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Abstract: 25 

 26 

The bacterial community of an olive washing water (OWW) storage basin was characterized, 27 

by both cultivation and cultivation-independent methods. Analysis of PCR-TGGE fingerprints 28 

of different samples, taken along the olive harvesting season, revealed important variations of 29 

the bacterial community structure showing a rapid succession of prevalent bacterial 30 

populations. In order to select high phenol-degrading strains, for possible reduction of OWW 31 

pollutants in view of its disposal and reuse, 18 strains isolated from OWW were cultivated in 32 

media containing increasing amounts of polyphenols. Strains PM3 and PM15, affiliated to 33 

Raoultella terrigena and Pantoea agglomerans by 16S rRNA gene sequencing, were selected 34 

for their best performance and used for the OWW biological treatment under batch conditions 35 

in shake flasks culture. The contents of OWW main pollutants, phenols, COD, BOD5 and 36 

colour, were reduced by 93, 89, 91 and 62%, respectively.   37 

 38 

Keywords: Olive washing wastewater; PCR-TGGE characterization; phenol-degrading 39 

bacteria; biological treatment.40 
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1. Introduction. 41 

 42 

Although olive industry is traditionally a major food sector for Mediterranean 43 

countries, the production of olive oil is fast spreading in various areas of Australia, 44 

Chile and USA (D’Annibale et al., 2006; Cerrone et al., 2011), while other important 45 

countries, such as China and India, are now starting or promoting its production. Olive 46 

oil industry generates a huge amount of wastewater (ca. 5.4 x 106 m3 yr-1) and other 47 

wastes (Khatib et al., 2009).  48 

Oil extraction could be carried out using either a three- or a two-phase system. In 49 

the first case, a solid waste (olive husks) and a wastewater (olive mill wastewater, 50 

OMWW) are released, while only a semisolid waste is generated (olive wet husks) by 51 

the two-phase process. For both systems, preliminary olive washing with potable water 52 

is necessary generating another type of effluent with different composition and 53 

characteristics (olive washing wastewater, OWW).  54 

In three-phase mills, OWW is disposed with OMWW, while two-phase mills 55 

have the problem of OWW separated disposal (Cerrone et al., 2011). The two-phase 56 

process is generally preferred in order to save potable water and the use of these plants 57 

is now increased and it is already the main system (> 90%) in Spain, the world’s 58 

principal olive oil producer (Rodriguez-Lucena et al., 2010). For these reasons, OWW 59 

disposal is becoming a consistent worldwide environmental issue (Guardia-Rubio et al., 60 

2008); the effluent can not be disposed as such but needs specific treatments (Roig et 61 

al., 2006).  62 

OMWW is a highly polluted effluent, being its main pollutants COD and 63 

phenols, ranging from 30 to 150 g L-1 and from 1.5 to > 8 g L-1, respectively; its 64 

treatment and/or reuse have been studied intensively (Khoufi et al., 2009). However, an 65 

ultimate solution is yet to be found and, till now, no efficient disposal technology is 66 
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available even if some biological agents, such as white rot fungi, are very promising 67 

(D’Annibale et al., 2004; Lakhtar et al., 2010).  68 

OWW composition is similar to that of OMWW but with much lower (from 1/10 69 

up to 1/50) concentration of pollutants such as COD and phenols (Pozo et al., 2007; 70 

Cerrone et al., 2011). To the best of our knowledge, the only works attempting OWW 71 

biological treatment are that of Pozo and co-workers (2007) using a submerged bacterial 72 

biofilter and that of Cerrone et al. (2011) using the white-rot fungus Trametes versicolor 73 

in bubble-column bioreactor through a continuous process. No process using selected 74 

bacteria has been previously studied.  75 

In this work, after characterization of OWW bacterial communities by 76 

cultivation and cultivation-independent (PCR-TGGE) methods, isolation and selection 77 

of phenol degrading strains has been carried out in order to obtain inocula for possible 78 

effluent treatment. Moreover, batch process of OWW depollution has been investigated 79 

using the selected strains. Time course of OWW pollutants removal during the 80 

treatment is reported also. 81 

 82 

2. Materials and Methods 83 

2.1 OWW characterization 84 

The OWW samples were collected from the storage basin located outside the olive oil 85 

factory (Nuestra Señora de los Desamparados, Puente Genil, Córdoba, Spain). The 86 

basin (ca. 45m3), is 3 meters deep with no agitation. Samples, taken at 1.5-2 meters 87 

depth, were collected both in the middle (OWW-1, January 13th, 2009) and at the end 88 

(OWW-2, March 4th, 2009) of olive harvesting season.  89 

OWW samples were submitted to the following analyses (Table 1): colour, pH; 90 

conductivity, COD, BOD5, total phenol content, total and dissolved solids, organic and 91 

inorganic matter content, platable heterotrophic bacteria counts, total N and P content. 92 
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Methodologies used for determinations were as described by the Standard Methods for 93 

the Examination of Water and Wastewater (APHA, 4500-N C and 4500-P C), except for 94 

the total phenol determination that was carried out spectrophotometrically (760 nm) by 95 

the Folin-Ciocalteu method as previously reported (D´Annibale et al., 2006).  96 

 97 

2.2 Microbial Community Analysis by PCR-TGGE 98 

2.2.1 DNA extraction 99 

Total DNA was extracted from samples as follows: fifteen ml of OWW were 100 

filtered through 0.45 μm nitrocellulose sterile filter membranes (Millipore, USA). Each 101 

membrane was suspended in ca. 2 ml of sterile water and fragmented with a sterile 102 

pipette tip; tubes were then vigorously stirred using a vortexer (IKA, Germany) in order 103 

to re-suspend the material retained by filters. The suspension was transferred to a 104 

microcentrifuge tube and used for DNA extraction by the commercial kit 105 

MasterPureTM Complete DNA (Epicentre® Biotechnologies, USA). 106 

 107 

2.2.2 PCR specific amplification of partial 16S rRNA genes  108 

 A two-step PCR (nested PCR) approach was selected for specific amplification 109 

of the V3 hypervariable region of the Bacteria 16S rRNA gene, as previously described 110 

(Molina-Muñoz et al., 2009).  111 

Extracted DNA (2-5 ng) was used as a template for a first PCR carried out using 112 

the universal primers fD1 and rD1 (Weisburg et al., 1991). Subsequently, the nested 113 

PCR was performed using the universal primers GC-P1 and P2, amplifying the V3 114 

hypervariable region of the 16S rRNA gene (Muyzer et al., 1993).  115 

 116 

2.2.3 TGGE fingerprinting and analysis 117 
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Runs were done on a TGGE Maxi system (Whatman-Biometra, GmbH, 118 

Germany). Denaturing gels (6% PAGE with 20% deionized formamide, 2% glycerol 119 

and 8 M urea) were run, with 2 x TAE buffer, at 125 V for 18 h. Optimal temperature 120 

gradient for efficient bands separation was 43-63 °C. Gel bands were visualized by 121 

silver staining using the Gel Code Silver Staining kit (Pierce, Thermo Fisher Scientific 122 

Rockford, IL, USA), following the manufacturer’s indications.  123 

TGGE band patterns were normalized, compared and clustered using the Gel 124 

Compar II image analysis software (version 5.102, Applied Maths, Belgium).  125 

 126 

2.2.4 DNA sequencing of TGGE-isolated bands, phylogenetic and molecular 127 

evolutionary analyses 128 

Portions of prominent TGGE bands were picked up with sterile pipette tips from stained 129 

gels, placed in 10 µl of filtered (0.22 µm) and autoclaved distilled water, and directly 130 

used for reamplification with the appropriate primers.  131 

Sequences were compared to those filed in the Greengenes and GeneBank 132 

databases by the BLASTn program (Altschul et al., 1997), using the tools provided 133 

online at http://greengenes.lbl.gov and http://www.ncbi.nlm.nih. The closest taxonomic 134 

affiliation of each sequence was given by the Greengenes taxonomy tool. 135 

 136 

2.3. Strain isolation, identification and phylogenetic affiliation. 137 

For strain isolation, samples aliquots (0.1 ml) were serially diluted and spread on 138 

Triptycase Soy Agar (TSA) plates (Difco, UK). Plates were incubated aerobically at 139 

28ºC for 24-48 h and then checked visually. Pure cultures of bacteria grown on TSA 140 

were obtained by streak plate method. In order to avoid duplicates of same species, 141 

isolates showing same morphological characteristics (colony shape, colour, morphology 142 

and aspect; cell morphology, dimensions and Gram staining) were discharged. The tests 143 

http://www.ncbi.nlm.nih/�
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allowed selection of 12 and 6 different isolates from OWW-1 and OWW-2, 144 

respectively.  145 

For strain identification, a fresh cultured (24 h) colony of each isolate was lysed 146 

as described by Sánchez-Peinado et al. (2008). PCR reaction was kept as described by 147 

(Molina-Muñoz et al., 2009) using the universal primers from Sigma-Aldrich (USA). 148 

The PCR amplicons were directly sequenced by the DNA Sequencing Service of 149 

Instituto de Parasitologia y Bioquimica Lopez-Neyra (CSIC, Granada) using an ABI 150 

PRISM 3130XL Genetic Analyzer (Life Technologies, CA, USA).  151 

DNA sequences were analyzed on-line by the European Bioinformatics Institute 152 

biocomputing tools (http:⁄⁄www.ebi.ac.uk). The BLASTn program (Altschul et al., 153 

1997) was used for preliminary sequence similarity analysis. The ClustalX version 2.0.3 154 

software (Jeanmougin et al., 1998) was used for sequences aligning. Phylogenetic and 155 

molecular evolutionary analyses were conducted using MEGA version 4 (Kumar et al., 156 

2001). A p-distance based evolutionary tree was inferred using the Neighbour-Joining 157 

algorithm. 158 

2.4. Selection of phenol-degrading bacteria 159 

All strains isolated from OWW were grown on synthetic media, composed of 160 

(mg l-1): sucrose (500), NaNO3 (20), K3PO4 (10), and traces of mineral elements 161 

(Kotturi et al., 1991). The media were added with increasing amounts of a 1:1:1 mixture 162 

(wt/wt) of caffeic acid, p-OH-benzoic acid and coumaric acid as follows (mg l-1): SM0, 163 

0; SM1, 50; SM2, 100; SM3, 150. Media (50 ml in 250 ml Erlenmeyer flasks) were 164 

inoculated (5.5 106 cell ml-1) with cells grown in TSB at 28 ºC for 24 h in shake 165 

cultures (100 rpm). Selection tests were done in triplicate grown in the same media at 28 166 

ºC for 72 h at 100 rpm. Strains showing best growth on media containing the highest 167 

phenol content were used for subsequent experiments. 168 
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Platable cell were counted in TSA medium. Inoculated plates were incubated at 169 

28º C for 48 h prior to CFU counts. All the experiments were done in triplicate.  170 

 171 

2.5. OWW treatment with selected bacteria in batch process 172 

Bacteria selected, as best phenol degraders, were grown in 250-ml Erlenmeyer 173 

flasks containing 50 ml of OWW-2 (unsterilized) and cultured for 144 h at 28ºC and 174 

shake at 100 rpm.  Flasks were inoculated with cell suspensions containing a mixture 175 

(1:1, v/v) of the selected strains, to reach a final concentration of 5.5 106 CFU ml-1. A 176 

control bioprocess was carried out under the same conditions, using 50 ml of un-177 

inoculated OWW-2. 178 

Samples from both inoculated and un-inoculated flasks were taken every 24 h 179 

and submitted to the following analyses: colour, pH, COD, BOD5, total phenols, N and 180 

P contents, and platable heterotrophic bacteria, performed as described above (see 2.1). 181 

 182 

2.6. Statistical analysis.  183 

Analysis of variance (ANOVA) and multiple-range test (Student´s T test) were 184 

done using STATGRAPHICS 5.0 (STSC, Rockville, MD, USA). A significance level 185 

of 95% (p<0.05) was selected. 186 

 187 

3. Results and Discussion 188 

3.1 Characterization of OWW samples 189 

As for the majority of wastes and wastewater from agro-industries, OWW 190 

composition depends upon a wide number of factors. In our case, OWW-2 showed 191 

significantly different increased levels of pollutants (soluble solids, total phenols, sugar) 192 

than OWW-1. This, probably due to sample concentration by evaporation and oxidation 193 

processes, was particularly true for the colour (Table 1). However, pollutant load of 194 
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both samples, in particular COD, colour and total phenols, were quite higher than those 195 

reported in previous studies (Pozo et al., 2007; Cerrone et al., 2011). Moreover, platable 196 

counts in OWW-2 were quite lower than those of OWW-1 (Table 1), indicating 197 

selection of adapted microbial populations under the increased contents of pollutants 198 

(phenols in particular). It is worth noting that OWW-1 was taken in the middle of the 199 

production season with daily input of fresh OWW containing bacteria from the 200 

harvested olives. OWW-2 was taken when the production season was already over with 201 

no input of fresh OWW. Therefore, the microbial community of OWW-1 mainly 202 

represented the microbiota found on the olives, while OWW-2 represented the surviving 203 

adapted bacteria in the OWW storage basin. 204 

3.2 Analysis of the structure of bacterial communities by TGGE fingerprinting. 205 

Phylogenetic study of the DNA sequences of the prevalent TGGE bands. 206 

The PCR-TGGE analysis demonstrated clear and significant differences of the 207 

bacterial community structure between OWW-1 and OWW-2 (Fig.1A). The Pearson 208 

coefficient-based analysis, calculated a similarity below 60% between the fingerprints 209 

of the two samples analyzed, indicating that the microbial community was significantly 210 

influenced by the season and by the time of permanence in the storage basin. Cluster 211 

analysis based on the Dice coefficient yielded equivalent results to the Pearson-based 212 

clustering (Fig.1B). 213 

3.2.1 Taxonomical affiliation and phylogenetic study 214 

Cluster analysis with Gel compar II detected a total of 52 bands classes in the TGGE 215 

fingerprints of bacteria among the two samples analyzed. The majority of the detected 216 

band classes were exclusive of each seasonal stage. These data showed that the bacterial 217 

communities in OWW consisted of populations displaying different degrees of 218 

susceptibility to the seasonality. 219 
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Nineteen bands selected from the TGGE fingerprinting were successfully 220 

amplified and sequenced, representing 36.6% of the recognized band classes. 221 

Phylogenetic analysis (Table 2) derived from the TGGE isolated bands confirmed the 222 

dominance of Firmicutes amongst Bacteria involved in the colonization of the storage 223 

basin of OWW. In particular, sequence analysis revealed that populations 224 

phylogenetically close to the order Clostridiales were dominant.  225 

Interestingly, the results of the community analysis described here showed the 226 

longitudinal succession of different microbial communities in the OWW and reflects the 227 

particular environment being established in the storage basin. Indeed, the majority of 228 

populations identified by TGGE sequence analysis are related to anaerobic or 229 

facultative bacteria, many of them close to genera characterized by their ability to 230 

degrade polymeric compounds, such as Pelosinus, Hyphomicrobium,  231 

Desulfotomaculum, or Clostridium (Gliesche and Fesefeldt, 1998; Fichtel et al., 2012; 232 

Moe et al., 2012).  233 

3.3 Isolation, identification and phylogenetic affiliation of cultivated strains isolated 234 

from OWW. 235 

The phylogenetic tree (Fig. 2) shows in both samples the dominance of 236 

Gammaproteobacteria (41.7% and 50.0%, respectively) and Firmicutes (58.3 % and 237 

17.0%, respectively) among the identified bacterial isolates. In sample OWW-1, all the 238 

isolated strains could be affiliated to the Firmicutes and Gammaproteobacteria. 239 

However, within these two main groups various subclusters were detected, with the 240 

presence of strains affiliated to the genera Bacillus, Sporosarcina, Rahnella, Bacterium 241 

and Raoultella (Fig. 2.A). In sample OWW-2, members of Actinobacteria were also 242 

isolated but less sub-clustering was detected (Fig. 2.B), with strains possibly affiliated 243 

to the genera Micrococcus, Bacillus, Bacterium and Raoultella.  244 
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Six of the strains (PM7, PM5, PM3, PM10 from OWW-1, and PM18 and PM15 245 

from OWW-2) were phylogenetically close to members of the family 246 

Enterobacteriaceae. Studies by Wust et al. (2011) showed that exoenzymes produced 247 

by microorganisms of the Enterobacteriaceae and Clostridium stimulate the 248 

degradation of complex organic matter. Members of Enterobacteriaceae, Bacillaceae 249 

and Micrococcaceae, are universally found in soils of temperate regions. Among them, 250 

various species had been described for their ability to degrade aromatics (PHA, dioxins 251 

and clorinated phenols) (Zhao et al., 2012). 252 

 253 

3.4 Selection of phenol degrading bacteria and OWW treatment 254 

In order to select best phenol degrading bacteria, all strains isolated from OWW 255 

were cultivated in synthetic media containing increasing amounts of various 256 

polyphenols (Fig. 3). The bacteria ability to cope with the toxic effects of phenols is 257 

reflected on their growth rates and is proportional to the applied phenol concentration 258 

(Juárez-Jiménez et al., 2012).  259 

In SM0 (no phenols), all bacterial strains grew showing an increased number of 260 

cells ranging from ca. 1.5 to ca. 3.0 logarithmic units (Fig. 3A). In SM1 (50 mg l-1 of 261 

phenols), toxic effects were recorded for the majority of strains, while some other 262 

maintained the same growth rates recorded in SM0 (Fig. 3B). Actually, there was a 263 

clear separation of the strain in two groups, evidencing phenol-resistant and phenol-264 

sensitive bacteria. This phenomenon was even more evident in SM2 (100 mg l-1 of 265 

phenols). All phenol-resistant strains belonged to the Enterobacteriacee family 266 

(Fig.3C). 267 

In SM3 (150 mg l-1 of phenols), growth inhibition was recorded for a larger 268 

group of bacteria and further strain sorting was obtained, being growth of isolates PM3 269 

and PM15 (affiliated to Raultella terrigena and Pantoea Agglomerans, respectively) 270 
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significantly higher than that of all the other isolates. According to these results, strains 271 

PM3 and PM15 were further selected as powerful inocula to improve the treatment of 272 

OWW and fulfil the degradation of its pollutant load in shake cultures under batch 273 

conditions (Fig.3D). 274 

Experiments were carried out on non-sterile OWW-2, in order to simulate 275 

possible conditions of field-application. Actually, sterilization of OWW would be not 276 

feasible under the economic point of view and quite problematic at the technological 277 

level.  278 

Figure 4 shows the time course of COD, BOD5, colour and phenols 279 

concentration in OWW-2 inoculated with the selected strains and incubated for 144 h in 280 

shake cultures under batch conditions. Time course of same parameters on the un-281 

inoculated OWW-2 (control) and bacterial growth are also reported.  282 

The inoculation with the selected strains reduced the contents of phenols, COD, 283 

BOD5 and colour by 93, 89, 91 and 63%, respectively. The degradation process was 284 

rather fast; exponential pollutant degradation started after ca. 24 h of incubation to reach 285 

its maximum values around the 96 h. Fast removal of pollutants is very important in 286 

view of possible applications.  287 

Even if most of the microflora revealed by the TGGE was affiliated to anaerobic 288 

bacteria, in this study, aerobic microorganisms for possible biological treatment were 289 

selected. Actually, it is well known that, in general, phenolic compounds are very toxic 290 

for various anaerobic microorganisms (Pozo et al., 2007), hence limiting the use of 291 

anaerobic degradation technologies for the treatment of these wastewaters. Besides, 292 

aerated systems are proven as efficient and low-cost biological technologies for other 293 

decontamination processes, involving phenol-containing effluents including OMWW, 294 

obtaining faster process efficiency (Ehaliotis et al., 1999; Bertin et al., 2001; Di Gioia et 295 

al., 2002). Our experimentation at laboratory scale has provided data that support the 296 
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possibility of applying Raoultella terrigena strain PM3 and Pantoea agglomerans strain 297 

PM15 as inocula with a high potential for biotechnological applications targeting the 298 

remediation of these pollutants. The degrading performance reported in this work for 299 

PM3 and PM15 strains appeared to be quite superior to that described in earlier studies, 300 

both in terms of global pollutant reduction and shorter process duration (Pozo et al., 301 

2007; Cerrone et al., 2011). Remarkably, the levels of all the pollutants measured in the 302 

effluents after the treatment proposed in this study comply with the threshold values 303 

given by the EC legislation for direct effluent disposal in water bodies without further 304 

treatments. However, batch processes are not completely suitable for field applications 305 

and their management at the olive mill level could be rather difficult. Thus, further 306 

experiments are needed in order to fully explore the potential of strains PM3 and PM15 307 

and the feasibility of more efficient bioprocess technologies (i.e. the use of continuous 308 

cultures) for the OWW bioremediation (Cerrone et al., 2011). 309 

 310 

4. Conclusions 311 

Significant changes of microbial community structure occurred in an OWW storage 312 

basin along the olive harvesting season, suggesting selection of specialized populations 313 

involved in the biodegradation of OWW pollutants.  Two strains, Raoultella terrigena 314 

PM3 and Pantoea Agglomerans PM15, isolated from OWW, strongly reduced COD, 315 

colour, phenols and odour of OWW when grown in shake cultures, generating an 316 

effluent complying with the standards of the EU legislation, allowing its reuse in ferti-317 

irrigations and/or its direct disposal. Since so far no efficient process for OWW 318 

biological treatment has been developed, the selected strains appeared to be very 319 

promising as new bioremediation tools. 320 

 321 
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Figure Captions: 419 

Fig. 1. Community structure of Bacteria in the OWW storage basin analyzed by TGGE 420 

profiling. Pearson coefficient-based (A) and Dice coefficient-based (B) analysis of the 421 

band patterns generated from samples. “�”:TGGE bands which were re-amplified and 422 

sequenced in order to perform the phylogenetic study. 423 

Fig. 2. Phylogenetic Neighbour-Joining tree of the 16S-rRNA gene sequences (650nt) 424 

from the bacterial isolates. Sequences retrieved from the EMBL database are indicated 425 

with their corresponding accession numbers. Bootstrap values below 50 are not shown. 426 

(A) OWW-1; (B) OWW-2. 427 

Fig. 3. Time course of growth of the bacterial strains isolated from OWW on media 428 

containing different amounts of polyphenols (A: 0, B: 50, C: 100, D: 150 mg l-1).  429 

( )PM1, ( )PM2, ( )PM3, ( )PM4, ( )PM5, ( )PM6, ( )PM7, ( )PM8, ( )PM9, 430 

( ) PM10, ( )PM11, ( )PM12, ( )PM13, ( )PM14, ( )PM15, ( )PM16, ( )PM17, 431 

( )PM18.  432 

Fig. 4. Incubation of shake flasks containing inoculated (continuous lines) or un-433 

inoculated (dotted lines) OWW-2.  (A) Time course of COD (▲), BOD5 (♦) and colour 434 

(●) concentration; (B) Time course of phenol concentration (▀) and total bacterial 435 

growth (♦). 436 

437 
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 438 
Table 1. Physico-chemical characterization of olive washing water (OWW) samples.  439 

Parameter OWW-1 OWW-2 

pH 5.87  6.40  

ρ (g ml-1) 1009 1012 

c (mS cm-1) 2.36  2.77  

Colour (colorimetric units) 44.8 74.6 

T (ºC) 11.3 ºC   23.5ºC 

TS (mg l-1) 4756 ± 56a     4834 ± 54a 

IS (mg l-1) 1751 ± 48a   1523 ± 53a 

SO (mg l-1) 2984 ± 49a     3284 ± 39b 

MI (mg l-1) 1854 ± 35a   1938 ± 78a 

MO (mg l-1) 2857 ± 92a  2886 ± 82a 

COD (mgO2 l-1) 4137 ± 238a   4575 ± 332a 

BOD5 (mgO2 l-1) 410 ± 86a        470 ± 83a 

Tph (mg l-1) 469 ± 35a 630 ± 45b 

P (mg l-1) 51.6 ± 14.0a 62.0 ± 16.0a 

N (mg l-1) 60.9 ± 34.0a 63.9 ± 41.0a 

S (%) 0.29 ± 0.04a   0.43 ± 0,07b 

Counts (CFU ml-1) 1.40 108 ± 0.21a 0.51 108 ± 0.01b 

    440 

LEGEND. OWW-1:  sample n° 1 (January 13, 2009); OWW-2: sample n°2 (March 4, 2009); COD: 441 
chemical oxygen demand; ρ: density; C: conductivity; Col: colour; T: temperature; TS: total solids; IS: 442 
insoluble solids; SO: soluble solids; MI: inorganic matter; MO: organic matter; BOD5: biological oxygen 443 
demand at 5 days; Tph: total phenols; P: total phosphorus; N: total nitrogen; S: sugars; Count: Total 444 
platable counts of heterotrophic bacteria. Values in rows marked with same superscript letter are not 445 
statically different (Student’s t-test p<0,05). 446 
 447 
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Table 2. Closest taxonomic affiliation of sequences derived from TGGE isolated bands. (A) OWW-1, (B) OWW-2. 

A  

TGGE 
Band # 

Closest taxonomic affiliation (Phylum/Class/Order/Family) Most similar described organisms & database accession # Overlap 
(nt) 

1 Unclassified Uncultured bacterium clone Rock2-4 from riverine rock (HM572444.1) 62/66 

Propionivibrio dicarboxylicus DSM 5885 (NR_026477.1) 61/66 

2 Firmicutes/Clostridia/Clostridiales/ Uncultured bacterium clone NED3H5 from rabbit cecum (EF445206.1) 82/82 

Cellulosilyticum lentocellum DSM 5427 (NR_026101.1) 76/82 

3 Firmicutes/Clostridia/Clostridiales/Ruminococcaceae Uncultured bacterium clone A1_611 from fecal sample (EU761905.1) 67/69 

Anaerofilum pentosovorans DSM 7168 (NR_029313.1) 66/69 

4 Firmicutes/Clostridia/Clostridiales/ Clostridium proteolyticum DSM 3090 (NR_029250.1) 64/69 

5 Firmicutes/Clostridia/Clostridiales/ Uncultured bacterium isolate DGGE gel band 48 from MBR-treated 
municipal wastewater (GQ325302.1) 

67/69 

Clostridium proteolyticum DSM 3090 (NR_029250.1) 66/69 

6 Unclassified Uncultured bacterium clone 51-4-E9 from human faeces (JQ307282.1) 65/69 

Hyphomicrobium sp.16-60 (HM124367.1) 62/66 

Massilia sp. str. LP01 (HM053474.1) 63/69 

7 Firmicutes/Clostridia/Clostridiales/Ruminococcaceae Uncultured bacterium clone J2_3_3314 from anaerobic sludge digester 
(JQ170346.1) 

66/69 

Acetanaerobacterium elongatum Z7 (AY487928.1) 65/69 

8 Firmicutes/Bacilli/Lactobacillales/Carnobacteriaceae/ Uncultured bacterium clone GDIC2IK01CV7NK from methanogenic 
enrichments of carrot waste inoculated with rumen fluid and sediments 
(JF601114.1) 

67/70 

Trichococcus palustris DSM 9172 (NR_025435.1) 66/69 
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9 Firmicutes/Clostridia/Clostridiales Clostridium proteolyticum DSM 3090 (NR_029250.1) 65/69 

10 Proteobacteria/Betaproteobacteria/Burkholderiales/Oxalobacteraceae Uncultured bacterium clone T1_5_152 from anaerobic sludge digester 
(JQ169260.1) 

61/65 

Antarctic bacterium strain CC9 (EU636039.1) 60/65 

11 Firmicutes/Clostridia/Clostridiales/Ruminococcaceae Acetanaerobacterium elongatum Z7 (AY487928.1) 63/66 

12 Unclassified Uncultured organism clone SRM_OTU21940 from reindeer rumen 
(JN803749.1) 

63/66 

Massilia sp. LP01 (HM053474.1) 60/66 

Herbaspirillum sp. CCBAU 10823 (HM107176.1) 60/66 

13 Unclassified Uncultured organism clone SRM_OTU21940 from reindeer rumen 
(JN803749.1) 

64/66 

Peredibacter starrii DSM 17039 (NR_024943.1) 61/66 

Desulfotomaculum sp. cs1-2 (EU251186.1) 60/64 
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B 

TGGE 
Band # 

Closest taxonomic affiliation (Phylum/Class/Order/Family) Most similar described organisms & database accession # Overlap 
(nt) 

1 Firmicutes Pelosinus fermentans DSM 17108 (JF750002.1) 62/64 

Clostridium puniceum DSM 2619 (NR_026105.1) 63/66 

2 Firmicutes/Clostridia/Clostridiales/Clostridiaceae/ Uncultured bacterium clone CF6327 from faeces (GU606315.1) 63/66 

Clostridium bovipellis B30 (EF512134.1) 62/66 

3 Firmicutes/Clostridia/Clostridiales Uncultured bacterium clone SHPD-19 from underground water 
(JQ757022.1) 

133/133 

Psychrosinus fermentans FCF9 (DQ767881.1) * 131/133 

Pelosinus sp. BXM (HM768898.1) 126/133 

Sporotalea propionica TM1 (FN689723.1) 126/133 

4 Firmicutes/Clostridia/Clostridiales/Lachnospiraceae Uncultured Firmicutes bacterium clone Ola1.D12.invm13r from coastal 
water (AB691190.1) 

105/105 

Robinsoniella peorensis 108 (JN642223.1) 104/105 

Hespellia porcina NRRL B-23458 (NR_025206.1) 103/106 

5 Unclassified Uncultured bacterium clone GB7N87003GWHWO from unvegetated 
soil environments on Anchorage Island (HM725836.1) 

62/66 

Hyphomicrobium sp. 16-60 (HM124367.1) 61/66 

Clostridium bovipellis B30 (EF512134.1) 61/66 

6 Proteobacteria/Alphaproteobacteria/Rhizobiales/Hyphomicrobiaceae Uncultured bacterium clone 100-BAC057 from Grasse River sediment 
(JQ968741.1) 

62/66 

Hyphomicrobium sp. 16-60 (HM124367.1) 61/66 
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Hyphomicrobium vulgare MC-750 (X53182.1) 61/66 

 

* not validated species 
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