONS);

99

100 case 'nstt2'

101

102 OPTIONS = gaoptimset('PopulationSize',...

103 pop(j),'Generations',gen(i),...

104 'StallTimeLimit', Inf,'TolFun',...

105 1e−30,'MutationFcn',@mutationadaptfeasible,...

106 'PlotFcns',{@gaplotbestf});

107

108 nval=4;

109 lb=[20,0.001,0.001,0.001];

110 ub=[40,0.999,0.999,0.999];

111

112 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,...

113 [],[],[],[],lb,ub,[],OPTIONS);

114

115 case 'br'

116

117 OPTIONS = gaoptimset('PopulationSize',...

118 pop(j),'Generations',gen(i),...

119 'StallTimeLimit', Inf,'TolFun',...

120 1e−30,'MutationFcn',@mutationadaptfeasible,...
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121 'PlotFcns',{@gaplotbestf});

122

123 nval=2;

124 lb=[15,1];

125 ub=[30,15];

126

127 [M,FVAL,EXITFLAG]=ga(@fresiduos,nval,...

128 [],[],[],[],lb,ub,[],OPTIONS);

129

130 end

131

132 fvalrepmat=[fvalrepmat;FVAL]

133

134 end

135 FVAL=mean(fvalrepmat);

136 fcostmatrix=[fcostmatrix;gen(i),pop(j),FVAL]

137

138 end

139

140 end

141

142 FCOSTCOMP71{k,l}=fcostmatrix;

143 end

144

145 end

146

147 %Plot contour plot

148

149 load FCOSTCOMP

150 matrix=FCOSTCOMP{1,2};

151

152 fig2=figure;

153 set(fig2,'PaperUnits','inches','PaperPosition',[.8 1 5 5]);

154
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155 xlin=linspace(gen(1),gen(end),100);

156 ylin=linspace(pop(1),pop(end),100);

157 [X,Y]=meshgrid(xlin,ylin);

158 Z=griddata(matrix(:,1),matrix(:,2),matrix(:,3),X,Y,'v4');

159

160 [C,h]=contour(X,Y,Z,10);axis tight; colormap ([.5 .5 .5])

161 text_handle=clabel(C,h,'FontSize',8,'Interpreter','latex');

162 Ax3=gca;

163 set(Ax3,'Xlim',[gen(1),gen(end)],'Ylim',[pop(1),...

164 pop(end)], 'YGrid','off','XGrid','off',...

165 'FontName','latex')

166 xlabel('Generations')

167 ylabel('Population')

168 save GACOST FCOSTCOMP

169 print('−depsc',['eps\GA_comparation.eps']);
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