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Abstract 
In order to design a steel member subjected to a bending moment and an axial load, there are an 
infinite number of possible solutions I- or H- steel cross-sections, the doubly-symmetric 
solution being just one of them. This paper presents a procedure to obtain the optimal steel 
cross-section from the infinite number of possible solutions. The process is based on the 
Reinforcement Sizing Diagrams employed in reinforced concrete strength design. The 
procedure looks for any type of solution regarding compact or non-compact steel sections. All 
aspects related to local instabilities will be taken into account, as well as special considerations 
in order to address the global instabilities associated with the slenderness of the steel element. 

Notation 
A  Cross-section area employed to compute Nb,Rd 

At  Cross-section area 

Ateff  Effective cross-section area for cross-sections in Class 4 

A1  Top flange area 

A2  Bottom flange area 

E  Steel elastic modulus 

My  External in-plane bending moment 

Mb,Rd  Design buckling resistance moment of a laterally unrestrained beam 

My,Ed  External in-plane bending moment applied to the section 

My,Rk  Critical cross-section characteristic moment resistance about y-y axis 

N  External axial load 

Nb,Rd  Design buckling resistance of a compression member 

NEd  External axial load applied to the section 
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NRk  Critical cross-section characteristic resistance to normal force 

Weff,y  Effective section modulus about y-y axis, for Class 4 sections 

Wel,y  Elastic section modulus about y-y axis 

Wpl,y  Plastic section modulus about y-y axis 

Wy  Appropriate section modulus employed in the computation of Mb,Rd 

bfcomp  Compressed flange width 

bfb  Bottom flange width 

bft  Top flange width 

dw  Web height 

h  Centroid height 

fy  Specified steel yield strength 

k  Factor employed in the computation of the criterion to prevent the compression flange 
buckling in the plane of the web 

lb  Unbraced length of the beam-column member 

tfb  Bottom flange thickness 

tft  Top flange thickness 

tw  Web thickness 

χ   Reduction factor for the relevant buckling mode in compression 

LTχ   Reduction factor for lateral-torsional buckling 

1Mγ   Partial safety factor for the buildingζ  Interaction factor 

1. Introduction 
Typical sections for beam-column members in steel edifications are usually I- or H- rolled 
sections. However, in other fields of steel constructions such as civil bridges, the selected cross-
sections may be welded, since the higher demands to be supported by the structure calls for 
larger dimensions not possible for tabulated rolled sections. Whether edification or civil 
construction, designers tend to proportion their structures using symmetric sections, these being 
just one of the multiple solutions. Nevertheless, the optimal solution may not coincide with the 
symmetric one and important savings in the amount of steel used could be achieved. In this 
respect, environmental concerns constitute an important role because savings in steel 
consumption may be translated into significant reductions in greenhouse gas emissions. 

 

 Figure 1. Conditions of the problem to be analyzed 

The present work studies the optimal design of beam-column members subject to an external in-

plane bending moment, yM , and to an axial load, N , initially considered to be applied at the 

centroid of the web of the section (Figure 1). Figure 2 shows the employed nomenclature for the 



cross-section of the element and the sign criteria for the applied external loads. Bending 

moment, yM , acting on the strong axis of the cross-section will be considered positive when 

compressing the top flange of the section. The applied axial load, N , will be considered 
positive in tension. For the sake of simplicity, the fillets in rolled sections and throat thickness 
in welded sections have been ignored in the process. The different elements of the section are 
proportioned to provide sufficient strength and stiffness to resist the external actions and avoid 
premature buckling of the member. For non-compact sections, the plastic capacity will not be 
reached, so elastic capacity will be employed.  

 

 

 Figure 2. Nomenclature and sign criteria 

The problem studied in this work has already been solved by Gil-Martín et al. [1] for Class 1 
sections. Optimization was completed by using the RSD design approaches [2-3]. This 
methodology, originally conceived for reinforced concrete, represents the required 
reinforcement area for supporting a determined external loading as a function of depth of neutral 
axis in the concrete section (Figure 3). When applying RSD design approaches to optimization 
in steel sections, minor changes need to be made. Thereby, the graphics represent the cross-

section area, At, as a function of the web height,wd , and the optimal solution corresponds to the 

one with the lowest value for At (Figure 4). 

 
 Figure 3. Example of RSD in a reinforced concrete section, from [4] 
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The present paper explains the well-developed process that was followed to obtain the optimal 

solution for any pair of ( yM , N ). The process makes it possible for the designer to choose the 

Class of the adopted cross-section; this is either compact or non-compact. Selecting the Class of 
the section is very important, for example, when designing a building for earthquake resistance 
according to Eurocode 8 (EC8) [5]. EC8 states that, for any given building subjected to an 
earthquake, the relation between its resistance and capacity for dissipating energy is related to 
the section classification (see Table 6.3 in EC8). Generally speaking, the more ductility needed 
the more compactness is required for the cross-section. 

 
 Figure 4. Example of RSD in a steel section: optimization of IPE500 under My,Ed = 288 kN m and NEd = - 483 
kN with tf=16 mm and tw=10,2 mm. Point A represents the optimal solution and point B corresponds to 
IPE500. Taken from [1] 

In contrast to the previous case is a composite roadway or highway bridge. These kinds of 
bridges, which also called “twin-girder bridges”, are composed of two longitudinal steel girders 
connected to the concrete slab of the deck by shear connectors. Twin-girder bridges are the most 
economical solution when covering span lengths in the range of 30 and 100 m [6], with special 
suitability between 60 and 80 m [7]. Considering these span lengths, self-weight becomes an 
important action to be withstood. Under this load, and beyond the complexity involving a 
composite section, cross-sections under positive moment at mid-span regions of composite 
bridges are usually in Class 1 or 2, since compression is carried mainly by the concrete deck. 
However, on  internal supports, under negative moment, sections tend to be designed in Class 3 
or 4 in order to avoid the excessive amount of steel that would be needed if those compressed 
sections were to be  in Class 1 or 2 [8].  

The typical section for these kinds of bridges is shown in Figure 5. The most usual range for 
H/L, being H the height of the I-section and L the covered span, is between 1/25 and 1/20 for 
highway or roadway bridges and 1/15 for railway bridges [6-7][9]. For a highway bridge with a 
span of 600 m, H would be between 2.5 and 3.0 m.  This is due to the fact that the high 
dimensions of the sections do not allow the designer to choose them from the standard rolled 
sections and a welded design is needed.  For these types of girders, the algorithm developed 
within this work lets the designer impose any constraint related to the dimensions of a particular 
element of the section, in this case, web height or even related to the Class of the cross-section.  



The algorithm used to optimize the sections has been implemented in a computer program and 
some examples are presented here. The results obtained will be analyzed in order to test the 
validity of the process. 

 

Figure 5. Typical section for a twin-girder composite bridge 

2. The optimization procedure 
As above explained, the optimization procedure to be presented in the current work is based on 
RSD methodology. This approach consists on the consideration of all the possible solutions for 
a design problem through a graphical representation that allows to choose the optimal one. In 
reinforced concrete members, usually the reinforcement area is represented in function of the 
neutral axis depth [2-3].  

In steel construction, as was observed with reinforced concrete, an infinite number of solutions 
exist for the design of a steel cross-section subjected to combined loads N and M. These 
solutions can be presented using graphics similar to those used in the reinforced concrete RSD 
representation. In this case, the area of structural steel has been represented in function of the 
height of the web [1]. The main advantage of this procedure is that the engineering know all the 
possible cross-sections that resist a given combination of axial load and moment (N, M) making 
possible the choice, among all them, of the optimal one considering minimum weight, 
availability of steel shapes, simplicity on the job site, Class of the cross-section and so on. 

The process followed during the optimization procedure is represented in the flow chart in 
Figure 6. 

Section initial proportioning 

The first step in the process is to select a fixed value for the web thickness, tw, and a range of 
values for the height of the web, dw. The range of dw is obtained accounting both shear strength 
and shear buckling requirements. The flanges preliminary proportions are provided by 
equilibrium of forces acting on the cross-section, applying the axial load at the centroid of the 
web. The equilibrium is established by ignoring the web contribution and assuming that the 
forces carried by the top and bottom flanges act at the ends of the web and drive the flanges to 
the yield stress. Therefore, the sum of moments on either ends of the web results in Eq. 1: 
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Figure 6. Flow chart explaining the entire process 

Once A1 and A2 are known for each value of dw, the next step is to choose another range of 
values for the flange thicknesses, tft and tfb. Therefore, for each value of tft and tfb the values of 
the flange widths can be obtained from Eq. 2: 

Preliminary proportion of flange areas (Eq. 1) 

¿ 0,95 ≤ ζ  ≤ 1,00 
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Interaction factor ζ  (Eq. 5) 

Range of values for dw 
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In the following, without lost of generality, the same thickness of both flanges has been 

considered, being, ft fb ft t t= = . 

Section classification 

As described in Eurocode 3(EC3)[10] , the role of cross-section classification is to identify the 
extent to which the resistance and rotation capacity of the cross-section is limited by its local 
buckling resistance. The classification of a determined cross-section will depend on the 
slenderness, i.e. the width to thickness ratio, of the parts subject to compression.  

According to EC3, there are four classes for steel sections: Class 1, which can form a plastic 
hinge with the rotation capacity required from plastic analysis without reduction of the 
resistance; Class 2, similar to class 1 but with limited rotation capacity due to local buckling; 
Class 3, those sections in which local buckling appears before forming a plastic hinge and are 
assumed to work with an elastic distribution of stresses reaching the yield strength; and Class 4, 
in which local buckling is reached before elastic limit [11]. This classification may also be 
found in other codes as AISC Steel Construction Manual [12] with other terminology and 
slenderness limit values. Thereby, according to AISC, Class 1 and 2 sections are called compact 
sections; Class 3 sections are equivalent to non-compact sections; and Class 4 sections are 
similar to slender sections. 

The limit values for the slenderness of each component of the section are given by Tables 5.2-1 
and 5.2-2, presented in section 5 of Part 1-1 in EC3. According to these standard codes, the 
cross-section is classified according to the highest (least favorable) class of its compression 
parts.  

Widths of the elements of the cross-section in Class 4 have to be reduced in order to their 
effective dimensions according to Part 1-5 of EC3. 

Global instabilities at member level 

Once the class of the cross-section is determined, it is necessary to calculate the resistance of the 
beam-column member to lateral buckling and lateral-torsional buckling due to axial load and 
bending moment, respectively. Following the formulas given in EC3 [9], the design buckling 
resistance of a compression member should be taken as: 

,
1
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M

A f
N

χ
γ

⋅ ⋅
=  (3) 

where A=At for cross-sections in Classes 1, 2, or 3, and A=Ateff for cross-sections in Class 4 
when subjected to uniform compression. The parameter χ  is the reduction factor for the 

relevant buckling mode, computed as indicated in section 6.3.1. in Part 1-1 of EC3.  

On the other hand, Section 6.3.2 of EC3 [9] provides the formula to calculate the parameter 

LTχ , i.e. the reduction factor for lateral-torsional buckling. According to this, the design 

buckling resistance moment of a laterally unrestrained beam should be taken as: 
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Here, yW  is the appropriate section modulus, taken as ,pl yW  for Class 1 or 2 cross-sections, 

,el yW  for Class 3 cross-sections, and ,eff yW  for Class 4 cross-sections when only moment about 

the relevant axis is applied. 

When the buckling resistances of the member are calculated, the General Method for lateral and 
lateral torsional buckling of structural components is applied. This method, explained in Section 
6.3.4 of EC3 [9], allows the verification of the resistance to the former global instabilities of 
single members subject to compression and mono-axial bending in the plane. The member must 
fulfill Eq. 5 in order to achieve stability. 

,

1 , 1

1y EdEd

Rk M LT y Rk M

MN

N Mχ γ χ γ
+ ≤

⋅ ⋅
   (5) 

where RkN  and ,y RkM  are the critical cross-section characteristic resistance to normal force and 

moment resistance about y-y axis. In this work, applied loads NEd y My,Ed are: 

( ), 0 yy Ed y NM M e e N= + +    (6) 

EdN N=   (7) 

Being eNy the shift of the relevant centroidal axis of the cross-section due to the widths reduction 
in class 4 when the member is subjected to uniform compression and e0 the distance between the 
mid-height of the web –where the axial load is supposed initially applied at the gravity center of 
the gross-section (Figure 7), calculated  as: 

( )0 2w fe h d t= − +    (8) 

In the above expression h is the height of the gravity centre of the cross-section. 

In this work, the value for the sum presented in Eq. 5 has been called “interaction factor” and is 

represented by ,

1 , 1

y EdEd

Rk M LT y Rk M

MN
N Mχ γ χ γζ ⋅ ⋅= + . 

Design adjustments 

It is clear from the flow chart presented in Figure 6 that the proposed procedure is iterative. The 
dimensions of the cross-section are preliminary proportioned and classified. Afterwards, the 
General Method is applied to evaluate the stability of the member; because in most of the cases 
the preliminary cross-section will not be able to stand the applied loads without buckling, 
dimensions need to be modified. In this work, for each pair of values dw-tf, the width of the 

flanges, bft and bfb, are adjusted until the member does not buckle, i.e. 1ζ ≤ . However, in order 

to gain optimal results, a lower limit has been imposed to ζ , so that the adjustments will be 

completed when 0.95 1ζ≤ ≤ . The adopted process for providing a cross-section of minimum 



cross-sectional area, fulfilling all the stability considerations, is similar to the one followed by 
[1], and is explained below: 

1. If 0,95ζ <  the section provides excess capacity. To reduce the cross-sectional area, 

the widths of both flanges are reduced until:  

0,95 1ζ≤ ≤  (9) 

2. If 1ζ >  the section behavior is governed by instability. To provide sufficient strength, 

the flange areas must be increased. The approach to increase one flange or another 
depends on axial force and bending moment: 

a. If 0yM =  or 0N = , the section is symmetric from the initial proportioning 

given by Eq. 1. The area of both flanges are increased the same amount until 
the condition given by Eq. 9 is fulfilled. 

b. If 0yM ≠  and 0N ≠ , the section from Eq. 1, the section will initially be  

asymmetric. In this case, one of the flange areas is increased in order to reduce 
the eccentricity given by Eq. 8 until the formula given by Eq. 9 is fulfilled: 

i. If yM  and N have an equal sign, the top flange width will increase. 

ii. If yM  and N have a different sign, the bottom flange width will 

increase. 

 
 Figure 7. Values for the eccentricities e0 and eNy 

Once Eq. 9 is fulfilled for certain values of dw - tft - tfc  (in this example tf = tft = tfc), the cross-
section will be stored if the dimensions of the flanges in compression are sufficient to prevent 
local buckling in the plane of the web. According to section 8 in Part 1-5 of EC3 [13], the 
following criterion should be met: 
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The value of k should be taken as follows: 

 - Plastic rotation utilized k = 0,3 

 - Plastic moment resistance utilized k = 0,4 

 - Elastic moment resistance utilized k = 0,55 

All the cross-sections with their corresponding pairs of dw-tf are stored. These solutions are 
sorted by cross-sectional area and the minimum is identified as the optimal solution. It is 
important to notice that the process may provide some solutions with the same optimal cross-
sectional area. In this case, the final selected solution will be that with the minimum value of 

interaction factorζ . 

Furthermore, the procedure provides an infinite number of solutions (depending on the 
established constraints). The optimum (i.e. minimum cross-sectional area) or the symmetric 
solution is just one of the possible cross-sections that may be chosen [1-3]. 

3. Examples 
The validity and effectiveness of the process have been tested and can be seen in  the following 
three examples; in order to obtain minimum cross-sectional solutions for three combinations of 

yM  and N  with the conditions represented in Figure 1: a simple supported beam with end-fork 

conditions (i.e. pin supported end and free warping). The applied load combinations correspond 
to three points in the interaction equation (Figure 8) corresponding to a specimen made of steel 

Grade 235 ( 235yf = N/mm2) with a cross-section HEB600 ( 540 mm;wd = 15,50wt mm= , 

30 mm;ft =  300 mm;ft fbb b= =  227000 mmtA = ) and an unbraced length, lb, equals to 

6,00 m. The load combinations are presented in Figure 8. 

 

Figure 8. Interaction equation corresponding to HEB600, for fy = 235 N/mm2, lb = 6 m and ψ = 0 
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3.1. Combination A: My=1391.60 kN.m –bending moment applied 

on the right support of the beam- 

The first combination of loads corresponds to point A in Figure 8, simple strong axis bending 

with a value of 1391,60yM kN m= ⋅ . Figure 9 shows the obtained design solutions for 

different web depths, dw, with a range from 50 mm to 2000 mm with a step of 5 mm. The 
adopted range of values for flange thicknesses, tf, varies from 4 mm to 40 mm, with a step of 2 

mm. The HEB 600 web thickness ( 15,50wt mm= ) is adopted for every solution. According to 

Eq. 1, if tf = tft = tfc all the obtained solutions are doubly-symmetric (i.e. ft fbb b= ). The results 

from Eq. 1 are presented as a continuous line. Dots in Figure 9 correspond to the solutions 
obtained after the adjustment process for the four different Classes of the cross-section. To 
distinguish between each class  different  have been used, respectively. In Figure 9 the solution 
corresponding to the HEB section and the optimal ones obtained for each class using the 
optimization procedure have been identified.  As may be observed from Figure 9, the initially 
proportioned dimensions for the elements of the cross-section given by Eq. 1 are subsequently 
modified by the adjustment process. In some cases, those dimensions have been overestimated 
since the contribution of the web was ignored in Eq. 1. However, many solutions have cross-
sectional areas greater than initially estimated due to the fact that members turned out unstable 
and buckled and therefore dimensions need to be modified in order to get sufficient strength to 
withstand the applied loads. 

 

Figure 9. Cross-sectional area At of the solutions in terms of web depth dw for strong axis bending moment  

The solution with the lowest cross-sectional area corresponds to:  

925 mm;wd = 15,50wt mm= ; 16 mm;ft = 335 mm;ft fbb b= = 225058 mmtA =  

HEB 600 
(C1) 

Optimal solution C3 

Class 1 
Class 2 
Class 3 
Class 4 

+ tf 

- tf 

Optimal solution C1 

Optimal solution C4 

Optimal solution C2 

 Min Max Step 
tf (mm) 4 40 2 
dw(mm) 50 2000 5 

 From Eq. 1 



 The web and top flange Classes are 1 and 2 respectively, leading to cross-section Class 2. The 

interaction factor is 0,9989ζ = .  

Figure 10 shows the optimal solution for each Class according to EC3 and compares their cross-
sectional area with the one of HEB 600. The table in Figure 10 provides the dimensions for 
these optimal solutions. Class 1, 2, and 3 sections reduce the flange width, bf, when increasing 
web depth, dw, while in Class 4 bf increases since web is reduced for local buckling. In this case, 
only compact solutions (Classes 1 and 2) provide less cross-sectional area than the standard 
HEB600. Figure 9 shows that a saving of 7,2 % with respect to the area of HEB600 can be 
obtained. 

 

Figure 10. Comparison between the dimensions of different optimal solutions for each Class and HEB 600, for 
strong axis bending moment. Scale of dimensions sketches: 1/400 

In Figure 11 the obtained results from the optimization process imposing 30 mmft = (flange 

thickness of HEB600) have been represented for both welded and rolled sections. This figure 
shows that if welded sections are considered instead of rolled sections, areas slightly larger are 
obtained. These differences are due to the different values of the imperfection factors 
corresponding to the buckling curves that are different for both welded and rolled sections. For 
this example no welded solution exits with a cross-sectional area under 27000 mm2 - HEB600 

cross-section area- while if a rolled section is employed an area 226098 mmtA =  is obtained 

(for 805 mmwd =  and 227 mmfb = ).  
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Figure 11 shows that the curve corresponding to rolled sections almost matches the solution 
corresponding to the HEB 600. These small differences are due to the fact that, as was explained 
earlier, in this work the fillets in rolled sections are not taken into account. 

 

Figure 11. Cross-sectional area At of the solutions with tf = 30 mm in terms of web depth dw for strong axis 
bending moment employing welded and rolled sections imperfection factors 
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3.2. Combination B: N= -4180.80 kN (compression) 

In this case, the steel section member is subject to a pure compression with a value of 

4180,80N kN= − . This load combination corresponds to point B in Figure 8, i.e. the buckling 

capacity of the considered HEB 600 member. The results for the different values of dw, with a 
range from 50 mm to 800 mm with a step of 5 mm, are presented in Figure 12. Again, the HEB 

600 web thickness ( 15,50wt mm= ) is adopted for every solution. The adopted range of values 

for flange thicknesses, tf, starts at 4 mm and finishes at 40 mm, with a step of 2 mm. The 

obtained optimal solution corresponds to 215 mm;wd =  15,50wt mm=  18 mm;ft =  

492 mm;ft fbb b= = 221045 mmtA = . This solution saves a 22,05 % of steel with respect to 

the HEB600. The cross-section Class is 3 due to the slenderness ratio for the flanges in 

compression: 10 13.23 14
c

t
ε ε< = < . The interaction factor for this solution is 0,9992ζ = .  

 

Figure 12.  Cross-sectional area At of the solutions in terms of web depth dw for pure compression 

As in the former example, Figure 13 shows the optimal solution for each Class. In this particular 
case, all the optimal solutions have cross-sectional areas smaller that the one corresponding to 
the standard HEB600. As in the previous example, Eq. 1 provides symmetric solutions since, 
the only applied load there is now is the compressive axial load. Because the areas of the flanges 
are not affected by web depth, dw , the flange widths, bf, will be the same for every fixed value 
of the flange thickness, tf. Figure 14 shows the evolution of the flange width, bf, as function of 

the depth of the web, dw, for a fixed value of the flange thickness, 30 mmft = . The obtained 

optimal solution corresponds to a web depth 145 mmwd = and a flange 

width 357 mmft fbb b= = . The corresponding cross-sectional area is 223668 mmtA = .  

From Eq. 1 

HEB 600 (C2) 

Optimal solution C3 Optimal solution C4 

Optimal solution C2 

Optimal solution C1 

Class 1 
Class 2 
Class 3 
Class 4 



 

Figure 13. Comparison between dimensions of different optimal solutions for each Class and HEB 600, for 
pure compression.  

 

Figure 14. Flange width, bf, for the solutions of flange thickness tf = 30 mm in terms of web depth dw for pure 
compression 

In Figure 14 two regions appear. Region 1 corresponds to solutions where the relevant mode for 
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moment of inertia about y-y, which is proportional to bf: y fI b∝  (∝  meaning being 

proportional). However, 3
y wI d∝ , resulting in much less wider solutions as dw becomes deeper. 

On the other hand, Region 2 corresponds to flexural buckling under z-z axis and solutions get 

quick stability since 3
z fI b∝ , and solutions need to increase lightly their preliminary 

proportioned flanges. In this Region, the slope of the curve becomes much flatter as dw increases 

since now z wI d∝ . 

3.3. Combination C: My= 695.82 kN.m  & N= -2090.41 kN 

(compression) 

This case corresponds to a combination of simultaneous compression and bending moment 
about the strong axis. Point C in Figure 8 coincides with half compression and bending moment 
capacity of the standard HEB 600 adopted as a benchmark problem. Solutions have been 
obtained again for the same range of values for web depth, dw, and flange thickness, tf, as in the 
previous example. The value of  the web thickness, tf, is 15,5 mm. Figure 15 shows the results 

obtained and the optimal section, for which the  dimensions are: 585 mm;wd =  

15,50wt mm=  22 mm;ft =  433 mm; 334 mm;ft fbb b= =  225942 mmtA = . For this 

section, both top flange and web are Class 2, and the entire cross-section results in that Class. 
The solution saves a 4 % of steel with regards to the standard HEB 600. 

 

Figure 15. Cross-sectional area At of the solutions in terms of web depth dw for simultaneous compression and 
bending moment about strong y-y 

Figure 16 shows the obtained optimal results for each Class of sections. In this case, as in the 
former example, once again, all of them have a less cross-sectional area than the standard 
HEB600. There are two of them, solutions for Classes 2 and 3, which are almost the same area 
(slight differences in dimensions of flanges and web result in just 1 mm2 less in cross-sectional 
area for solution in Class 2). 
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Figure 16. Comparison between the dimensions of different optimal solutions for each Class and HEB 600, for  
simultaneous compression and bending moment about strong y-y. 

 

Figure 17. Cross-sectional and flange area in terms of dw, for solutions of tf = 20 mm and forcing both flanges 
to be equal (i.e. doubly-symmetrical cross-section) for simultaneous compression and bending moment about 
strong y-y. 
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As the procedure is completely general, the doubly-symmetrical cross-section may be 
extrapolated without loss of generality.  If the width of both flanges are forced to be equal, the 

optimal solution corresponds to a flange thickness of 20 mmft =  and 625 mm;wd =  

15,50wt mm= 396 mm; 396 mm;ft fbb b= =  226303 mmtA = . Figure 17 represents both 

the cross-sectional and flange areas for doubly-symmetrical cross-section with 20 mmft =  in 

function of the height of the web. For this figure it is evident that solutions only exist for values 
of dw from 420 mm, being the sections in Class 3 or 4. The standard HEB600 is included in the 
list of possible solutions in Class 2. 

3.4. Global optimization 

In order to extend the former optimization procedure to other values of web’s thickness, tw, the 
above process has been applied to several values of tw between 6 mm and 19 mm for the axial 
compression and bending moment about the strong axis denoted as combination C (see Figure 
8). The optimal cross-section (i.e., with minimum area) obtained for each class of cross-section 
[9] for each thickness of the web can be identify in Figure 18.  This figure shows that the 
smallest area that fulfil all the EC3 [9] requirements corresponds to cross-section in class 4 with 
tw = 8 mm. This optimal section needs to be stiffened because the slenderness of the web is too 
high.  The optimum cross-section in class 3 and in Class 1 and 2 appears for tw = 13,5 mm and 
tw = 14,5 mm, respectively. In such cases the slenderness of the web is low enough that 
transverse stiffeners are not needed. In Figure 18, the optimal solutions obtained for the value of 
the thickness of the web adopted in the former sections (tw of the standard HEB 600) have also 
been indicated. 

 

Figure 18. Optimal (i.e. minimum) cross-sectional area in terms of  tw obtained for each class of cross-section 
and for simultaneous compression and bending moment about strong y-y. 
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4. Conclusions 
As has been explained and demonstrated in this work, employed symmetrical cross-sections are 
usually not, in most of the cases, the optimal solutions. This work presents an iterative 
procedure in order to get the optimal solution for the I-shaped cross-section of a steel beam-
column member subject to an external axial load and bending about strong axis. The process is 
based on RSD diagrams for optimizing the longitudinal reinforcing steel in reinforced concrete 
sections and completes the procedure proposed by Gil-Martín et al. [1] for obtaining these 
optimal solutions with steel sections in Class 1 according to Eurocode 3. This method allows 
engineers to choose among all the possible solutions: compact, non-compact and slender 
sections, obtaining important savings in steel and hence leading to reductions in greenhouse gas 
emissions.  
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