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Abstract 

Several different factors contribute to injury severity in traffic accidents, such as driver 

characteristics, highway characteristics, vehicle characteristics, accidents characteristics, and 

atmospheric factors. This paper shows the possibility of using Bayesian Networks (BNs) to 

classify traffic accidents according to their injury severity. BNs are capable of making 

predictions without the need for pre assumptions and are used to make graphic representations 

of complex systems with interrelated components.  This paper presents an analysis of 1,536 

accidents on rural highways in Spain, where 18 variables representing the aforementioned 

contributing factors were used to build 3 different BNs that classified the severity of accidents 

into slightly injured and killed or severely injured. The variables that best identify the factors 

that are associated with a killed or seriously injured accident (accident type, driver age, lighting 

and number of injuries) were identified by inference.  

 

Keywords: Bayesian networks; injury severity; traffic accidents; classification. 

 

1. Introduction 

The number of traffic accidents and their effects, mainly human fatalities and injuries, justify 

the importance of analyzing the factors that contribute to their occurrence. Identifying the 

factors that significantly influence the injury severity of traffic accidents was the main objective 

of many previous studies. Factors affecting injury severity of a traffic accident are usually 

caused by one or more of the following factors: driver characteristics, highway characteristics, 

vehicle characteristics, accidents characteristics and atmospheric factors (Kopelias et al., 2007; 

Chang and Wang, 2006).  

Regression analysis has been widely used to determine the contributing factors that cause a 

specific injury severity. The most commonly used regression models in traffic injury analysis 

are the logistic regression model and the ordered Probit model (Al-Ghamdi, 2002; Milton et al. 

2008; Bédard et al.  2002; Yau et al., 2006; Yamamoto and Shankar, 2004; Kockelman and 

Kweon, 2002). However, most of the regression models that are used to model traffic injury 

severity have their own model assumptions and pre-defined underlying relationships between 

dependent and independent variables (i.e. linear relations between the variables) (Chang and 

Wang, 2006). If these assumptions are violated, the model could lead to erroneous estimations 

of the likelihood of severe injury. 
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Gregoriades (2007) highlighted the interest of using Bayesian Networks (BNs) to model traffic 

accidents and discussed the need to not consider traffic accidents as a deterministic assessment 

problem. Instead, researchers should model the uncertainties involved in the factors that can 

lead to road accidents. He listed a number of candidate approaches for modeling uncertainty, 

such as, Bayesian probability. 

BNs make it easy to describe accidents that involve many interdependent variables. The 

relationship and structure of the variables can be studied and trained from accident data. They 

do not need to know any pre-defined relationships between dependent and independent 

variables.  

The three main advantages of BNs are bi-directional induction, incorporation of missing 

variables and probabilistic inference. By using BNs, it is relatively easy to discover the 

underlying patterns of data, to investigate the relationships between variables and to make 

predictions using these relationships. Incident data used in a study by Ozbay and Noyan (2006) 

were collected from incident clearance survey forms to understand incident clearance 

characteristics and then used to develop incident duration prediction models. The researchers 

modeled the incidents’ clearance durations using BNs and were able to represent the stochastic 

nature of incidents.  

Using BNs to analyze traffic accident injury severity is scarce. A two car accident injury 

severity model was constructed using BNs (Simoncic, 2004). A BN was built using several 

variables, and the Most Probable Explanation (MPE) was calculated for the most probable 

configuration of values for all the variables in the BN, in order to serve as an indication of the 

quality of the estimated BN. The results pointed out that BNs could be applied in road accident 

modeling, and some improvements, such as using more variables and larger datasets, were 

recommended. Although this study highlighted the possibility of using BNs to model traffic 

accidents, the results were based on building only one possible network, without measuring the 

performance of the Bayesian classifier.  

The scope of this paper is to validate the possibility of using BNs to classify traffic accidents 

according to their injury severity, and to find out the best BN classification performance along 

with the best graphical representation, in order to be capable of identifying the relevant 

variables that affect the injury severity of traffic accidents. 

This paper is organized as follows. Section 2 presents the data used and briefly reviews the 

concept of BNs and Bayesian learning. The methods used for preprocessing and evaluating the 

data are also presented; finally a brief description of inference is presented. In section 3, the 

results and their discussion are presented. In section 4, summary and conclusions are given. 

2. Materials and methods 

2.1. Accident Data 

Accident data were obtained from the Spanish General Traffic Directorate (DGT) for rural 

highways for the province of Granada (South of Spain) for three years (2003-2005). The total 

number of accidents obtained for this period was 3,302. The data was first checked out for 

questionable data, and those which were found to be unrealistic were screened out. Only rural 

highways were considered in this study; data related to intersections were not included, since 

intersections have their own specific characteristics and need to be analyzed separately. Finally, 

the database used to conduct the study contained 1,536 records. Table 1 provides information on 

the data used for this study. 
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(insert Table 1 here) 

Eighteen variables were used with the class variable of injury severity (SEV) in an attempt to 

identify the important patterns of an accident that usually require an explanation. 

The data included variables describing the conditions that contributed to the accident and injury 

severity.  

 Injury severity variables: number of injuries (e.g., passengers, drivers and pedestrians), 

severity level of injuries (e.g., fatal, severe, slight). Following previous studies (Chang 

and Wang, 2006; Milton et al., 2008) the injury severity of an accident is determined 

according to the level of injury to the worst injured occupant. 

 Roadway information: characteristics of the roadway on which the accidents occurred 

(e.g., grade, pavement width, lane width, shoulder type, pavement markings, sight 

distance, if the shoulder was paved or not, etc.). 

 Weather information: weather conditions when the accident occurred (e.g., good 

weather, rain, fog, snow and windy). 

 Accident information: contributing circumstances (e.g., type of accident, time of 

accident (hour, day, month and year), and vehicles involved in the accident).  

 Driver data: characteristics of the driver, such as age or gender. 

2.2. BN Definition 

Over the last decade, BNs have become a popular representation for encoding uncertain expert 

knowledge in expert systems. The field of BNs has grown enormously, with theoretical and 

computational developments in many areas (Mittal et al., 2007) such as: modeling knowledge in 

bioinformatics, medicine, document classification, information retrieval, image processing, data 

fusion, decision support systems, engineering, gaming, and law.  

Let U={x1, . . . , xn}, n≥1 be a set of variables. A BN over a set of variables U is a network 

structure, which is a Directed Acyclic Graph (DAG) over U and a set of probability tables Bp = 

{p(xi|pa(xi), xi  U)} where  is the set of parents or antecedents of xi in BN and 

i=(1,2,3,….,n). A BN represents joint probability distributions  

The classification task consists in classifying a variable y = x0 called the class variable, given a 

set of variables U = x1 . . . xn, called attribute variables. A classifier h : U → y is a function that 

maps an instance of U to a value of y. The classifier is learned from a dataset D consisting of 

samples over (U, y). The learning task consists of finding an appropriate BN given a data set D 

over U. 

BNs are graphical models of interactions among a set of variables, where the variables are 

represented as nodes (also known as vertices) of a graph and the interactions (direct 

dependences) as directed links (also known as arcs and edges) between the nodes. Any pair of 

unconnected/nonadjacent nodes of such a graph indicates (conditional) independence between 

the variables represented by these nodes under particular circumstances that can easily be read 

from the graph. Each node contains the states of the random variable and it represents a 

conditional probability table. The conditional probability table of a node contains the 

probabilities of the node being in a specific state, given the states of its parents. 

Figure 1 shows that the dependencies and independencies among the factors that affect the time 

of journey (the class variable) are represented in the form of direct edges (arrows) between 
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factors that are represented as nodes. For example, the variable (vehicle type) is a parent 

(antecedent) of the two variables (cost and velocity) called children or descendents. Any 

knowledge (evidence) about the parent variable affects the probabilities of occurrence of the 

children or descendent variables. 

(insert Figure 1 here) 

It should be noticed that the edges in a BN are not necessarily causal. That is, a BN can satisfy 

the probability distribution of the variables in the BN without the edges being causal 

(Neapolitan, 2009). Thus, the edges between variables in a non causal BN could imply a sort of 

interrelationship(s) among these variables. 

2.3. BN learning and the scoring metrics used 

When there are masses of data available and it is necessary to interpret them and to provide a 

model for predicting the behavior of unobserved cases, the learning of both structure and 

parameters is used (Cooper and Herskovits, 1992). There are two main approaches to structure 

learning in BNs: 

 Constraint based: Perform tests of conditional independence on the data, and search 

for a network that is consistent with the observed dependencies and independencies.  

 Score based: Define a score that evaluates how well the dependencies or 

independencies in a structure match the data and search for a structure that maximizes 

the score. 

The advantage of score-based methods over the constraint-based methods is that they are less 

sensitive to errors in individual tests; compromises can be made between the extent to which 

variables are dependent in the data and the cost of adding the edge. Because of the 

aforementioned advantages, the score based method is followed in this study.  

Weka software (Witten and Frank, 2005) was used in this study to build the BN. This software 

is freely available, it is implemented in Java language, it contains a collection of data processing 

and modeling techniques and it contains a graphical user interface. The BNs built here used all 

the nineteen variables of the 1,536 records. 

In order to build BN structures; BDe Score metric, Minimum Description Length (MDL) and 

the Akaike Information Criterion (AIC) score functions were run, based on the hill climbing 

algorithm.  

Let ri (1≤i≤n) be the cardinality of xi, qi is used to denote the cardinality of the parent set of xi in 

BN, that is, the number of different values to which the parents of xi can be instantiated. So, qi 

can be calculated as the product of cardinalities of nodes in , . Note 

 implies qi=1.  

Nij(1≤i≤n,1≤j≤qi) denotes the number of records in D for which  takes its j
th
 value. 

Nijk(1≤i≤n,1≤j≤qi,1≤k≤ri) denotes the number of records in D for which  takes its j
th
 value 

and for which xi takes its k
th
 value. So, . N denotes the number of records in D.  

Let the entropy metric H (BN,D) of a network structure and database be defined as: 

 (1) 

and the number of parameters K as: 
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 (2) 

The AIC metric of a Bayesian network structure for a database D is: 

 (3) 

A term P(BN) can be added representing prior information over network structures, but will be 

ignored for simplicity in the Weka implementation (Bouckaert, 1995). 

The MDL metric  of a Bayesian network structure BN for a database D is defined 

as: 

 (4) 

The BDe metric of a BN structure for a database D is: 

    (5) 

where P(BN) is the prior on the network structure (taken to be constant hence ignored in the 

Weka implementation) (Bouckaert, 1995) and  the gamma-function. 

Using hill climbing algorithm, the states of search space are possible models. Operations are the 

insertion, deletion and reverse of an edge in the network to modify a model. The hill climbing 

search algorithm was applied in this study mainly because it is fast and widely used, and also 

produces good results in terms of network complexity and accuracy (Madden, 2009). 

2.4. BN data preprocessing 

The variables obtained from the DGT were further refined and categorized into distinct values 

in order to be able to work with them. Other variables were merged or abstracted on the basis of 

procedures followed in previous studies (Simoncic, 2004; Helai et al., 2008), where the class 

variable was injury severity (slight injured –SI– and killed or seriously injured –KSI), and the 

severity was considered for the most severe case in the accident (Chang and Wang, 2006; 

Simoncic, 2004).  

The only preprocessing filter used on this dataset was the unsupervised variable filter for 

replacing missing values. This filter replaces the missing values with the modes and means from 

the training data. The cross validation method was used to split the data into ten equal folds (or 

subsets), the BN was built on the fold (called training set) and the analysis was validated on the 

other subset (called the validation set or testing set). Multiple repetitions or trials (10 times) of 

cross validation are used to reduce variability, and the validation results are averaged over the 

trials. 

2.5. BN evaluation indicators 

Five indicators are used in this study to compare the BNs built (see Eqs. 6-9): accuracy, 

sensitivity, specificity, HMSS, and ROC area were calculated for each BN.  

  (6) 

 (7) 

 (8) 
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   (9) 

Where tSI is true slight injured cases, tKSI true killed or seriously injured cases, fSI false slight 

injured cases, and fKSI false killed or seriously injured cases. 

Accuracy (see Eq. 6) is proportion of instances that were correctly classified by the classifier. 

Accuracy only gives information on the classifier’s general performance.  

Sensitivity represents the proportion of correctly predicted slight injured among all the observed 

slight injured. Specificity represents the proportion of correctly predicted killed or seriously 

injured among all the observed killed or seriously injured (see Eqs. 7-8). Another measure used 

to assess the performance of the BN built was the Harmonic Mean of Sensitivity and Specificity 

(HMSS), which gives an equal weight of both sensitivity and specificity (see Eq. 9). 

Another indicator is the Receiver Operating Characteristic Curve (ROC) Area. What ROC 

curves represent is the true positive rate (sensitivity) vs. the false positive rate (1-specificity). 

ROC curves are more useful as descriptors of overall test performance, reflected by the area 

under the curve, with a maximum of 1.00 describing a perfect test and an ROC area of 0.50 

describing a valueless test. 

Other measures used in the literature to evaluate the performance of BNs specifically include 

both the Most Probable Explanation (MPE) (Simoncic, 2004) and the complexity or the total 

number of BN arcs (Cruz-Ramírez et al., 2007). MPE is a technique that is developed for 

generating explanation in BNs, in which the configuration with the maximum posterior 

probability is calculated (Pearl, 1988). 

For the analysis of traffic accident injury severity and to determine the optimal BN, the 

measures described above will be calculated first: accuracy, sensitivity, specificity, ROC area, 

the MPE and the complexity of the built BNs. Later, the best BN found in terms of these 

measures will be used for inference. 

2.6. BN Inference 

Inference in BNs consists of computing the conditional probability of some variables, given that 

other variables are set to evidence. Inference may be done for a specific state or value of a 

variable, given evidence on the state of other variable(s). Thus, using the conditional probability 

table for the BN built, their values can be easily inferred. Figure 1 shows an example of a 

conditional probability table, where it could be seen that given evidence for the distance to be 

“short” and the velocity to be “high”, the probability that the time of journey will be less than 1 

hour is 0.75. Thus, other inferences could be extracted using this figure, where the example 

presented here is used to explain how inference in BNs works. 

In this paper, inference is used to determine the most significant variables that are associated 

with KSI in traffic accidents.  

3. Results and discussion 

Table 2 shows the results obtained from building BNs using the hill climbing search method and 

three different score metrics (BDe, MDL and AIC) using both the training and the test set to 

validate the results. From the original dataset, 2/3 of the data was held for training the BNs and 

the other 1/3 was used for testing them.  
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Ten different schemes of training/testing datasets were used to analyze the effect of swapping 

training and test datasets. Table 2 shows the average and the standard deviation of each one of 

the indicators for the score metrics used.  

 (insert Table 2 here) 

It can be seen that both the training and the test results are very similar. The accuracies 

performed in this study did not vary significantly; the highest accuracy was for the BDe score 

(61%). Abdel Wahab and Abdel-Aty (2001) used some data mining techniques to model injury 

severity in traffic accidents. They obtained accuracies of 60.4% and 65.6% for training and 

testing sets respectively when using an MLP neural network, 56.2% when using fuzzy 

ARTMAP neural network and 58.1% when using O-ARTMAP. Thus, the results obtained in 

this paper were within the range of accuracies found by Abdel Wahab and Abdel-Aty (2001). 

Also, the highest sensitivity was for BDe score; where 74% of the cases observed to be slight 

were also predicted to be slight. Although the BDe was capable of classifying 74% of the slight 

injured correctly, its specificity results indicated that its ability to classify killed or seriously 

injured were relatively poor. None of the score metrics achieved good results regarding the 

classification of killed or seriously injured (specificity); the best was for MDL and AIC scores, 

and test dataset with 53% of correctly classified killed or seriously injured. 

The results of sensitivity for all the score metrics were relatively better than those of specificity, 

thus indicating that the models were able to classify slight injured rather than killed or seriously 

injured. This, however, was expected, since the original dataset contained more slight injuries.  

HMSS could be used as a single measure of performance of the BN instead of using sensitivity 

and specificity separately. The results indicated that the best HMSS was achieved by using 

MDL and AIC scores (58%).  

Figure 2 shows the ROC curves for the BNs built using the three score methods, where the X-

axis represents (1-specificity) and the Y-axis represents the sensitivity.  

(insert Figure 2 here) 

The best ROC area obtained by BDe and MDL scores was 62%.  

Table 2 suggests that the three score metrics were valid and equally effective on average.  

Following Simoncic (2004), , the most convenient way to analyze the graphical performance of 

the three metrics is to calculate the Most Probable Explanation (MPE) for the training dataset 

and compare it with the results obtained from the test dataset. The training/testing dataset that 

showed the best results for the previous indicators was used for this purpose. 

MPE is given by the most probable configuration of values for all variables in the BN. For the 

three estimated structures, the MPE is given by the following values for variables (see Table 1): 

ACT=AS; AGE=(25-64]; ATF=GW; CAU=DC; DAY=WD; GEN=M; LAW=WID; LIG=DL; 

MON=SUM; NOI=1; OI=2; PAS=Y; PAW=WID; ROM=SLD; SEV=SI; SHT=THI; SID=WR; 

TIM=(12-18]; VI=2 

Given the estimated BN structures (BDe, MDL and AIC) and the conditional probabilities for 

each node (see Figure 3), the probability of the MPE can be computed as shown in Table 3. 

(insert Figure 3 here) 

(insert Table 3 here) 
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For the network built by the BDe score metric, the MPE is given by the probability values 

shown in Table 3, column 2, row 2. Using these values, MPE for the BDe score equals 0.00088. 

The same calculations for the test dataset produced MPEtest=0.00081. This comparison of MPE 

and MPEtest can provide an indication of the quality of the estimated BN using BDe score 

metric; where it can be seen that there is a difference (8.2%) between the MPE produced by the 

training dataset and the test dataset.  

The MPE for the MDL BN is given by the probability values shown in Table 3, column 2, row 

3. Using these values, MPE equals 0.00076. The test dataset produced MPEtest=0.00073. So, the 

MPE as explained by the MDL is closer to the test dataset estimation (4.4% of difference), thus 

representing a network that is more capable of explaining different data. 

The MPE for the AIC BN is given by the probability values shown in Table 3, column 2, row 4. 

Using these values, MPE is 0.00100. The test dataset produced MPEtest=0.00092. The most 

probable explanation has a higher probability than that produced by the test subset (8.7% of 

difference). 

The conclusion from the above calculations of the MPE for the three score metrics as compared 

to the MPEs calculated for the test subset is that, in relative terms, the MDL score metric MPE 

gives the best explanation with regard to the MPEtest, whereas the difference between MPE of 

the built network and that computed for the test subset is the least among all the other MPEs 

produced by BDe, and AIC score metrics. 

The last step in comparing the various score metrics and evaluating their performance was to 

compare the graphs’ complexity, measured by the total number of arcs produced by the three 

score metrics studied.  

Figure 3 shows the number of arcs obtained by using the three score metrics. The most 

complicated BN (having the highest number of arcs) is the BN built using the AIC score; this 

BN has 35 arcs, while the least complicated BN was the BN built by the BDe score, with 28 

arcs; followed by the BN built by the MDL score, with 29 arcs.  

The results of building the BNs showed that the three different score metrics did not vary 

significantly in terms of their accuracy, specificity, sensitivity, HMSS and ROC area. This 

however, indicates that BNs are valid for analyzing traffic accident injury severities and builds 

on the results presented by Simoncic (2004), who indicated that BNs could effectively be used 

to analyze this specific problem.  

On the other hand, the results for the complexity of the BN graphs, the number of arcs and the 

MPE show some differences between the three score metrics. MDL shows the best results in 

terms of MPE (smaller differences between training and test sets). BDe and MDL show the best 

results in terms of complexity of BN graphs and number of arcs.  

A closer look at the results obtained by MDL score shows that it produced a network that was 

relatively successful in terms of classification and prediction, where it had the second best total 

accuracy (59-60%). Also, HMSS showed a relatively good result for both training and testing 

sets respectively (56-58%,) and the ROC area results were good as well (61-62%). The BN built 

by the MDL score is shown in Figure 4. 

(insert Figure 4 here) 

Setting evidences for the variables used to build the BN using the MDL score could give 

indications of the values of variables that contribute to the occurrence of a killed or seriously 

injured (KSI) individual in a traffic accident.  
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Table 4 assists in the identification of the variables and values that contribute the most to the 

occurrence of a KSI individual in a traffic accident. For each variable, the probability of a value 

was set to be 1.0 (setting evidence) and the other values of the same variable were set to be 0.0. 

Thus, the associated probability of severity was calculated. Underlined values in Table 4 show 

the values of variables in which the probability of a KSI was found to be higher than that of SI. 

For example, this table shows that assigning a probability of 1.0 to the value AS (angle or side 

impact) of the variable ACT, the probability of SI becomes 0.6219 and the probability of KSI 

becomes 0.3780. These probabilities are calculated from the conditional probability table of the 

BN built using the MDL score. Since it is intended to determine which values of variables 

contribute the most to the occurrence of a KSI individual in a traffic accident, Table 4 does not 

include the variables in which the values of probabilities of SI are always higher than those of 

KSI. 

Setting evidences for the values of variables used to build the BN indicated that ACT, AGE, 

LIG and NOI were found to be significant.  

(insert Table 4 here) 

A detailed discussion of the most significant variables that were found to contribute to the 

occurrence of a killed or seriously injured (KSI) individual in a traffic accident is given below.  

3.1. Accident type (ACT) 

As shown in Table 4, when setting the probabilities of both HO (head on collisions) and R 

(rollover) values to be equal to 1.0, the probability of having KSI accidents increased, which 

means that these types of accidents are more significant in accidents with killed or seriously 

injured. Kockelman et al. (2002) found that head on crashes were more dangerous than angle 

crashes, left-side, and right-side crashes; they also found that they were significant in accidents 

that involved killed or seriously injured, but rollover crashes were more dangerous than all of 

the preceding crash types.  

3.2. Age (AGE) 

The results shown in Table 4 indicate that drivers in the age group [18-25] years were found to 

be more involved in accidents that resulted in KSI. Tavris et al. (2001) found that male drivers 

in the age group (16–24) years were much more likely to be involved in killed or seriously 

injured accidents than those involving older drivers.  

3.3. Lighting (LIG) 

Gray et al. (2008) found that among the factors that lead to a slight injury is driving in the 

daylight, and that more severe injuries are predicted during darkness. Helay et al. (2007) and 

Abdel-Aty (2003) found the same results. This coincides with the results found in this study, 

which indicate that roadways Without lighting (W) are associated with accidents that had KSI 

individuals.  

3.4. Number of injuries (NOI) 

The results obtained in this study indicate that when an accident results in one injury, it is more 

likely to be a serious injury or even fatal. Scheetz et al. (2009) used classification and regression 

trees to model the injury severity of traffic accidents. They also found that the number of injured 

occupants was a significant factor in classifying injury severity.  
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4. Limitations of the study  

Before conclusions, some limitations should be pointed out: 

 The need for large datasets when working with Bayesian networks, and the effect that 

imbalanced dataset (slight injured versus killed or seriously injured) has on both 

sensitivity and specificity. 

 The data collection is based on the standard traffic police report used in Spain. So, the 

variable cause of the accident (CAU) was determined and judged based on the 

experience of the traffic police. However, a different person might have determined the 

same cause differently, since different time and person might lead to a different 

judgment. 

5. Summary and conclusions  

This paper uses BNs to analyze traffic accident data in order to validate the ability of this data-

mining technique to classify traffic accidents according to their injury severity, and to identify 

the significant factors that are associated with KSI in traffic accidents. 

Traffic accident data was obtained from the DGT for a period of three years (2003-2005) for 

Granada (Spain). Three BNs were built using three different score metrics: BDe, MDL and AIC.  

Several indicators have been used in order to evaluate the performance of the built BNs: 

accuracy, sensitivity, specificity, HMSS, ROC Area, MPE and graph complexity (or number of 

arcs). The results obtained for these indicators do not vary significantly between the different 

score metrics used and they are within the range of previous studies (Abdel Wahab and Abdel-

Aty, 2001; Simoncic, 2004). So, it could be concluded that BNs might be a useful tool for 

classifying traffic accidents according to their injury severity. 

Inference was used to identify the values of the variables that are associated with KSI in traffic 

accidents on Spanish rural highways. Based on the results, it would be possible to identify the 

type of accident that would most probably be classified as KSI on Spanish rural highways. It 

would be a head-on or rollover traffic accident in a roadway without lighting with only one 

injury within the age of 18 and 25 years. These factors (head-on or rollover, unlit roadway, only 

one injury and within the age of 18 and 25 years) do not have to exist all at once in order to 

have a KSI accident. Any of these or a combination of them might increase the probability of a 

KSI accident. In general, these results are consistent with the literature (Tavris et al., 2001; 

Kockelman et al., 2002; Abdel-Aty, 2003; Helay et al., 2007; Gray et al., 2008; Scheetz et al., 

2009). However, this finding may vary for other countries and datasets. 

BNs, which have proved their effectiveness in different research areas, could be usefully applied 

in the domain of traffic accident modeling. Their effectiveness has been found to be similar to 

other data-mining techniques used to model severity in traffic accidents. Compared with other 

well-known statistical methods, the main advantage of the BNs seems to be their complex 

approach where system variables are interdependent and where no dependent and independent 

variables are needed (Simoncic, 2004).  
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Figure 1: An example of a BN with the corresponding CPTs for each node. 
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(a) The ROC curve for the BDe score, ROC area is 0.62 

 

(b) The ROC curve for the MDL score, ROC area is 0.61 

 

(c) The ROC curve for the AIC score, the ROC area is 0.59 

Figure 2. The ROC curves for the three score methods and one dataset.  
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Figure 3: The arcs as obtained by applying the three score metrics. 
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Figure 4: BN structure for the MDL score. 
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Table 1: Variables, values and actual classification by severity.  

Variables Values 
  SEV*  

Total 
 

     

 

SI 
  

KSI 
 

      
 

         

ACT: accident AS: angle or side collision 381 61.45%  239 38.55% 620 
 

type CF: fixed objects 99 52.94%  88 47.06% 187  

   

 HO: head on 84 40.58%  123 59.42% 207 
 

 O: other 75 59.06%  52 40.94% 127 
 

 PU: pile up 33 78.57%  9 21.43% 42 
 

 R: rollover 163 49.39%  167 50.61% 330 
 

 SP: straight path 17 73.91%  6 26.09% 23 
 

AGE: age [18-25] 225 50.34%  222 49.66% 447 
 

 (25-64] 586 57.73%  429 42.27% 1015 
 

 >64 41 55.41%  33 44.59% 74 
 

ATF: atmospheric GW: good weather 730 54.23%  616 45.77% 1346 
 

factors HR: heavy rain 23 71.88%  9 28.13% 32 
 

 LR: light rain 84 61.76%  52 38.24% 136 
 

 O: other 15 68.18%  7 31.81% 22 
 

CAU: cause DC: driver characteristics 791 54.93%  649 45.07% 1440 
 

 OF: other factors 50 66.67%  25 33.33% 75 
 

 RC: road characteristics 3 75.00%  1 25.00% 4 
 

 VC: vehicle charactersitics 8 47.06%  9 52.94% 17 
 

         

DAY: day BW: beginning of week 123 60.29%  81 39.71% 204  

   

 EW: end of week 132 57.14%  99 42.86% 231 
 

 F: festive 29 61.70%  18 38.30% 47 
 

 WD: week day 325 55.65%  259 44.35% 584 
 

 WE: week end 243 51.70%  227 48.30% 470 
 

         

GEN : gender F: female 148 63.79%  84 36.21% 232 
 

 M: male 704 53.99%  600 46.01% 1304 
 

LAW: lane width THI: thin: <3.25m 19 67.86%  9 32.14% 28  

   

 MED: medium: 3.25m<=L<=3.75m 176 51.16%  168 48.84% 344 
 

 WID: wide: >3.75m 657 56.44%  507 43.56% 1164 
 

         

LIG: lighting D: dusk 52 61.18%  33 38.82% 85 
 

 DL: daylight 573 58.65%  404 41.35% 977 
 

 I: insufficient 27 54.00%  23 46.00% 50 
 

 S: sufficient 36 59.02%  25 40.98% 61 
 

 W: without lighting 164 45.18%  199 54.82% 363 
 

MON: month AUT: autumn 218 54.23%  184 45.77% 402  

   

 SPR: spring 206 59.03%  143 40.97% 349 
 

 SUM: summer 246 56.55%  189 43.45% 435 
 

 WIN: winter 182 52.00%  168 48.00% 350 
 

         

NOI: number of 1 539 49.95%  540 50.05% 1079 
 

        

injuries >1 313 68.49%  144 31.51% 457  

   

         

 

 

 

 

 

Table(s)



2 
 

OI: occupants 1 229 51.58% 215 48.42% 444  

  

involved 
2 374 55.99% 294 44.01% 668  

 
 

 >2 249 58.73% 175 41.27% 424 
 

        

PAS: paved missing values 66 51.56% 62 48.44% 128  

  

shoulder 
N: no 253 57.11% 190 42.89% 443  

 
 

 Y: yes 533 55.23% 432 44.77% 965 
 

        

PAW: pavement THI: thin: <6m 95 53.98% 81 46.02% 176  

  

width 
MED: medium: 6 m<=law<=7m 209 54.29% 176 45.71% 385  

 
 

 WID: wide: >7m 548 56.21% 427 43.79% 975 
 

        

ROM: pavement DME: does not exist or was deleted 60 58.25% 43 41.75% 103  

  

markings 
DMR: define margins of roadway 60 57.69% 44 42.31% 104  

 
 

 SLD: separate lanes and defined road 
714 55.26% 578 44.74% 1292  

 margins  

      
 

 SLO: separate lanes only 18 48.65% 19 51.35% 37 
 

        

SHT: Shoulder NOS: does not exist 311 55.24% 252 44.76% 563  

  

type 
THI: thin:<1.5m 402 54.47% 336 45.53% 738  

 
 

 MED: medium: 1.5m<=sht<2.50m 133 58.85% 93 41.15% 226 
 

 WID: wide >= 2.50 m 6 66.67% 3 33.33% 9 
 

        

SID: sight A: atmospheric 26 81.25% 6 18.75% 32  

  

distance 
B: building 10 55.56% 8 44.44% 18  

 
 

 O: other 6 66.67% 3 33.34% 9 
 

 T: topological 187 55.49% 150 44.51% 337 
 

 V: vegetation 6 54.55% 5 45.45% 11 
 

 WR: without restriction 617 54.65% 512 45.35% 1129 
 

        

TIM: time [0-6] 99 46.26% 115 53.74% 214  

  

 (6-12] 236 57.99% 171 42.01% 407 
 

 (12-18] 314 57.72% 230 42.28% 544 
 

 (18-24) 203 54.72% 168 45.28% 371 
 

        

VI: vehicles 1 316 52.06% 291 47.94% 607  

  

involved 
2 468 56.73% 357 43.27% 825  

 
 

 >2 68 65.38% 36 34.62% 104 
 

        

Total  852 55.47% 684 44.53% 1536 
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Table 2: Accuracy, sensitivity, specificity, HMSS and ROC Area for BDe, MDL and AIC score 

metrics (training and test sets). 

Score Metric BDe MDL AIC 

dataset training test training test training test 

Indicator average± s.d.* average ± s.d.* average ± s.d.* average ± s.d.* average ± s.d.* average ± s.d.* 

Accuracy 0.61±0.01 0.57±0.02 0.60±0.01 0.59±0.02 0.58±0.01 0.58±0.03 

Sensitivity 0.74±0.02 0.65±0.04 0.73±0.02 0.65±0.03 0.66±0.02 0.63±0.04 

Specificity 0.44±0.03 0.49±0.05 0.45±0.03 0.53±0.05 0.47±0.03 0.53±0.04 

HMSS 0.55±0.02 0.56±0.03 0.56±0.02 0.58±0.03 0.55±0.02 0.58±0.02 

ROC Area 0.62±0.04 0.58±0.02 0.61±0.02 0.62±0.02 0.58±0.02 0.61±0.03 
*s.d.: standard deviation 
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Table 3: MPE for the three score metrics. 

Score 

metric 
MPE Formulas MPE MPEtest 

BDe 

P(ACT=AS)•P(AGE=(25-64]|SEV=SI)•P(ATF=GW|SEV=SI,SID=WR)• 

P(CAU=DC|SEV=SI)•P(DAY=WD|SEV=SI)•P(GEN=M|SEV=SI)• 

P(LAW=WID|SEV=SI)•P(LIG=DL|SEV=SI)•P(MON=SUM|SEV=SI,ATF=GW)• 

P(NOI=1|VI=2)•P(OI=2)|SEV=SI,NOI=1,VI=2)•P(PAS=Y|SEV=SI,SHT=THI)• 

P(PAW=WID|SEV=SI,LAW=WID)•P(ROM=SLD|SEV=SI,PAS=Y,PAW=WID)• 

P(SEV=SI|ACT=AS,NOI=1)•P(SHT=THI|PAW=WID)•P(SID=WR|PAS=Y)• 

P(TIM=(12-18]|SEV=SI,LIG=DL)•P(VI=2|ACT=AS) 

0.00088 0.00081 

MDL 

P(ACT=AS|PAS=Y)•P(AGE=(25-64]|SEV=SI)•P(ATF=GW|SEV=SI,SID=WR)• 

P(CAU=DC|SEV=SI)•P(DAY=WD|SEV=SI)•P(GEN=M|SEV=SI)• 

P(LAW=WID|SEV=SI,PAW=WID)•P(LIG=DL|SEV=SI,TIM=(12-18])• 

P(MON=SUM|SEV=SI,ATF=GW)•P(NOI=1|VI=2)•P(OI=2|SEV=SI,NOI=1,VI=2)• 

P(PAS=Y|SHT=THI)•P(PAW=WID|SHT=THI)• 

P(ROM=SLD|SEV=SI,PAS=Y,PAW=WID)• 

P(SEV=SI|SHT=THI,PAS=Y,ACT=AS,NOI=1)•P(SHT=THI)•P(SID=WR|PAS=Y)• 

P(TIM=(12-18]|VI=2)•P(VI=2|ACT=AS) 

0.00076 0.00073 

AIC 

P(ACT=AS|VI=2)•P(AGE=(25-64]|LIG=DL)•P(ATF=GW|SID=WR)• 

P(CAU=DC|SEV=SI,GEN=M)•P(DAY=WD|SEV=SI,VI=2)•P(GEN=M|DAY=WD)• 

P(LAW=WID|SEV=SI,ROM=SLD,PAW=WID)• 

P(LIG=DL|MON=SUM,TIM=(12-18])•P(MON=SUM|PAS=Y,ATF=GW)•  

P(NOI=1|AGE=(25-64],VI=2)•P(OI=2|SEV=SI,NOI=1,VI=2)• 

P(PAS=Y|PAW=WID,SHT=THI)•P(PAW=WID|SHT=THI)• 

P(ROM=SLD|PAS=Y,PAW=WID)• 

P(SEV=SI|MON=SUM,LIG=DL,ATF=GW,AGE=(25-64],NOI=1,ACT=AS)• 

P(SHT=THI|ACT=AS)•P(SID=WR|PAS=Y,ROM=SLD)•P(TIM=(12-18])• 

P(VI=2|TIM=(12-18]) 

0.00100 0.00092 

 

 

  



5 
 

Table 4: Inference results for variables that are associated with KSI in traffic accidents. 

Variables Values 
Probabilities when setting evidences 

SI KSI 

ACT 

AS 0.6219 0.3780 

CF 0.5226 0.4773 

HO 0.3412 0.6587 

O 0.5808 0.4191 

PU 0.6683 0.3316 

R 0.4944 0.5055 

SP 0.6066 0.3933 

AGE 

[18-25] 0.4999 0.5000 

(25-64] 0.5567 0.4432 

≥64 0.5937 0.4062 

LIG 

D 0.5486 0.4513 

DL 0.5615 0.4384 

I 0.6239 0.3760 

S 0.6254 0.3745 

W 0.4527 0.5472 

NOI 
1 0.4957 0.5042 

>1 0.6545 0.3454 

SI: slight injured; KSI: killed or seriously injured 

 




