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Summary

This Final Degree Project has focused on the study of molecular dynamics (MD), a com-
putational technique that enables the modeling of atomic and molecular systems based on
their interactions. Throughout the project, a comprehensive analysis of this methodology has
been carried out, covering everything from its theoretical foundations to its various practical
applications, with particular attention to the algorithmic tools used in simulations.

First, the historical and scientific context in which molecular dynamics emerged has been
introduced, from the pioneering experiments of Alder and Wainwright in the 1950s, through
the fundamental contributions of Rahman and Verlet, to the technological advances that
enabled the application of these methods to the study of complex biological systems and
materials using high-performance computing (HPC) and graphics processing units (GPUs).
In summary, the milestones that allowed the transition from simple hard-sphere gas sim-
ulations to advanced simulations of proteins, solvents, or crystalline networks have been
identified, consolidating molecular dynamics as a key tool in materials science, biophysics,
and molecular design.

Next, the project addresses the foundations of classical and statistical mechanics that form
the basis of simulations. On one hand, it analyzes how Newton’s laws lead to the equations
of motion governing the evolution of a particle system. These equations allow the problem
to be formulated as a Hamiltonian system, whose mathematical structure imposes certain
properties that must be respected by numerical algorithms. One of the most relevant is
symplecticity—a property that must be preserved by integration methods to ensure physi-
cally coherent long-term simulations. In this context, the Verlet algorithm and its variants
have been studied, highlighting their ability to conserve system energy over time and their
numerical stability compared to non-symplectic methods such as the Euler integrator. The
importance of selecting an appropriate integration step to ensure both stability and accuracy
has also been discussed.

On the other hand, the role of interaction potentials in molecular dynamics has been
analyzed, particularly classical force fields. These models approximate intermolecular forces
through terms representing bonds, angles, torsions, as well as Van der Waals and electrostatic
interactions. It has been emphasized how the choice of force field directly affects the precision
and applicability of the simulation, making proper parametrization essential to faithfully
represent the studied systems. Additionally, the importance of the level of detail with which
the system is represented has been highlighted, addressing the trade-off between accuracy
and computational cost.

An essential part of the work has been the discussion of the different thermodynamic
ensembles (NVE, NVT, NPT) and how they are implemented in practice through the use of
thermostats and barostats. The most commonly used methods have been examined, such as
the Berendsen and Nosé-Hoover thermostats, explaining their advantages, limitations, and
their impact on the system’s dynamics and statistics. Regarding barostats, the functioning of
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Summary

the Berendsen and Parrinello-Rahman methods has been explained, the latter being especially
useful in simulations of materials under stress.

Subsequently, the issue of simulation initialization has been addressed, highlighting the
importance of performing a prior energy minimization step to avoid artificial configurations
with high energies or particle overlaps. This step relies on optimization methods, such as gra-
dient descent or conjugate gradient, which allow for the identification of stable configurations
corresponding to local minima on the potential energy surface. In complex systems, where
this surface presents multiple local minima, the role of metaheuristics has been emphasized
as tools to escape from these minima and approach the global minimum. In this context,
Monte Carlo methods such as the Metropolis algorithm have also been introduced, offering
an alternative to molecular dynamics by generating random system configurations based on
probabilistic criteria.

A key aspect addressed in the project has been the use of reduced units in simulations.
This technique allows physical quantities to be expressed in a dimensionless form by using
characteristic parameters of the system as scaling factors. This not only simplifies the physical
expressions used but also improves numerical stability and facilitates comparison between
different simulations. Furthermore, it allows code generalization, since results can later be
rescaled to real physical units if desired. Finally, a pseudo-algorithm has been designed to
perform a molecular dynamics simulation using this unit system.

The great potential of molecular dynamics in real-world applications is also highlighted.
Its uses in materials science, computational chemistry, structural biology, and particularly
in drug design have been discussed. In the latter field, simulations help understand ligand-
protein binding, evaluate the stability of molecular complexes, and investigate interactions at
the atomic level. These capabilities are essential to accelerate the discovery of new treatments
for diseases such as cancer, HIV, and neurodegenerative disorders.

Finally, the project dedicates a section to the current limitations of molecular dynamics.
It analyzes how computational scalability remains a challenge, especially for large or long-
duration simulations. It also points out the inability of classical force fields to accurately
describe quantum phenomena, which has motivated the development of hybrid approaches
such as the QM/MM method. Based on these limitations, several opportunities for improve-
ment are identified, focusing on the application of artificial intelligence techniques, the inte-
gration of multiscale methods, and the exploitation of high-performance architectures—thus
reflecting the great potential of molecular dynamics.

In summary, this work provides an overview of molecular dynamics, covering its theoretical
foundations, computational methods, techniques for regulating thermodynamic conditions,
optimization strategies, and major applications in modern science. It concludes that, despite
its limitations, molecular dynamics is a fundamental tool for studying complex systems at
the atomic scale, with significant room for advancement.
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Resumen

Este Trabajo Fin de Grado se ha centrado en el estudio de la dinámica molecular (MD), una
técnica computacional que permite modelar sistemas atómicos y moleculares a partir de sus
interacciones. A lo largo del trabajo, se ha llevado a cabo un análisis exhaustivo de esta meto-
dología, abordando desde sus fundamentos teóricos hasta sus distintas aplicaciones prácticas,
con especial atención a las herramientas algorítmicas empleadas en las simulaciones.

En primer lugar, se ha introducido el contexto histórico y científico en el que surge la
dinámica molecular, desde los experimentos pioneros de Alder y Wainwright en los años
50, pasando por las contribuciones fundamentales de Rahman y Verlet, hasta los avances
tecnológicos que posibilitaron la aplicación de estos métodos al estudio de sistemas bioló-
gicos complejos y materiales mediante el uso de ordenadores de alto rendimiento (HPC)
y unidades de procesamiento gráfico (GPUs). En resumen, se han identificado los hitos
que permitieron pasar de simulaciones simples de gases duros a simulaciones avanzadas
de proteínas, disolventes o redes cristalinas, consolidando la dinámica molecular como una
herramienta clave en ciencia de materiales, biofísica y diseño molecular.

Seguidamente, el trabajo aborda los fundamentos de la mecánica clásica y estadística que
sustentan las simulaciones. Por un lado, se ha analizado cómo, a partir de las leyes de New-
ton, se establecen las ecuaciones de movimiento que gobiernan la evolución de un sistema de
partículas. Estas ecuaciones permiten formular el problema como un sistema hamiltoniano,
cuya estructura matemática impone ciertas propiedades que deben ser respetadas por los
algoritmos numéricos. Una de las más relevantes es la simplecticidad, propiedad que debe
preservarse en los métodos de integración para garantizar una simulación físicamente cohe-
rente a largo plazo. En este contexto, se han estudiado el algoritmo de Verlet y sus variantes,
destacando su capacidad para conservar la energía del sistema a largo plazo y su estabilidad
numérica frente a otros métodos no simplécticos como el integrador de Euler. Asimismo, se
ha explicado la importancia de seleccionar un paso de integración adecuado para asegurar
tanto la estabilidad como la precisión de la simulación.

Por otro lado, se ha analizado el papel de los potenciales de interacción en dinámica
molecular, en particular los campos de fuerza clásicos. Estos modelos permiten aproximar las
fuerzas intermoleculares mediante términos que representan enlaces, ángulos, torsiones, así
como interacciones de Van der Waals y electrostáticas. Se ha destacado cómo la elección del
campo de fuerza condiciona directamente la precisión y aplicabilidad de la simulación, siendo
imprescindible una parametrización adecuada para representar con fidelidad los sistemas
estudiados. Además, se ha puesto de manifiesto la importancia del nivel de detalle con el
que se representa el sistema, abordando el trade-off entre precisión y coste computacional.

Una parte esencial del trabajo ha sido la discusión de los diferentes colectivos termodinámi-
cos (NVE, NVT, NPT) y cómo se implementan en la práctica mediante el uso de termostatos
y barostatos. Se ha profundizado en los métodos más utilizados, como los termostatos de Be-
rendsen y Nosé-Hoover, explicando sus ventajas, limitaciones y su impacto sobre la dinámica
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Resumen

y la estadística del sistema. En el caso de los barostatos, se ha explicado el funcionamiento
del método de Berendsen y del método de Parrinello-Rahman, este último especialmente útil
en simulaciones de materiales sometidos a tensiones.

Posteriormente, se ha abordado el problema de la inicialización de las simulaciones, des-
tacando la importancia de realizar una etapa previa de minimización de energía para evitar
configuraciones artificiales con altas energías o solapamientos entre partículas. Esta etapa se
basa en métodos de optimización, como el descenso por gradiente o el gradiente conjugado,
que permiten encontrar configuraciones estables correspondientes a mínimos locales de la
superficie de energía potencial. En sistemas complejos, donde dicha superficie presenta múl-
tiples mínimos locales, se ha resaltado el papel de las metaheurísticas como herramientas
para escapar de estos mínimos y aproximarse al mínimo global. En este contexto, también
se han presentado los métodos de Monte Carlo, como el algoritmo de Metropolis, los cuales
ofrecen una alternativa a la dinámica molecular al generar configuraciones aleatorias del
sistema según criterios probabilísticos.

Un aspecto clave tratado en el trabajo ha sido el uso de unidades reducidas en las si-
mulaciones. Esta técnica permite expresar las magnitudes físicas de forma adimensional,
utilizando como escala parámetros característicos del sistema. Esto no solo simplifica las
expresiones físicas empleadas, sino que también mejora la estabilidad numérica y facilita
la comparación entre diferentes simulaciones. Además, permite generalizar el código, ya
que los resultados pueden reescalarse posteriormente a unidades físicas reales si se desea.
Finalmente, se ha diseñado un pseudo-algoritmo que realiza una simulación de dinámica
molecular que pone en práctica este sistema de unidades.

A continuación, se señala el gran potencial de la dinámica molecular en aplicaciones
reales. Se han comentado sus usos en ciencia de materiales, química computacional, biología
estructural y, en particular, en el diseño de fármacos. En este último ámbito, se ha discutido
cómo las simulaciones permiten entender el acoplamiento entre ligandos y proteínas, evaluar
la estabilidad de complejos moleculares e investigar las interacciones a nivel atómico. Estas
capacidades son fundamentales para acelerar el descubrimiento de nuevos tratamientos
frente a enfermedades como el cáncer, el VIH o enfermedades neurodegenerativas.

Finalmente, el trabajo dedica una sección a las limitaciones actuales de la dinámica mo-
lecular. Se ha analizado cómo la escalabilidad computacional continúa siendo un desafío,
especialmente en simulaciones de gran tamaño o de larga duración temporal. También se ha
señalado la incapacidad de los campos de fuerza clásicos para describir con precisión fenó-
menos de naturaleza cuántica, lo que ha motivado el desarrollo de enfoques híbridos como
el método QM/MM. A partir de estas limitaciones, se identifican diversas oportunidades de
mejora, centradas en la aplicación de técnicas de inteligencia artificial, integración de méto-
dos multiescala y en el aprovechamiento de arquitecturas de alto rendimiento, reflejando así
el gran potencial de la dinámica molecular.

En resumen, este trabajo ofrece una visión general de la dinámica molecular, abarcando
sus bases teóricas, sus métodos computacionales, las técnicas para regular condiciones termo-
dinámicas, las estrategias de optimización y las principales aplicaciones en ciencia moderna.
Se concluye que, pese a sus limitaciones, la dinámica molecular es una herramienta funda-
mental para el estudio de sistemas complejos a escala atómica, con un amplio margen de
mejora.
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Introducción

La dinámica molecular (MD) es una técnica computacional que permite estudiar el compor-
tamiento de sistemas atómicos y moleculares mediante la simulación de sus interacciones y
movimientos a lo largo de un tiempo determinado. Dicha técnica se basa en la resolución
de las ecuaciones de movimiento de Newton, a partir de las cuales consigue proporcionar
información detallada sobre la estructura, las propiedades y la evolución de los sistemas
planteados.

Las simulaciones computacionales actúan como puente (ver Figura 1) entre las escalas
microscópicas de longitud y tiempo y el mundo macroscópico del laboratorio, así como entre
la teoría y la experimentación, ya que permiten validar modelos teóricos, contrastándolos
con datos experimentales, y explorar fenómenos en condiciones extremas de temperatura
o de presión, a las que sería prácticamente imposible llegar en el laboratorio. Además, la
MD ofrece grandes ventajas frente a otros métodos de simulación, como el de Monte Carlo
(MC) [1] , al proporcionar acceso a propiedades dinámicas del sistema, esencial en el escenario
planteado.

Figura 1.: Simulaciones como puente entre (a) lo miscroscópico y lo macroscópico; (b) la
teoría y el experimento [2].

El objetivo principal de este trabajo es proporcionar al lector un conocimiento detallado
sobre la dinámica molecular, abordando tanto sus fundamentos teóricos como su aplicación
práctica. Además de ampliar la comprensión sobre esta técnica, se busca enfatizar la relevan-
cia de la investigación y el desarrollo en este campo, así como mostrar su evolución histórica
y las tendencias actuales, incluyendo la integración de inteligencia artificial.

El contenido del trabajo se estructura en siete capítulos:

El Capítulo 1 ofrece un recorrido histórico por el desarrollo de la dinámica molecular,
donde se presentan los hitos más relevantes, desde las primeras simulaciones realizadas
por Alder y Wainwright hasta las recientes mejoras basadas en inteligencia artificial.
Este capítulo contextualiza la evolución de la técnica en paralelo con los avances en
computación y teoría física.
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Introducción

En el Capítulo 2 se introducen los fundamentos físicos que sustentan la dinámica
molecular, analizándose las leyes y ecuaciones de Newton, así como los conceptos clave
relacionados con la energía, la temperatura y las condiciones iniciales del sistema.

El Capítulo 3 trata sobre la modelización en dinámica molecular. Se profundiza en
los distintos potenciales de interacción y condiciones de contorno, y se evidencia la
importancia de la representación del sistema en MD.

El Capítulo 4 está dedicado al estudio y análisis de los principales algoritmos em-
pleados en dinámica molecular. Se presentan los métodos numéricos utilizados para
integrar las ecuaciones de movimiento, con especial atención al algoritmo de Verlet y
sus variantes. Asimismo, se abordan técnicas para el control de las condiciones termo-
dinámicas del sistema mediante termostatos (como los de Berendsen y Nosé–Hoover) y
barostatos (como Andersen y Parrinello–Rahman). También se exploran algoritmos de
optimización, cuyo objetivo es hallar configuraciones de mínima energía. Finalmente,
se discuten estrategias para mejorar el rendimiento computacional mediante el uso
de simulaciones paralelas y técnicas de aceleración por hardware, como el empleo de
unidades de procesamiento gráfico (GPU) y arquitecturas de alto rendimiento (HPC).

En el Capítulo 5 se presenta una posible implementación de un programa de dinámica
molecular, exponiendo un pseudo-algoritmo. Este capítulo permite ilustrar de forma
concreta los aspectos técnicos tratados en los anteriores.

En el Capítulo 6 se exploran algunas de las principales aplicaciones de la dinámica
molecular, con especial atención a su uso en biología computacional, simulación de pro-
teínas y diseño de fármacos. Se destaca cómo la MD ha contribuido significativamente
a avances científicos y tecnológicos.

Finalmente, el Capítulo 7 aborda las tendencias actuales y futuras del campo. Se discute
la integración de la inteligencia artificial y el aprendizaje automático en la mejora de
potenciales y análisis de resultados, así como los enfoques híbridos que combinan
dinámica molecular clásica con métodos cuánticos y redes neuronales.

A lo largo del documento, se verá reflejado el carácter interdisciplinar de la dinámica
molecular, combinando física, química, matemáticas e informática con el fin de afrontar
problemas complejos en ciencia e ingeniería.
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Planificación y Presupuesto

La planificación de este proyecto se ha organizado dividiendo el trabajo en diferentes tareas,
las cuales se han distribuido a lo largo de las semanas de duración del proyecto. Para
mejorar la claridad, dicha planificación se ha representado mediante un diagrama de Gantt,
permitiendo así visualizar las dependencias entre tareas y asegurar una gestión eficiente del
tiempo.

Figura 2.: Diagrama de Gantt del proyecto

En el diagrama se puede observar cómo se han planificado y distribuido las distintas tareas
del proyecto a lo largo de 22 semanas. En primer lugar, se lleva a cabo un estudio general de
los objetivos del proyecto y, a continuación, se realiza una revisión bibliográfica relacionada
con dichos objetivos.

Luego, se estudian las bases teóricas de la dinámica molecular, profundizando en la mo-
delización, modelos de interacción y representación de sistemas moleculares. Estas tareas
se extienden, aproximadamente, hasta la semana 9, y sirven como base para los siguientes
bloques del proyecto.

Seguidamente, se introduce la etapa en la que se invierte más tiempo: el estudio de los
algoritmos empleados en dinámica molecular. Esta fase se desarrolla durante 4 semanas,
diviendo su contenido en el análisis de los métodos de integración utilizados, los mecanismos
de control de temperatura y presión, los algoritmos de optimización y una revisión de las
simulaciones paralelas y el uso de aceleración por hardware.

Entre las semanas 14 y 17 se diseña un algoritmo para realizar una simulación de dinámica
molecular, incluyendo el desarrollo del pseudo-código correspondiente y un análisis de las
unidades físicas utilizadas en dichas simulaciones.

Finalmente, se lleva a cabo un estudio de las aplicaciones de la dinámica molecular, así
como de los desafíos actuales y futuras posibles líneas de investigación. Tras dicho estudio,
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Planificación y Presupuesto

se completan las secciones restantes de la memoria y se realiza una revisión general del
proyecto.

Esta planificación organizada ayuda a que el proyecto avance de forma clara y ordenada,
permitiendo ir incorporando conocimientos de forma progresiva.

En cuanto al presupuesto del proyecto, se tienen en cuenta los siguientes factores:

Coste de personal: El proyecto ha sido desarrollado por una única persona, asumiendo
el rol de ingeniero informático junior. Considerando un salario bruto medio de 2.250€
mensuales y una duración estimada del proyecto de 5 meses, el coste total de personal
asciende a 11.250€.

Coste de Hardware y Software: El único coste a considerar en este caso es el del
equipo empleado para desarrollar el proyecto, un MSI GF63 Thin 10SCXR, cuyo precio
aproximado es de 800€.

Por tanto, el coste total del proyecto es de, aproximadamente, 12.050€.
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1. Contexto histórico

El desarrollo de la dinámica molecular ha estado ligado al avance de la computación y la
física teórica. Las primeras simulaciones se dieron en el año 1957, cuando Alder y Wainw-
right simularon un gas de esferas duras, demostrando la existencia de transiciones de fase
mediante métodos computacionales [3]. Seguidamente, en el año 1964, Rahman realizó la
primera simulación con un potencial de Lennard-Jones, modelando el comportamiento del
argón líquido [4].

En los años 70 se introdujeron los primeros métodos de integración numérica, como el
algoritmo de Verlet [5], que permitió cálculos más precisos y estables. Con ello, la dinámica
molecular se empezó a aplicar en sólidos, líquidos y sistemas biológicos en los años 1976-
1979. Luego, en el año 1985, Car y Parrinello desarrollaron la dinámica molecular ab initio,
integrando métodos cuánticos en la simulación clásica [6]. Dicho método es útil si se busca
comparar directamente los resultados de la simulación con mediciones experimentales en
materiales específicos, sin embargo, tiene un gran costo computacional. Por ello, para lograr
un equilibrio entre precisión y eficiencia computacional, nos centraremos en la dinámica
molecular clásica, adecuada para el análisis de fenómenos generales y la comparación de
diferentes teorías, siempre que el modelo utilizado represente correctamente los principios
físicos esenciales del sistema en estudio.

En la década de 1990 y principios de los 2000, la MD se convirtió en una herramienta
fundamental para la simulación de proteínas y ADN, impulsando avances en biomedicina
y el desarrollo de fármacos. A partir de 2010, la incorporación de la computación de alto
rendimiento (HPC) y los aceleradores GPU ha revolucionado el campo, permitiendo la simu-
lación de sistemas con millones de átomos y reduciendo drásticamente los tiempos de cálculo.
Mientras que una simulación de 10 nanosegundos solía requerir aproximadamente una se-
mana, ahora puede completarse en tan solo 12 horas, lo que ha posibilitado simulaciones
más precisas y extendidas hasta escalas del orden de los microsegundos.

Debido al gran impacto que ha tenido la dinámica molecular, siendo clave en proyectos
galardonados con el Premio Nobel de Química, como el de Karplus, Levitt y Warshel en
2013 “for the development of multiscale models for complex chemical systems”, hoy en día se están
integrando la inteligencia artificial y el aprendizaje automático con el objetivo de mejorar la
precisión de los potenciales de interacción, además de explorar nuevos enfoques híbridos,
combinando MD con métodos cuánticos y redes neuronales.
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2. Fundamentos de Dinámica Molecular

Para comprender el funcionamiento de la dinámica molecular y los algoritmos presentados
en este trabajo, es fundamental conocer sus principios básicos. En este capítulo, se introducen
los conceptos esenciales que sustentan la dinámica molecular.

2.1. Principios de la mecánica clásica
La dinámica molecular se fundamenta en la mecánica clásica, una rama de la física desarro-
llada principalmente por Isaac Newton en el siglo XVII, que estudia el movimiento de los
cuerpos bajo la acción de fuerzas. Su formulación se apoya en las leyes de Newton [7], así
como en los principios de conservación de la energía y del momento, y en las ecuaciones de
movimiento que rigen la evolución de un sistema en el tiempo.

2.1.1. Leyes de Newton
En MD, cada átomo o molécula de un sistema se modela como una partícula clásica que se
mueve según las leyes de Newton, también conocidas como leyes del movimiento de Newton.
Por tanto, las tres leyes del movimiento de Newton son los fundamentos sobre los cuales se
basa la dinámica molecular:

Primera Ley de Newton

La Primera Ley de Newton, conocida como el Principio de Inercia, establece que un cuerpo
mantiene su estado de reposo o de movimiento rectilíneo uniforme a menos que una fuerza
externa actúe sobre él. En [8], Newton lo enuncia como “Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur
statum suum mutare”, lo que implica que un objeto no cambiará su estado de movimiento a
menos que una fuerza lo obligue a hacerlo. Aplicado al contexto de la dinámica molecular,
esto significa que, en ausencia de interacciones con otras partículas, los átomos seguirían
trayectorias rectilíneas con velocidad constante dentro de la simulación.

Segunda Ley de Newton

Dado que en la dinámica molecular clásica la masa de cada partícula se considera un paráme-
tro constante, la Segunda Ley de Newton, también conocida como el Principio Fundamental
de la Dinámica, establece que la aceleración de un cuerpo es proporcional a la fuerza neta
aplicada e inversamente proporcional a su masa. En palabras de Newton: “Mutationem motus
proportionalem esse vi motrici impressæ, & fieri secundum lineam rectam qua vis illa imprimitur.” [8].

Por tanto, la relación fundamental que rige el movimiento es:

F⃗ = m
dv⃗
dt

= m
d2⃗r
dt2 = m⃗a, (1)
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2. Fundamentos de Dinámica Molecular

donde:

F⃗ representa la fuerza aplicada sobre el cuerpo,

m es la masa del cuerpo,

v⃗ es la velocidad del cuerpo,

r⃗ es la posición del cuerpo,

a⃗ es la aceleración resultante del cuerpo.

Tercera Ley de Newton

La Tercera Ley de Newton, o Principio de Acción y Reacción, establece que si un cuerpo
ejerce una fuerza sobre otro, entonces el segundo cuerpo ejerce una fuerza de igual magnitud,
pero dirección opuesta, sobre el primero:

“Actioni contrariam semper & æqualem esse reactionem: sive corporum duorum actiones in se mutuo
semper esse æquales & in partes contrarias dirigi.” [8]

Es decir, sea F⃗ij la fuerza ejercida por un cuerpo i sobre un cuerpo j, y sea F⃗ji la fuerza
ejercida por el cuerpo j sobre el cuerpo i, entonces

F⃗ij = −F⃗ji. (2)

2.1.2. Principio de conservación de la energía
El principio de conservación de la energía establece que, en un sistema cerrado y aislado, la
energía no puede crearse ni destruirse, solo transformarse entre sus distintas formas [9]. En
el contexto de la MD, este principio es fundamental para comprender cómo se comportan
los sistemas a lo largo del tiempo.

En particular, este principio se manifiesta claramente en simulaciones que se realizan
bajo las condiciones del colectivo1 microcanónico (NVE) [10]. En este tipo de simulaciones,
el número de partículas (N), el volumen (V) y la energía total (E) permanecen constantes
durante toda la simulación, ya que el sistema está completamente aislado del entorno.

Sin embargo, en ocasiones resulta necesario simular condiciones más cercanas a la realidad,
lo que requiere introducir mecanismos de control externos, que regulen la temperatura o la
presión, por ejemplo. Con este fin, se recurre a los siguientes acomplamientos externos, que
permiten la entrada o salida de energía del sistema:

Termostato: regula la temperatura (T), permitiendo realizar simulaciones en el colectivo
canónico (NVT), donde se mantiene constante la temperatura media del sistema [11, 12].

Barostato: regula la presión (P). Combinado con un termostato, permite simulaciones
en el colectivo isóbaro-isotermo (NPT), en el que se conservan tanto la presión media
como la temperatura [13, 14].

1En mecánica estadística una colectividad representa todas las posibles configuraciones microscópicas de un
sistema bajo determinadas condiciones externas.
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2.1. Principios de la mecánica clásica

En estos casos, como se ha comentado, el sistema puede intercambiar energía con el exterior,
por lo que la energía interna total deja de ser constante. Por tanto, el balance energético
general se describe mediante la expresión:

UT = Ui + W + Q,

donde:

UT es la energía interna total del sistema,

Ui es la energía interna inicial del sistema,

W es el trabajo realizado por o sobre el sistema,

Q es el calor añadido o eliminado del sistema.

En la Tabla 2.1 se muestra un resumen de los colectivos estadísticos más empleados en
dinámica molecular, junto con las variables que permanecen constantes, los mecanismos de
control necesarios, y algunos ejemplos típicos de aplicación.

Colectivo Variables constantes Control externo Ejemplos de uso

NVE N, V, E Ninguno

Análisis energético puro, vali-
dación de integradores, estu-
dios teóricos sin influencia exter-
na [15]

NVT N, V, T Termostato

Procesos biológicos a tempera-
tura constante, simulaciones de
proteínas, análisis estructural en
equilibrio térmico [11]

NPT N, P, T Termostato y barostato

Estudio de fases (cristalización,
fusión), compresión, materiales
a presión ambiente, simulacio-
nes biomoleculares con entorno
acuoso [14]

Tabla 2.1.: Colectividades estadísticas comunes en dinámica molecular.

Por último, es importante señalar que la elección del colectivo depende del tipo de proceso
que se desea simular, de las propiedades físicas que se quieren medir y de la disponibilidad de
datos experimentales con los que contrastar los resultados. En la práctica, los colectivos NVT
y NPT son los más utilizados, ya que permiten replicar con mayor realismo las condiciones
experimentales habituales.

2.1.3. Introducción a las ecuaciones de movimiento de Newton
Las ecuaciones de movimiento constituyen el núcleo matemático de la dinámica molecular, ya
que, a partir de ellas, se obtiene la evolución de las posiciones y velocidades de las partículas
a lo largo del tiempo bajo la acción de fuerzas. Dichas ecuaciones derivan directamente de la
Segunda Ley de Newton (1).

En la práctica, debido a la complejidad que supone resolver estas ecuaciones de forma
analítica para sistemas que involucran un gran número de partículas, se recurre a métodos
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2. Fundamentos de Dinámica Molecular

numéricos, que permiten alcanzar soluciones aproximadas mediante la discretización tem-
poral. Estos métodos, fundamentales para el desarrollo de simulaciones computacionales en
dinámica molecular, se abordan en detalle en el Capítulo 4.
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3. Modelización en Dinámica Molecular

La modelización constituye una etapa fundamental en cualquier simulación de dinámica
molecular, ya que determina el grado de fidelidad con el que el sistema físico real será
representado computacionalmente. En esta sección se abordan los principales componentes
que conforman la modelización: los modelos de interacción, la representación de los sistemas
moleculares y las condiciones de contorno.

3.1. Modelos de interacción
Los sistemas están compuestos por partículas (átomos, iones o moléculas), que interaccionan
entre sí mediante funciones matemáticas llamadas potenciales de interacción, las cuales están
diseñadas para aproximar fuerzas físicas entre las partículas. Estos potenciales describen
cómo varía la energía potencial en función de la distancia entre las partículas. Las fuerzas se
obtienen a partir de dichos potenciales mediante la siguiente expresión matemática:

F⃗ij = −∇V(rij), (3)

donde:

F⃗ij representa la fuerza ejercida por un cuerpo i sobre un cuerpo j,

V(rij) es el valor del potencial de interacción según la distancia entre los cuerpos i y j.

3.1.1. Campos de fuerza
Un campo de fuerza agrupa los distintos potenciales de interacción presentes en un sistema
con el objetivo de describir todas las fuerzas internas y externas del mismo. Estas fuerzas se
dividen, en general, en dos categorías: interacciones de corto alcance e interacciones de largo
alcance.

Lennard-Jones

Las fuerzas de Van der Waals [16] son aquellas que se producen entre átomos y moléculas.
Tienen carácter atractivo y repulsivo. Las móleculas y átomos se atraen hasta cierta distancia,
pero si se acercan demasiado, se repelen. El potencial más comúnmente usado para modelar
dichas interacciones es el potencial de Lennard-Jones. Este potencial capta dos contribuciones
principales: una repulsiva a distancias muy cortas y otra atractiva a distancias intermedias.
Su forma típica es:

VLJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

, (4)

donde:

ϵ representa la profundidad del pozo de potencial,
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3. Modelización en Dinámica Molecular

σ representa el diámetro efectivo (VLJ(σ) = 0),

r es la distancia entre partículas.

Se denomina profundidad del pozo de potencial al valor ϵ, pues representa la energía
mínima del potencial, donde la atracción entre partículas es máxima. Con el objetivo de
calcular a qué distancia interatómica se alcanza dicha energía mínima, se iguala la derivada
del potencial a cero:

dVLJ(r)
dr

= 0 ⇐⇒ 4ϵ

[
−12 · σ12

r13 + 6 · σ6

r7

]
= 0

⇐⇒ −12 · σ12

r13 + 6 · σ6

r7 = 0.

Despejando r, se obtiene:
r = 21/6σ = rmin.

Por otro lado, se verifica que:

VLJ(r) = 0 ⇐⇒
(σ

r

)12
=
(σ

r

)6
⇐⇒ r = σ.

En la Figura 3 se pueden observar estos parámetros, representados gráficamente sobre el
potencial de Lennard-Jones.

σ rmin

−ε

r

VLJ
Zona de repulsión (r < rmin)
Zona de atracción (r > rmin)

VLJ(r)

Figura 3.: Representación del potencial de Lennard-Jones.

Potenciales electrostáticos

Las interacciones electrostáticas se modelan mediante la ley de Coulomb, que define la fuerza
entre dos cargas puntuales mediante la siguiente ecuación:

VCoulomb(r) =
Q1Q2

4πϵ0ϵrr
,

donde:

Q1 y Q2 representan las cargas,
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3.1. Modelos de interacción

ϵ0 es la permitividad del vacío (≈ 8.854 · 10−12 C2

N ·m2 ),

ϵr representa la permitividad relativa del medio,

r es la distancia entre cargas.

En muchas simulaciones de dinámica molecular se asume que las interacciones se produ-
cen en el vacío, tomando ϵr = 1.

Estas interacciones, al tener un alcance teóricamente infinito (no se anulan completamente
a ninguna distancia finita), requieren tratamientos computacionales especializados, como el
método de Ewald [15] o la técnica de mallas de partículas (PME, Particle-Mesh Ewald) [17],
que permiten mantener la eficiencia sin comprometer la precisión.

Campos de fuerza biomoleculares

Uno de los enfoques más utilizados para representar la energía potencial en sistemas bioló-
gicos es el uso de funciones empíricas definidas por campos de fuerza como AMBER [18] o
CHARMM [19]. En estos modelos, además de las interacciones entre moléculas, se modelan
también las interacciones entre átomos dentro de una misma molécula (ver Sección 5.4). Esto
es especialmente necesario en moléculas con muchos grados de libertad internos. La forma
general del potencial total viene dada por:

Vtotal = Venlace + Vángulo + Vtorsión + VLJ + VCoulomb =

= ∑
enlaces

kb(r− r0)
2 + ∑

ángulos
kθ(θ − θ0)

2 + ∑
torsiones

Vn

2
[1 + cos(nϕ− γ)]+

+ ∑
i<j

4ϵij

(σij

rij

)12

−
(

σij

rij

)6
+ ∑

i<j

QiQj

4πϵ0ϵrrij
,

donde, además de los parámetros ya presentados, se tienen:

kb: representa la constante de fuerza del enlace,

r: es la distancia actual entre los átomos considerados,

r0: es la distancia de equilibrio del enlace,

kθ : representa la constante de fuerza angular,

θ: es el ángulo actual entre los átomos considerados,

θ0: es el ángulo de equilibrio,

Vn: representa la barrera de torsión,

n: es la periodicidad de la función,

ϕ: es el ángulo de torsión actual entre los átomos considerados,

γ: representa la fase de desplazamiento.
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3. Modelización en Dinámica Molecular

El ajuste de las constantes presentadas puede plantearse como un problema de optimiza-
ción, donde se busca minimizar la diferencia entre los valores obtenidos en la simulación y los
de referencia. El proceso de parametrización se basa en una combinación de datos experimen-
tales y cálculos de estructura electrónica, garazantizando un equilibrio entre precisión física
y viabilidad computacional. De esta forma, constituyen uno de los pilares fundamentales
para asegurar la fiabilidad de la simulación.

Este tipo de representación permite modelar con gran precisión tanto las interacciones
internas de una molécula (enlaces covalentes, ángulos de enlace y torsiones), representadas en
la Figura 4, como las interacciones no enlazantes (fuerzas de Van der Waals y electrostáticas)
entre diferentes moléculas o partes de la misma.

Figura 4.: Representación geométrica de una molécula en cadena simple, que ilustra la defin-
cición de la distancia interatómica r23, el ángulo de flexión o ángulo de enlace θ234,
y el ángulo de torsión ϕ1234 [2].

Como ejemplo ilustrativo, en la práctica existen distintos modelos para representar, por
ejemplo, una molécula de agua. La elección entre estos modelos depende del nivel de preci-
sión y coste computacional que se desee.

En primer lugar, se tiene el modelo TIP3P, donde la distancia de enlace O–H es de rOH =
0.9572 Å, el ángulo H–O–H es de θ = 104.52◦, y se utilizan interacciones de tipo Lennard-
Jones sobre el oxígeno junto con interacciones electrostáticas entre los tres átomos [20].

Por otro lado, el modelo TIP4P mejora la representación del agua desplazando la carga
negativa desde el átomo de oxígeno hacia un punto virtual sin masa (denominado massless
site o sitio M), que se coloca a una distancia de 0.15 Å del átomo de oxígeno sobre el
bisector del ángulo H-O-H. Esta modificación permite obtener mejores resultados a la hora
de predecir propiedades físicas como la densidad del agua o su calor de vaporización, pero
el coste computacional aumenta [20].

Finalmente, el modelo TIP5P va un paso más allá incorporando dos puntos virtuales
adicionales que representan los pares de electrones no enlazantes del oxígeno, que se sitúan
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3.2. Representación de sistemas moleculares

a 0.7 Å del oxígeno, con un ángulo O–L–O de 109.47◦ (ver Figura 5). Esto da lugar a una
geometría más cercana a la real que mejora la descripción del comportamiento del agua en
estado líquido, permitiendo obtener estimaciones más precisas de sus propiedades térmicas
y estructurales anómalas. Sin embargo, el coste computacional aumenta aún más [20].

Los modelos planteados son rígidos, es decir, que las distancias de enlace y los ángulos
se mantienen constantes durante la simulación. Como consecuencia, no se incluyen térmi-
nos de torsión en el cálculo del potencial total. Esta simplificación no solo reduce el coste
computacional, sino que también ha demostrado ser suficiente para reproducir propiedades
estructurales y termodinámicas del agua cuando los parámetros están correctamente ajusta-
dos. Sin embargo, en moléculas más complejas, como proteínas, sí se incorpora el término
ϕ [20].

Figura 5.: Representación de una molécula de agua según el modelo TIP5P [20].

3.2. Representación de sistemas moleculares

3.2.1. Modelos atomísticos vs coarse-graining
El nivel de detalle con el que se representa un sistema molecular depende del objetivo de
la simulación y de los recursos computacionales a disposición. Existen principalmente dos
enfoques:

Modelos atomísticos

En primer lugar, los modelos atomísticos representan cada átomo de forma explícita, inclu-
yendo su masa, carga, tipo de enlace y posición. Esta aproximación es la más común y es
esencial en estudios en los que se requiere precisión en los detalles estructurales y dinámicos,
como reacciones químicas o interacciones específicas entre proteínas y ligandos. Aunque
proporcionan una gran precisión, su coste computacional es elevado, ya que el número de
grados de libertad crece linealmente con el número de átomos.
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Coarse-graining

Por otro lado, los modelos coarse-grained (CG) simplifican el sistema representando grupos
de átomos como una única partícula efectiva. De esta forma, se reduce considerablemente el
número de grados de libertad del sistema, permitiendo así estudiar sistemas más grandes y
durante escalas temporales mucho más largas, haciendo posible el estudio de procesos como
el plegamiento de proteínas. A pesar de perder resolución, este tipo de modelización es
adecuado cuando se busca un comportamiento general en lugar de precisión local, ya que su
coste computacional es menor, introduciendo así un trade-off entre eficiencia computacional
y precisión.

Este tipo de modelización requiere asegurar que el modelo conserva las propiedades
macroscópicas relevantes del sistema original, representando así una frontera entre la física
estadística, el modelado matemático y la simulación computacional.

Para llevar a cabo ambas representaciones, es habitual hacer uso de herramientas de pre-
procesado como tleap (en AMBER) o psfgen (en NAMD [21]), que permiten construir y
modificar estructuras moleculares, definir la topología del sistema, generar las coordenadas
iniciales y asignar los parámetros del campo de fuerza. Estas herramientas preparan los
archivos de entrada necesarios para ejecutar simulaciones de dinámica molecular. Puede
encontrarse más información sobre sus usos en [22] y [23], respectivamente.

3.2.2. Cajas de simulación
Tras elegir los modelos de interacción y el nivel de resolución , se debe decidir cómo orga-
nizar el sistema dentro del espacio simulado. Esta representación se ve reflejada tanto en la
validez física de la simulación como en la viabilidad computacional.

Para ello, las moléculas que conforman el sistema se encierran en una caja de simulación,
que se comporta como un contenedor tridimensional. Dicha caja puede adoptar distintas geo-
metrías en función de la naturaleza del sistema y de las condiciones que se deseen reproducir.

Por otro lado, además de las moléculas de interés, se suelen incluir un número determinado
de moléculas de solvente, como puede ser el agua, con el fin de imitar el entorno biológico o
experimental.

3.2.3. Condiciones de contorno
Las condiciones de contorno definen cómo se comportan las moléculas cuando alcanzan los
límites del sistema simulado. Para evitar efectos de borde no físicos, como acumulación en
las paredes o vacío exterior, se imponen ciertas condiciones de contorno:

Condiciones periódicas (Periodic Boundary Conditions, PBC)

La caja se replica infinitamente en todas las direcciones, de modo que cuando una partícula
sale por un lado, regresa por el lado opuesto (ver Figura 6), permitiendo así simular un
entorno infinito a partir de un número finito de partículas.
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3.2. Representación de sistemas moleculares

Figura 6.: PBC. A medida que una partícula sale de la caja de simulación, una imagen de la
partícula entra para reemplazarla [2].

Condiciones no periódicas

En este caso, se asume que el sistema está aislado y que los bordes representan límites físicos
reales. Por tanto, las partículas pueden escapar del sistema (condiciones de contorno abiertas)
o rebotar en los bordes (reflectantes). Estas condiciones se emplean en sistemas donde la
periodicidad no es deseable, como simulaciones de interfases, superficies o sistemas donde
el entorno exterior no se repite.

3.2.4. Métodos de truncamiento
En simulaciones de MD, es fundamental tratar eficientemente las interacciones entre partícu-
las con el fin de reducir el coste computacional. Dado que las interacciones de largo alcance
decrecen con la distancia, se introduce un radio de corte rc tal que V(rij) = 0 si rij > rc, para
dos átomos i, j. Esto permite al programa omitir el cálculo de fuerzas entre átomos alejados
más allá de esa distancia, ahorrando una cantidad significativa de cálculos.

No obstante, determinar en cada paso temporal qué partículas se encuentran dentro de
ese radio para todas las demás puede seguir siendo muy costoso. En efecto, en un sistema

compuesto por N partículas, se deben comprobar un total de
1
2

N(N − 1) pares posibles.
Para mejorar esta eficiencia, Verlet introdujo las llamadas listas de vecinos (o Verlet lists).
Estas listas mantienen un registro de las partículas que están dentro de un radio extendido
rv > rc, llamado radio de vecindad, alrededor de cada partícula (ver Figura 11 para una
representación del entorno de una partícula).

En el primer paso de la simulación, se construye la lista de vecinos de cada átomo, y en los
siguientes pasos solo se calculan las fuerzas de las parejas que figuran en dicha lista. Cada
cierto número de pasos, antes de que una pareja inicialmente fuera del radio de vecindad
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3. Modelización en Dinámica Molecular

pueda entrar en el radio de corte, la lista debe ser reconstruida para mantener la precisión
del modelo.

Figura 7.: Distintas etapas de la formación de la lista de Verlet. Se puede observar el radio
de corte (círculo sólido) y el radio de vecindad (círculo discontinuo). La lista ha de
ser reconstruida antes de que las partículas negras (inicialmente fuera de la lista)
entren en el radio de corte [2].
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En dinámica molecular, como ya se comentó en el Capítulo 2, el comportamiento de las
partículas que componen un sistema se determina mediante la resolución de un conjunto
de ecuaciones diferenciales ordinarias que derivan de (1). Estas ecuaciones describen la
evolución de las posiciones y velocidades de dichas partículas a lo largo del tiempo. Sin
embargo, ante la imposibilidad de resolverlas de forma analítica debido a la complejidad
de los sistemas estudiados y el gran número de grados de libertad implicados, se recurre
a algoritmos numéricos que permiten calcular la evolución de las partículas paso a paso,
obteniendo así una simulación del sistema.

4.1. Integración de ecuaciones de movimiento
Tomando como punto de partida las ecuaciones (1) y (3), la base matemática de toda simu-
lación de dinámica molecular viene dada por la integración de las siguientes ecuaciones
diferenciales:

mi
d2r⃗i
dt2 = F⃗i = −∇r⃗i

V(r⃗1, . . . , r⃗N).

La elección de un método de integración adecuado resulta fundamental, ya que debe
garantizar la conservación de la energía, estabilidad numérica a largo plazo y un coste
computacional razonable.

Los métodos numéricos que se presentarán discretizan el tiempo en intervalos de tamaño
∆t, permitiendo así obtener una evolución aproximada de las trayectorias. Por ello, para
garantizar la estabilidad numérica a largo plazo, es necesario que el método sea capaz de
controlar los errores de redondeo y truncamiento a lo largo de la simulación. Si el tamaño
del paso temporal ∆t es demasiado grande, el error acumulado puede aumentar, provocando
inestabilidades, como explosiones de energía o trayectorias físicamente irreales.

Por tanto, la elección del parámetro ∆t es crucial, ya que debe ser lo suficientemente
pequeño como para capturar las dinámicas rápidas del sistema, como las vibraciones intra-
moleculares, pero lo bastante grande como para optimizar el tiempo de cálculo, pues a menor
valor de ∆t, mayor coste computacional.

En general, se asume que las aceleraciones (y, por tanto, las fuerzas) se mantienen aproxi-
madamente constantes durante cada paso temporal ∆t, lo que permite que los integradores
numéricos utilicen la fuerza calculada al inicio del paso para predecir la evolución del
sistema [24]. De esta forma, cuanto más ligeros sean los átomos, más rápidas serán sus
oscilaciones, y menor deberá ser el paso ∆t para evitar errores significativos.

En particular, el límite superior para ∆t está determinado por las frecuencias más altas del
sistema, normalmente asociadas a vibraciones intramoleculares rápidas. Una práctica común
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consiste en seleccionar ∆t al menos 10 veces menor que el período de oscilación más corto del
sistema [24]. Por ejemplo, para una vibración de período τ ≈ 10−14 s, se recomienda tomar
∆t ≤ 10−15 s = 1 femtosegundo (fs). Superar este umbral puede provocar un crecimiento
exponencial de los errores numéricos.

A pesar de ello, existe una cierta tensión entre la necesidad de utilizar pasos de tiempo pe-
queños para asegurar la precisión numérica y el deseo de alcanzar escalas temporales largas,
típicas de muchos procesos microscópicos. Una simulación de 1 microsegundo con ∆t = 1
fs requiere del orden de 106 ciclos de integración, lo que implica un coste computacional
considerable, ya que en cada paso es necesario recalcular todas las fuerzas. Por ello, se busca
elegir el mayor valor de ∆t posible que mantenga la estabilidad numérica y la conservación
de la energía [24].

Además, aunque se utilicen representaciones de alta precisión (por ejemplo, doble precisión
en punto flotante), los errores de redondeo se acumulan gradualmente a lo largo de la
trayectoria, especialmente si se ejecutan simulaciones con millones de pasos. Por ello, la
elección adecuada del integrador y del tamaño del paso de integración es fundamental para
garantizar la estabilidad y precisión global de la simulación a largo plazo.

Propiedades geométricas: métodos simplécticos

La dinámica molecular se enmarca dentro del contexto de los sistemas hamiltonianos [25], los
cuales describen la evolución temporal de un sistema mediante ecuaciones que dependen de
las coordenadas y los momentos generalizados. Estas ecuaciones derivan de un Hamiltoniano
H(⃗r, p⃗), que representa la energía total del sistema:

H(⃗r, p⃗) =
N

∑
i=i

∥ p⃗i∥2

2mi
+ V (⃗r1, . . . , r⃗N),

y cuya evolución temporal se determina por:


d⃗ri
dt

=
∂H
∂ p⃗i

=
p⃗i
mi

= v⃗i,

dp⃗i
dt

= −∂H
∂⃗ri

= F⃗i,

donde:

H(⃗r, p⃗) es la energía total del sistema,

r⃗ representa las coordenadas generalizadas2,

p⃗ = m · v⃗ son los momentos conjugados.

2En este trabajo, por simplicidad, se considera únicamente el movimiento traslacional de las partículas, es decir,
r⃗i corresponde a las coordenadas espaciales del centro de masa de la partícula i. Sin embargo, en dinámica
molecular también pueden intervenir grados de libertad rotacionales y vibracionales, especialmente relevantes
en moléculas poliatómicas o sistemas rígidos.
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Una propiedad fundamental de estas ecuaciones es su naturaleza simpléctica, lo que im-
plica que las trayectorias del sistema conservan el volumen en el espacio de fases, según el
teorema de Liouville [25]. Es decir, aunque las configuraciones del sistema pueden evolucio-
nar deformando la forma de un volumen en el espacio de fases, el volumen total ocupado
permanece constante [24]. Esta característica tiene importantes consecuencias en el ámbito
numérico. Así, un algoritmo de integración de las ecuaciones de Hamilton debe cumplir:

Aunque se produzcan pequeñas oscilaciones en la energía o el momento, los errores no
se acumulen sistemáticamente, permitiendo conservar estos invariantes a largo plazo.

Garantizar la estabilidad estructural del sistema en simulaciones prolongadas.

Los integradores simplécticos están diseñados para respetar estas propiedades geométri-
cas, imitando el comportamiento del flujo hamiltoniano exacto, haciéndolos especialmente
adecuados para simular sistemas conservativos y estudiar propiedades de equilibrio. De
hecho, se ha demostrado que estos métodos pueden interpretarse como soluciones exactas
de un sistema hamiltoniano modificado, ligeramente perturbado, cuya forma depende del
paso de integración utilizado [26]. Esta característica explica su capacidad para conservar
invariantes del sistema, como la energía o el volumen de fase, a lo largo de millones de pasos.

Para ilustrar las diferencias entre integradores simplécticos y no simplécticos, a continua-
ción se comparan los resultados obtenidos al simular un oscilador armónico utilizando los
métodos de Euler [27] (ver Figura 8) y Verlet (ver Figura 9). En todos los casos, se considera
una partícula sometida a una fuerza lineal del tipo F⃗ = −k⃗r, donde k es la constante de
elasticidad.

Figura 8.: Simulación con el método de Euler (no simpléctico). (a) Evolución temporal de la
posición; (b) Trayectoria en el espacio de fases. Se observa una trayectoria espiral
divergente, que indica una ganancia artificial de energía.
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Figura 9.: Simulación con el método de Verlet (simpléctico). (a) Evolución temporal de la
posición; (b) Trayectoria en el espacio de fases. La energía se conserva a largo plazo
y el sistema describe una órbita cerrada.

Sin embargo, a pesar de sus ventajas, los integradores simplécticos no son incondicional-
mente estables, pues, como se ha comentado anteriormente, existe un límite superior para el
tamaño del paso temporal ∆t más allá del cual las simulaciones pueden volverse inestables o
generar trayectorias inconsistentes con la física del sistema. Esto puede observarse claramen-
te en la Figura 10, al analizar el comportamiento del algoritmo de Verlet frente a diferentes
valores de ∆t. Para pasos suficientemente pequeños, el método conserva su estabilidad y
mantiene las propiedades geométricas del sistema. Sin embargo, al superar el umbral crítico,
el integrador pierde estabilidad y deja de reflejar adecuadamente la dinámica del sistema.

Figura 10.: Evolución temporal de la posición con el algoritmo de Verlet para dos tamaños
de paso temporal. (a) ∆t = 0.02, donde el algoritmo es estable; (b) ∆t = 2, donde
es inestable.

Por tanto, aunque los integradores simplécticos tienen excelentes propiedades de conser-
vación de invariantes geométricos, es fundamental elegir adecuadamente el paso de tiempo
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para garantizar su estabilidad numérica.

Por otro lado, esta propiedad está estrechamente relacionada con la reversibilidad temporal,
pues un integrador simpléctico reversible es capaz de reproducir la trayectoria inversa exacta
al invertir los momentos (en ausencia de errores de redondeo). Este comportamiento refleja
fielmente la simetría del flujo hamiltoniano, y contribuye a la fiabilidad del método [26].

A continuación se presentan algunos de los algoritmos simplécticos reversibles más utiliza-
dos en simulaciones de MD, debido a su equilibrio entre eficiencia, precisión y simplicidad.

4.1.1. Algoritmo de Verlet
El algoritmo de Verlet constituye la base de muchos de los métodos más utilizados en
dinámica molecular, destacando por su simplicidad y por sus excelentes propiedades de
conservación de la energía [15]. Su formulación matemática se apoya en un desarrollo en
serie de Taylor, mediante la cual se aproxima la posición de una partícula en los instantes
t + ∆t y t− ∆t, a partir de su valor en t. Esta simetría temporal lo convierte en un método
reversible en el tiempo [26].

En primer lugar, se desarrolla r⃗i(t + ∆t) en serie de Taylor alrededor de t:

r⃗i(t + ∆t) =
∞

∑
n=0

r⃗i
(n)(t)
n!

(∆t)n = r⃗i(t) + v⃗i(t)∆t +
1
2

a⃗i(t)∆t2 +
1
6

˙⃗ai(t)∆t3 +O(∆t4). (5)

Análogamente, se obtiene el desarrollo hacia atrás:

r⃗i(t− ∆t) =
∞

∑
n=0

r⃗i
(n)(t)
n!

(−∆t)n = r⃗i(t)− v⃗i(t)∆t +
1
2

a⃗i(t)∆t2 − 1
6

˙⃗ai(t)∆t3 +O(∆t4). (6)

Finalmente, combinando (5) y (6), se cancelan los términos impares y se obtiene la expre-
sión del algoritmo de Verlet: s

r⃗i(t + ∆t) = 2⃗ri(t)− r⃗i(t− ∆t) +
∆t2

mi
Fi(t). (7)

La aproximación obtenida presenta un error local de orden O(∆t4), luego, al tratarse de
una ecuación diferencial de segundo orden, se tiene un error global de orden O(∆t2). Por
tanto, el algoritmo de Verlet se convierte en una herramienta muy precisa.

Además, el algoritmo de Verlet presenta una excelente estabilidad numérica. Al ser un
integrador simpléctico, no conserva exactamente la energía total en cada paso, pero las fluc-
tuaciones que introduce permanecen acotadas y no se acumulan de forma sistemática. Esta
propiedad resulta especialmente importante en simulaciones realizadas bajo condiciones del
conjunto microcanónico (NVE), donde la conservación de la energía es un criterio fundamen-
tal [28].
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Una de las limitaciones del algoritmo de Verlet es que no actualiza las velocidades de las
partículas de forma explícita. No obstante, si se desea, estas se pueden estimar a partir de
las posiciones en distintos pasos de tiempo, aprovechando la simetría del método. Para ello,
restando las ecuaciones (5) y (6), se obtiene:

r⃗i(t + ∆t)− r⃗i(t− ∆t) = 2⃗vi(t)∆t +O(∆t3).

Despejando la velocidad:

v⃗i(t) =
r⃗i(t + ∆t)− r⃗i(t− ∆t)

2∆t
+O(∆t2). (8)

Proporcionando así una estimación de las velocidades con un error local de orden O(∆t2),
lo cual resulta suficientemente preciso para la mayoría de aplicaciones prácticas, como el
cálculo de energía cinética o temperatura en simulaciones bajo condiciones del colectivo
microcanónico.

4.1.2. Velocity-Verlet

El algoritmo Velocity-Verlet es una de las variantes más populares del método de Verlet, ya
que calcula de forma explícita, además de la posición, la velocidad de la partícula en cada
paso de tiempo, lo que resulta muy útil para calcular propiedades como la energía cinética o
la temperatura [15, 29].

Al igual que el algoritmo de Verlet clásico, este algoritmo también se basa en un desarrollo
en serie de Taylor de las posiciones y velocidades, convirtiéndose así en un método reversible
en el tiempo [26].

El desarrollo en serie de Taylor de la velocidad hacia adelante nos da:

v⃗i(t + ∆t) = v⃗i(t) + a⃗i(t)∆t +O(∆t2).

Sin embargo, dicha expresión solo utiliza la aceleración actual, ignorando la que la partícula
alcanzará durante el desplazamiento. Por tanto, en busca de obtener una mayor precisión
y simetría temporal, se calcula la velocidad en dos pasos: una mitad antes de actualizar la
posición, y otra mitad después de calcular la nueva aceleración [30].

1. Primero se actualiza la velocidad a mitad de paso:

v⃗i

(
t +

∆t
2

)
= v⃗i(t) +

1
2

a⃗i(t)∆t +O(∆t2). (9)

2. Seguidamente, tomando (9), se actualiza la posición completa:

r⃗i(t + ∆t) = r⃗i(t) + v⃗i(t)∆t +
1
2

a⃗i(t)∆t2 +O(∆t3) = r⃗i(t) + v⃗i

(
t +

∆t
2

)
∆t +O(∆t3).
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3. Tras actualizar la posición, se recalcula la aceleración en el nuevo tiempo t + ∆t a partir
de (1):

a⃗i(t + ∆t) =
1

mi
F⃗i(t + ∆t).

4. Finalmente, se completa la otra mitad de la velocidad:

v⃗i(t + ∆t) = v⃗i

(
t +

∆t
2

)
+

1
2

a⃗i(t + ∆t)∆t +O(∆t3).

Obteniendo así las expresiones del algoritmo Velocity-Verlet:

v⃗i

(
t +

∆t
2

)
= v⃗i(t) +

1
2

a⃗i(t)∆t,

r⃗i(t + ∆t) = r⃗i(t) + v⃗i

(
t +

∆t
2

)
∆t,

v⃗i(t + ∆t) = v⃗i

(
t +

∆t
2

)
+

1
2

a⃗i(t + ∆t)∆t.

Se obtiene un error local de orden O(∆t3) tanto en el cálculo de la posición como de
velocidad, luego, al tratarse de ecuaciones diferenciales de primer orden, presenta un error
global de orden O(∆t2) en ambos cálculos.

Además, al igual que el algoritmo de Verlet, el algoritmo Velocity-Verlet muestra una
excelente estabilidad numérica para sistemas conservativos.

Por tanto, el algoritmo Velocity-Verlet representa un perfecto equilibrio entre precisión nu-
mérica, fidelidad física y eficiencia computacional, haciéndolo así uno de los algoritmos más
empleados en simulaciones de dinámica molecular, destacando sobre todo en simulaciones
biomoleculares [30].

4.1.3. Leap-Frog
El método Leap-Frog, o “salto de rana”, debe su nombre al hecho de que las posiciones
y velocidades se actualizan en pasos de tiempo intercalados. Aunque esta característica
introduce cierta dificultad a la hora de calcular magnitudes como la energía cinética o la
temperatura en tiempos enteros, su simpleza y eficiencia lo convierten en una opción ade-
cuada para muchas simulaciones, especialmente en combinación con algunos controladores
de temperatura [15, 29].

Para obtener la expresión de la velocidad, se parte del desarrollo en serie de Taylor centrada

en t para los instantes t± ∆t
2

, conviertiéndose así en un método reversible en el tiempo [26]:

v⃗i

(
t +

∆t
2

)
= v⃗i(t) +

1
2

a⃗i(t)∆t +
1
8

˙⃗ai(t)∆t2 +O(∆t3),

v⃗i

(
t− ∆t

2

)
= v⃗i(t)−

1
2

a⃗i(t)∆t +
1
8

˙⃗ai(t)∆t2 +O(∆t3).
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Restando ambas expresiones y despejando, se obtiene:

v⃗i

(
t +

∆t
2

)
= v⃗i

(
t− ∆t

2

)
+ a⃗i(t)∆t. (10)

Una vez conocida la velocidad en el instante t +
∆t
2

, se actualiza la posición con:

r⃗i(t + ∆t) = r⃗i(t) + v⃗i

(
t +

∆t
2

)
∆t. (11)

Las ecuaciones (10) y (11) constituyen el núcleo del algoritmo Leap-Frog, con un error local
de orden O(∆t3) tanto en posición como en velocidad.

En caso de que se desee obtener la velocidad en un paso de tiempo completo t, se puede
aproximar mediante el promedio de las velocidades:

v⃗i(t) =
1
2

[
v⃗i

(
t− ∆t

2

)
+ v⃗i

(
t +

∆t
2

)]
.

Al igual que el algoritmo Velocity-Verlet, Leap-Frog presenta un error local de orden
O(∆t3) tanto en el cálculo de la posición como de velocidad, luego, al tratarse de ecuaciones
diferenciales de primer orden, presenta un error global de orden O(∆t2) en ambos cálculos.

Por otro lado, el algoritmo Leap-Frog, al ser simpléctico, también presenta una excelente
estabilidad numérica para sistemas conservativos.

Finalmente, una ventaja destacable del algoritmo Leap-Frog es que proporciona una forma
eficiente y estable de integrar las velocidades en pasos intermedios, lo cual puede resultar
útil en combinación con ciertos termostatos que requieren acceso frecuente a las velocidades
del sistema [28].

Conclusión

Los algoritmos de Verlet y sus variantes son ampliamente utilizados en MD debido a:

Su derivación simple (por desarrollo de Taylor).

Su reversibilidad temporal.

Su estructura simpléctica, que, para un valor adecuado de ∆t, garantiza estabilidad y
conservación del volumen en el espacio de fases.

Su bajo coste computacional, ya que solo requieren una evaluación de fuerzas por paso.

En la Tabla 4.1 se puede ver un resumen de las propiedades de los algoritmos introducidos.
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Algoritmo
numérico

Magnitud
Error local

de truncamiento
Error global

de truncamiento
Reversible Simpléctico

Verlet
r⃗ ∆t4 ∆t2

Sí Sí
v⃗ ∆t2 ∆t2

Velocity-Verlet
r⃗ ∆t3 ∆t2

Sí Sí
v⃗ ∆t3 ∆t2

Leap-Frog
r⃗ ∆t3 ∆t2

Sí Sí
v⃗ ∆t3 ∆t2

Tabla 4.1.: Propiedades del algoritmo de Verlet y de sus variantes.

4.2. Control de temperatura y presión
Las simulaciones de dinámica molecular no siempre se realizan bajo las condiciones del colec-
tivo microcanónico (NVE), es decir, en condiciones de energía constante. En la práctica, con
el fin de representar de forma realista las condiciones experimentales, suele ser necesario tra-
bajar bajo condiciones del colectivo canónico (NVT), manteniendo constante la temperatura,
o del isóbaro-isotermo (NPT), manteniendo constante tanto la presión como la temperatura.
Para ello, se introducen mecanismos de control externos como termostatos y barostatos, que
permiten acoplar el sistema a un baño térmico o barométrico, respectivamente [10, 15].

Desde un punto de vista físico-matemático, estos mecanimos modifican las ecuaciones de
movimiento del sistema, ya sea mediante la introducción de términos adicionales o mediante
un reescalado dinámico de las variables, en busca de establecer las condiciones deseadas.

La incorporación de termostatos y barostatos es necesaria porque, sin mecanismos de con-
trol, la temperatura y la presión del sistema pueden alejarse considerablemente de los valores
deseados, ya sea por fluctuaciones estadísticas o por el propio proceso de inicialización. Por
ejemplo, aplicando el teorema de equipartición de la energía para un sistema tridimensional
con N partículas se tiene que:

1
N

N

∑
i=1

1
2

mi∥v⃗i∥2 =
3
2

kBT ⇒ T =
1

3NkB

N

∑
i=1

mi∥v⃗i∥2 (K), (12)

donde:

mi es la masa de la partícula i,

v⃗i es la velocidad de la partícula i,

kB es la constante de Boltzmann (≈ 1.38065× 10−23 J/K),

T es la temperatura instantánea del sistema.

Por tanto, sin termostato, la temperatura del sistema puede derivar progresivamente de-
bido a errores numéricos acumulados, especialmente en simulaciones largas. Esto puede
provocar resultados físicamente incorrectos o inconsistentes con condiciones experimentales.
Por ejemplo, si se desea modelar una proteína a 300 K pero no se regula la temperatura,
la simulación puede desviarse de este valor, afectando a la estructura y la dinámica del
sistema [12, 31].
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Análogamente, la presión instantánea del sistema se puede estimar mediante la ecuación
virial de Clausius [32]:

P =
NkBT

V
+

1
3V

N

∑
i=1

r⃗i · F⃗i (Pa),

donde:

V es el volumen de la celda de simulación,

r⃗i es la posición de la partícula i,

F⃗i es la fuerza que actúa sobre ella.

Luego, sin un barostato que ajuste dinámicamente el volumen, la presión puede desviarse
considerablemente del valor deseado, lo cual afecta a propiedades dependientes del volumen,
como la densidad, estructura o energía libre del sistema. En muchos sistemas biológicos o de
materiales blandos, las propiedades estructurales dependen de la presión ambiental. Si esta
no se controla, se pierde la posibilidad de reproducir comportamientos físicos realistas [10].

4.2.1. Termostatos

Los termostatos permiten regular la temperatura del sistema durante la simulación, repro-
duciendo su interacción con un entorno térmico. Su uso es esencial en simulaciones bajo
condiciones del colectivo canónico (NVT), donde la temperatura se mantiene constante, con
el fin de asegurar un muestreo adecuado del espacio de fases [15, 24].

En este contexto, resulta deseable que las velocidades de las partículas muestren una
distribución estadística coherente con la distribución de Maxwell-Boltzmann, la cual surge
del tratamiento clásico del equilibrio térmico [15]. Esta distribución adopta la forma:

f (v) = 4π

(
m

2πkBT

)3/2
v2 exp

(
− mv2

2kBT

)
,

donde v = ∥v⃗∥. Esta expresión describe la probabilidad de encontrar una partícula con
velocidad v en un sistema en equilibrio térmico.

Sin embargo, la aplicabilidad de esta distribución no es universal. Su validez se restringe a
sistemas clásicos, en los que los efectos cuánticos pueden despreciarse, y que se encuentran
en equilibrio térmico. Además, presupone que las velocidades de las partículas no están
fuertemente correlacionadas entre sí, lo que se cumple típicamente en gases ideales o fluidos
diluidos. En sistemas densos como líquidos o sólidos, donde las interacciones entre partículas
son significativas y duraderas, pueden aparecer desviaciones locales respecto a la distribución
de Maxwell-Boltzmann. No obstante, en muchas simulaciones se observa que, en equilibrio
termodinámico, la distribución global de velocidades se aproxima razonablemente a la forma
predicha [33, 24].

Por tanto, un termostato eficaz no debe limitarse a mantener constante la energía cinética
media del sistema. En condiciones ideales, debe inducir una dinámica compatible con la ergo-
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4.2. Control de temperatura y presión

dicidad3 del mismo, permitiendo que, tras un número suficiente de pasos de simulación, las
velocidades de las partículas sigan estadísticamente la distribución de Maxwell-Boltzmann.
Esta propiedad es clave para asegurar que el sistema explore correctamente el espacio de
fases del colectivo estadístico correspondiente y, en consecuencia, que las propiedades ter-
modinámicas obtenidas sean físicamente representativas [15, 33].

En la práctica, sin embargo, no se alcanza un equilibrio térmico exacto, sino una apro-
ximación al mismo. Debido a la finitud del sistema, a los errores numéricos asociados al
método de integración y a la duración limitada de las simulaciones, lo que se observa es que
el sistema tiende hacia un estado estacionario en el que la distribución global de velocidades
se aproxima razonablemente a la forma predicha por Maxwell-Boltzmann [24, 33].

Comprobar que la distribución de velocidades generada en la simulación coincide con la
de Maxwell-Boltzmann constituye, por tanto, un criterio empírico útil para evaluar si el siste-
ma ha alcanzado un estado compatible con el equilibrio térmico. Si se observan desviaciones
significativas respecto a dicha distribución, esto puede indicar problemas de acoplamiento
térmico, un tiempo de relajación insuficiente o errores sistemáticos en la integración de las
ecuaciones de movimiento [24]. Por tanto, el uso adecuado de termostatos, junto con la vali-
dación estadística de los resultados obtenidos, es fundamental para garantizar la fiabilidad
de las simulaciones.

Existen distintos algoritmos:

Termostato de Berendsen

El termostato de Berendsen realiza un reescalado suave de las velocidades con el fin de ajustar
la temperatura del sistema hacia un valor objetivo [31]. Matemáticamente, las velocidades se
actualizan de la siguiente forma, asegurando que se cumple el teorema de equipartición:

v⃗i → λv⃗i, λ =

√
1 +

∆t
τT

(
T0

T
− 1
)

,

donde:

T representa la temperatura instantánea del sistema,

T0 es la temperatura objetivo,

τT es la constante de relajación, tiempo que tarda el sistema en alcanzar el nuevo estado
de equilibrio térmico.

Este método es sencillo, computacionalmente eficiente y estable [15]. Sin embargo, no
reproduce con exactitud la distribución de velocidades de Maxwell-Boltzmann, por lo que no
garantiza un correcto muestreo del colectivo canónico (NVT) [29]. Por ello, su uso se limita
habitualmente a etapas de equilibrado inicial (ver Tabla 5.2), y no a fases de producción (ver
Tabla 5.2) donde se requiera rigurosidad estadística.

3En este contexto, la ergodicidad implica que el promedio temporal de una magnitud a lo largo de una trayec-
toria del sistema coincide con su promedio en el colectivo estadístico, lo que permite obtener propiedades
termodinámicas mediante simulaciones.
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4. Algoritmos en Dinámica Molecular

Termostato de Andersen

El termostato de Andersen simula el acoplamiento del sistema con un baño térmico me-
diante colisiones aleatorias con partículas ficticias del entorno [34]. Para ello, en cada paso
de simulación, una partícula es seleccionada al azar con una probabilidad p y su veloci-
dad se reasigna a partir de una distribución de Maxwell-Boltzmann correspondiente a la
temperatura objetivo.

Este procedimiento se basa en la siguiente distribución de probabilidad para la velocidad
en una dimensión:

f (v) =
√

m
2πkBT0

exp
(
−m∥v⃗∥2

2kBT0

)
,

donde:

v⃗ es la velocidad instantánea de la partícula,

m es la masa de la partícula,

kB es la constante de Boltzmann,

T0 es la temperatura objetivo.

Luego la velocidad en tres dimensiones se genera como un vector cuyas componentes se
sortean de manera independiente según esta distribución.

Este método permite una correcta generación del colectivo canónico (NVT), ya que repro-
duce fielmente la distribución de velocidades térmicas [15, 29]. Sin embargo, al introducir
aleatoriedad, puede provocar una ruptura de la conservación del momento lineal total del
sistema, lo que puede ser un incoveniente en ciertos contextos físicos [28].

Termostato de Nosé-Hoover

El termostato de Nosé-Hoover extiende las ecuaciones de movimiento mediante la introduc-
ción de una variable dinámica adicional ξ que actúa como un “termostato virtual", permi-
tiendo el intercambio de energía entre el sistema y un baño térmico ficticio [11, 12].

La evolución temporal de las partículas en este caso viene dada por:

˙⃗vi =
1

mi
F⃗i − ξ v⃗i, ξ̇ =

1
Q

(
∑

i
mi∥v⃗i∥2 − 3NkBT0

)
,

donde:

v⃗i es la velocidad de la partícula i,

F⃗i es la fuerza que actúa sobre dicha partícula,

Q es un parámetro que representa el “momento de inercia térmico"del baño,

ξ es la variable de fricción generalizada que evoluciona con el sistema,

T0 es la temperatura objetivo,
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kB es la constante de Boltzmann,

N es el número de partículas.

Despejando en (12), se observa que, en equilibrio térmico, se cumple la siguiente relación:

∑
i

mi∥v⃗i∥2 = 3NkBT0 ⇒ ξ̇ = 0.

Por tanto, esta formulación permite generar correctamente el colectivo canónico (NVT),
asegurando tanto la reversibilidad temporal como el determinismo del sistema, a diferencia
de los métodos vistos anteriormente [15]. Además, mantiene la continuidad de las trayectorias
en el espacio de fases, lo que lo hace adecuado para el estudio de propiedades dinámicas [33].

No obstante, la elección del parámetro Q es crítica. Si se escoge un valor demasiado grande,
el sistema responde lentamente al termostato y tarda mucho en alcanzar la temperatura
deseada. Si, por el contrario, Q es muy pequeño, el sistema puede sufrir oscilaciones no
físicas o inestabilidades numéricas. Por ello, su correcta parametrización suele ajustarse
empíricamente o mediante técnicas de análisis de estabilidad [28].

4.2.2. Barostatos
Los barostatos modifican el volumen del sistema, ajustando dinámicamente el volumen de
la celda de simulación, permitiendo así simular un entorno con presión constante. Al igual
que con la temperatura, existen distintos métodos que abordan este objetivo:

Barostato de Berendsen

El barostato de Berendsen regula la presión del sistema mediante un reescalado suave y con-
tinuo del volumen hacia un valor objetivo, de forma análoga al termostato de Berendsen [31].

Este método se basa en una ecuación diferencial que modifica el volumen de la celda de
simulación según la diferencia entre la presión actual y la deseada:

dV
dt

=
1
τP

(P0 − P)V,

donde:

V representa el volumen del sistema,

P es la presión instantánea del sistema,

P0 representa la presión objetivo,

τP es la constante de relajación, tiempo que tarda el sistema en alcanzar el nuevo estado
de equilibrio.

Una vez actualizado el volumen del sistema, es necesario reescalar las posiciones de todas
las partículas para que se ajusten coherentemente al nuevo volumen. Para ello, se define un
factor de escala de longitud µ como:
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µ =

(
V(t + ∆t)

V(t)

)1/3

.

Entonces, las posiciones se reescalan mediante:

r⃗i → µ⃗ri.

Este reescalado preserva la estructura relativa del sistema al modificar las distancias inter-
atómicas en proporción al cambio de volumen. En simulaciones con condiciones periódicas
de contorno, también se debe aplicar dicho reescalado a las dimensiones de la celda periódica.

En algunas implementaciones, también puede aplicarse un reescalado a las velocidades
para mantener la coherencia dinámica, aunque en el barostato de Berendsen original esto no
es estrictamente necesario.

Esta técnica es computacionalmente eficiente y estable, y permite controlar la presión
media del sistema durante la simulación [15].

Sin embargo, al igual que ocurre con el termostato de Berendsen, este barostato no repro-
duce correctamente las fluctuaciones de volumen esperadas en un colectivo isóbaro-isotermo
(NPT), lo que limita su rigor estadístico [29]. Por ello, aunque es útil en fases iniciales de equi-
librado, no se recomienda su uso en la etapa de producción si se desean obtener propiedades
termodinámicas con precisión, como el volumen promedio o la densidad del sistema.

Barostato de Parrinello-Rahman

El barostato de Parrinello-Rahman extiende la idea de Nosé-Hoover para permitir que no
solo el volumen, sino también la forma de la celda de simulación, pueda cambiar de manera
dinámica. Para ello, introduce como variable dinámica la matriz de celda h, cuyas colum-
nas definen los vectores base del sistema simulado. Así, cada vector de la celda unitaria
puede evolucionar de forma independiente, lo que permite deformaciones tanto isotrópicas
como anisotrópicas [35]. Este enfoque resulta especialmente útil para simular materiales sóli-
dos, fases cristalinas o sistemas sometidos a tensiones externas, donde no basta con escalar
uniformemente el volumen, sino que también es necesario permitir cambios de forma.

Este método se basa en una formulación lagrangiana extendida, en la que se añaden grados
de libertad adicionales asociados a la dinámica de la celda simulada. El sistema evoluciona
bajo una dinámica acoplada entre las partículas y la matriz h, permitiendo así que la celda
cambie de tamaño y forma en respuesta a la presión y al tensor de esfuerzos internos [15].

Aunque su implementación es más compleja y computacionalmente costosa que la de otros
métodos, el barostato de Parrinello-Rahman permite una descripción precisa del colectivo
isóbaro-isotermo (NPT), reproduciendo adecuadamente las fluctuaciones de volumen, por lo
que es uno de los métodos más utilizados para simulaciones precisas en sistemas cristalinos
o materiales bajo deformación [28].
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4.3. Algoritmos de optimización

Consideraciones sobre los tiempos de relajación

La elección de los tiempos de relajación, tanto térmica (τT) como barométrica (τP), es un
aspecto crítico, ya que controlan la rapidez con la que el sistema se ajusta a la temperatura o
presión objetivo [15].

Por tanto, si τ es demasiado pequeño, el sistema se fuerza de forma excesiva hacia el
valor deseado, suprimiendo las variaciones naturales del sistema. Esto puede conducir a
una evolución artificial del sistema y a una mala representación estadística, lo que resulta
inadecuado para etapas de producción. Por otro lado, si τ es demasiado grande, la relajación
será demasiado lenta, alargando innecesariamente la fase de equilibrado y pudiendo impedir
alcanzar las condiciones deseadas en el tiempo de simulación disponible [15, 31].

En busca de programas más eficientes, se suele usar valores pequeños de τ durante las
primeras etapas de equilibrado, en sistemas que parten de configuraciones lejos del equilibrio
o en simulaciones en la que la precisión estadística no es una prioridad. Por el contrario, se
suele usar valores grandes de τ durante las etapas finales de equilibrado, reduciendo gra-
dualmente las perturbaciones externas, en sistemas pequeños o altamente sensibles, donde
las oscilaciones provocadas por cambios bruscos pueden afectar negativamente a la simula-
ción o en simulaciones más largas donde se busca una transición progresiva hacia la fase de
producción.

Relajaciones sucesivas

En la práctica es habitual emplear una estrategia escalonada con varias etapas de relajación.
Por ejemplo, en simulaciones bajo condiciones del colectivo NPT, se suele adoptar la siguiente
secuencia:

1. En primer lugar, se aplica un termostato de Berendsen con un valor pequeño de τT
para alcanzar rápidamente la temperatura objetivo.

2. A continuación, se introduce un barostato (también de Berendsen) con un valor reduci-
do de τP para ajustar la presión del sistema.

3. Una vez estabilizado el sistema, se incrementan gradualmente los valores de τT y τP,
o bien se cambia a métodos más rigurosos, como Nosé-Hoover o Parrinello-Rahman,
para iniciar la fase de producción [29].

Esta estrategia permite un control eficiente y progresivo de las condiciones termodinámicas,
evitando inestabilidades numéricas y asegurando un muestreo estadístico más fiable durante
la etapa de análisis.

4.3. Algoritmos de optimización
Antes de iniciar una simulación de dinámica molecular, tras establecer la configuración inicial
del sistema, es habitual llevar a cabo una etapa de minimización de energía, cuyo objetivo
es encontrar una configuración estable del sistema que sirva como punto de partida para
la integración de las ecuaciones de movimiento. En esta etapa se busca eliminar tensiones
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artificiales o solapamientos entre átomos que pueden haber sido introducidos durante la
construcción inicial del sistema [29].

Por otro lado, los métodos de Monte Carlo ofrecen una alternativa interesante a la dinámica
molecular clásica. Mientras que la MD resuelve ecuaciones diferenciales para obtener la
evolución temporal del sistema, el enfoque de Monte Carlo introduce aleatoriedad y se centra
en el muestreo de configuraciones según una determinada distribución de probabilidad. Este
enfoque resulta especialmente útil en estudios termodinámicos o en simulaciones donde la
evolución temporal explícita no es relevante [15].

4.3.1. Minimización de energía
La etapa de minimización de energía, como se ha mencionado anteriormente, constituye
un paso previo habitual en muchas simulaciones de dinámica molecular. Su objetivo es
encontrar una configuración estable del sistema, es decir, una disposición de las partículas que
minimice la energía potencial total. Esta configuración corresponde, en general, a un mínimo
local de la superficie de energía potencial, ya que el mínimo global suele ser inaccesible
computacionalmente para sistemas con muchos grados de libertad [15, 29].

Además de garantizar la estabilidad mecánica local, esta etapa es crucial para evitar que
fuerzas no físicas generen aceleraciones extremas o inestabilidades numéricas al comienzo
de la simulación [15]. En particular, iniciar la integración desde una configuración alejada del
equilibrio puede dar lugar a explosiones numéricas o a errores de integración acumulados.

En ciertos contextos, como el estudio del plegamiento de proteínas o el diseño de materiales,
se recurre a técnicas de optimización global, como las metaheurísticas, que permiten escapar
de mínimos locales y explorar regiones más amplias del paisaje energético [15, 36].

Desde un punto de vista matemático, esto equivale a resolver el siguiente problema de
optimización:

min
r⃗1,...,⃗rN

V (⃗r1, . . . , r⃗N),

donde V (⃗r1, . . . , r⃗N) representa la energía potencial total del sistema en función de las posi-
ciones de los átomos.

Para alcanzar dicho mínimo local, muchos de los métodos más utilizados se basan en el
gradiente del potencial, ya que los mínimos locales satisfacen las siguientes condiciones de
primer y segundo orden:

∇r⃗i
V = 0, HessV (⃗ri) > 0, (13)

donde la primera condición indica que la fuerza neta sobre cada partícula es nula, y la
segunda que la matriz Hessiana es definida positiva en ese punto [37].

Recordemos que la matriz Hessiana de V viene dada por:

HessV (⃗r) =



∂2V
∂r2

11

∂2V
∂r11∂r12

· · · ∂2V
∂r11∂rN3

∂2V
∂r12∂r11

∂2V
∂r2

12
· · · ∂2V

∂r12∂rN3

...
...

. . .
...

∂2V
∂rN3∂r11

∂2V
∂rN3∂r12

· · · ∂2V
∂r2

N3

 , (14)
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donde r⃗ = (r11, r12, r13, . . . , rN1, rN2, rN3)
T ∈ R3N , para un sistema de N partículas, cada

una con posición tridimensional r⃗i = (ri1, ri2, ri3). Lo habitual en el contexto de dinámica
molecular es que esta matriz sea simétrica, ya que, en general, se trabaja con funciones
suaves [26].

En la práctica, se considera que el sistema ha alcanzado un equilibrio mecánico local
cuando la fuerza neta sobre cada átomo es inferior a un umbral prefijado.

A continuación se presentan algunos de los métodos de optimización más utilizados en
simulaciones de dinámica molecular:

Descenso por gradiente

Este método, estudiado en la asignatura Aprendizaje Automático, consiste en actualizar itera-
tivamente las posiciones de las partículas en la dirección del gradiente negativo del potencial
hasta que la fuerza neta sobre cada átomo quede por debajo del umbral prefijado [15, 37]:

Algoritmo 1 Descenso por gradiente

r⃗ ← r⃗0
while ∥∇V (⃗r)∥ > ε do

r⃗ ← r⃗− α∇V (⃗r)
end while
return r⃗

donde r⃗0 representa la configuración inicial del sistema, α es el paso de aprendizaje o tasa
de actualización, y ε el umbral prefijado.

Este método es especialmente útil cuando la configuración inicial se encuentra lejos del
mínimo local. Sin embargo, el método puede volverse ineficiente al aproximarse al mínimo,
ya que si el valor de α es demasiado grande, se producirán oscilaciones, mientras que si el
valor de α es muy pequeño, la convergencia será muy lenta (ver Figura 11).

Figura 11.: Comparación del descenso por gradiente según la tasa de aprendizaje [38].
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Gradiente conjugado

El método del gradiente conjugado mejora la eficiencia del descenso por gradiente al generar,
en cada iteración, una dirección de búsqueda conjugada respecto a la matriz Hessiana del
sistema [37]. Esto permite una convergencia más rápida, especialmente cerca del mínimo.

Desde un punto de vista matemático, desarrollando V (⃗r) alrededor de la configuración
inicial r⃗0:

V (⃗r) ≈ V (⃗r0) +∇V (⃗r0)
T (⃗r− r⃗0) +

1
2
(⃗r− r⃗0)

THessV (⃗r0)(⃗r− r⃗0),

donde HessV (⃗r0) es la matriz Hessiana (14) evaluada en r⃗0.

Ahora, definiendo x⃗ = r⃗ − r⃗0 y observando que el término constante V (⃗r0) no afecta al
cálculo del mínimo local (véase (13)), pues su derivada es nula, se escribe:

V (⃗r) ≈ 1
2

x⃗THessV (⃗r0)x⃗ +∇V (⃗r0)
T x⃗ =

1
2

x⃗T Ax⃗− x⃗Tb,

tomando A = HessV (⃗r0) y b = −∇V (⃗r0). Por tanto, el método del gradiente conjugado
busca minimizar la función cuadrática:

f (x⃗) =
1
2

x⃗T Ax⃗− x⃗Tb.

El algoritmo del gradiente conjugado viene dado por:

Algoritmo 2 Gradiente conjugado

x⃗0 ← A⃗r0 − b⃗
p⃗0 ← −x⃗0
k← 0
while ∥x⃗k∥ > ε do

α⃗k ←
x⃗T

k x⃗k

p⃗T
k Ap⃗k

r⃗k+1 ← r⃗k + α⃗k p⃗k
x⃗k+1 ← x⃗k + α⃗k Ap⃗k

β⃗k ←
x⃗T

k+1 x⃗k+1

x⃗T
k x⃗k

p⃗k+1 ← −x⃗k+1 + β⃗k+1 p⃗k
k← k + 1

end while
return r⃗k

En simulaciones reales se suele emplear una combinación de ambos métodos, comenzan-
do con descenso por gradiente para escapar rápidamente de regiones de alta energía, y
continuando con gradiente conjugado cerca del mínimo local [15].
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Metaheurísticas y optimización global

Si bien el descenso por gradiente y el gradiente conjugado son ampliamente utilizados
por su eficacia y simplicidad, por lo que son preferibles en simulaciones rutinarias, tienen
limitaciones importantes en escenarios donde la función objetivo posee múltiples mínimos
locales, como ocurre en biomoléculas plegadas.

Para estos casos, han ganado relevancia las metaheurísticas, técnicas de optimización global
que no dependen únicamente de información local del gradiente, sino que están diseñadas
para explorar globalmente el espacio de búsqueda, permitiendo escapar de mínimos locales
a través de mecanismos estocásticos o evolutivos. Entre las más utilizadas se encuentran
los algoritmos genéticos y evolutivos [39], estudiados en la asignatura Metaheurísticas, el
método de Basin Hopping [36] y el descenso estocástico del gradiente (Stochastic Gradient Des-
cent, SGD) [40], estudiado en la asignatura Aprendizaje Automático. Estas técnicas, aunque
no garantizan encontrar el mínimo global, aumentan significativamente la probabilidad de
alcanzarlo.

Si bien exigen un mayor coste computacional en comparación con los métodos determinis-
tas basados en gradientes, su uso está justificado en situaciones donde es prioritario encontrar
mínimos globales, como en el estudio del plegamiento de proteínas o el diseño de materiales.

En resumen, la elección del método de optimización depende de la topología de la super-
ficie de energía potencial, del conocimiento previo del sistema y de los recursos computacio-
nales disponibles.

4.3.2. Métodos de Monte Carlo
El enfoque de Monte Carlo (MC), diseñado principalmente para el colectivo canónico (NVT),
ofrece una alternativa eficaz y conceptualmente diferente a la dinámica molecular tradicional.
Mientras que la dinámica molecular integra las ecuaciones de movimiento para obtener la
evolución temporal de las partículas, los métodos de MC generan configuraciones aleatorias
del sistema y deciden si se aceptan o no según un criterio probabilístico. El objetivo es mues-
trear configuraciones de acuerdo con una distribución de probabilidad del tipo Boltzmann:

P(⃗r) =
1
Z

exp
(
−V (⃗r)

kBT

)
, (15)

donde Z es la constante de normalización o función de partición:

Z =
∫

exp
(
−V (⃗r)

kBT

)
d⃗r. (16)

A partir de esta expresión, las configuraciones con menor energía tienen mayor probabilidad
de ser aceptadas. Sin embargo, también se permite aceptar configuraciones con mayor energía
para evitar quedar atrapados en mínimos locales.

Los métodos de Monte Carlo tienen la ventaja de ser más fáciles de implementar y suelen
ser más eficientes cuando se trata de muestrear grandes espacios de configuración, especial-
mente en sistemas con restricciones geométricas, como sólidos, redes cristalinas o políme-
ros [41].
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El algoritmo más conocido en este contexto es el algoritmo de Metropolis [42], desarrollado
en 1953. Este método permite muestrear eficientemente el espacio de configuraciones de un
sistema a temperatura constante, generando un conjunto de estados que siguen la distri-
bución de Boltzmann (15). Su ventaja fundamental es que no requiere calcular la función
de partición (16), una cantidad computacionalmente inalcanzable en sistemas con muchos
grados de libertad, ya que implica una integral en un espacio de alta dimensionalidad [15, 43].

En su lugar, el algoritmo trabaja con el cociente de probabilidades entre estados consecuti-
vos:

P(⃗r′)
P(⃗r)

=

1
Z

exp
(
−V (⃗r′)

kBT

)
1
Z

exp
(
−V (⃗r)

kBT

) = exp
(

V (⃗r)−V (⃗r′)
kBT

)
= exp

(
− ∆V

kBT

)
= 4 exp

(
− ∆E

kBT

)
.

Aunque este cociente no representa una probabilidad en sentido estricto, el algoritmo lo
emplea como probabilidad de aceptación cuando ∆E > 0. En tal caso, se define p =

exp
(
− ∆E

kBT

)
∈ (0, 1), y se compara con un número aleatorio r ∈ [0, 1], lo que permite al

sistema aceptar configuraciones energéticamente desfavorables con cierta probabilidad, fa-
cilitando así la salida de mínimos locales. En cambio, si ∆E < 0, se acepta directamente la
nueva configuración, asegurando que el sistema puede evolucionar hacia estados de menor
energía.

Por tanto, su implementación viene dada por:

Algoritmo 3 Algoritmo de Metropolis

Inicializar configuración r⃗ al azar
for paso = 1 hasta N do

Elegir una partícula i al azar
Calcular r⃗′ a partir de r⃗, modificando la posición de la partícula i
Calcular ∆E = V (⃗r′)−V (⃗r)
if ∆E < 0 then

Aceptar la nueva configuración: r⃗ ← r⃗′
else

Calcular p = exp
(
− ∆E

kBT

)
Generar número aleatorio r ∈ [0, 1]
if r < p then

Aceptar: r⃗ ← r⃗′
else

Rechazar: mantener configuración actual
end if

end if
end for

4En el contexto del algoritmo de Metropolis aplicado a simulaciones Monte Carlo bajo el colectivo canónico (NVT),
los términos cinéticos no se consideran explícitamente, ya que la energía cinética no influye en la distribución
de probabilidad configuracional. Por ello, se asume que el incremento de energía ∆E equivale al cambio en la
energía potencial ∆V [15].
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Este método garantiza que, tras un número suficiente de pasos, las configuraciones visi-
tadas siguen la distribución de Boltzmann, lo cual es útil para el cálculo de propiedades
termodinámicas en equilibrio.

Por tanto, aunque el método no permite estudiar trayectorias o dinámicas temporales, es
especialmente útil para explorar estados de equilibrio, detectar configuraciones estables y
estimar propiedades macroscópicas del sistema.

En resumen, mientras que la minimización de energía busca una configuración estable
inicial resolviendo un problema de optimización determinista, los métodos de Monte Carlo
exploran distintas configuraciones del sistema mediante una estrategia probabilística.

4.4. Simulaciones paralelas y aceleración
Las simulaciones de dinámica molecular requieren una elevada carga computacional debido
a la complejidad de los cálculos implicados. A medida que el número de partículas crece
o se desea simular procesos en escalas temporales más largas, el número de operaciones
necesarias se incrementa de forma exponencial. En particular, el cálculo de fuerzas entre
partículas y la integración de las ecuaciones de movimiento representan los principales
cuellos de botella computacionales, siendo estos cálculos de complejidad O(N2) en el caso
más general [15, 29].

Para poder simular sistemas de interés biológico o materiales realistas con millones de
átomos durante tiempos físicamente relevantes, es fundamental paralelizar el proceso de
simulación. Este objetivo se logra mediante diferentes estrategias de paralelización, que
permiten distribuir el trabajo entre múltiples procesadores o unidades de cómputo:

Descomposición espacial

Una de las técnicas más utilizadas es la descomposición espacial, donde el espacio simulado
se divide en subdominios (cajas) y cada procesador es responsable de calcular las fuerzas e
integrar las trayectorias de las partículas dentro de su región. Para mantener la coherencia
global, los procesadores deben intercambiar información sobre partículas cercanas a los
límites de sus dominios, denominadas partículas fantasma, lo cual requiere comunicación
eficiente entre nodos [21].

Replicación de datos

En sistemas de menor tamaño o con baja comunicación entre procesos, se puede optar por
replicar los datos en todos los procesadores, de manera que cada uno tenga una copia
completa del sistema. Aunque esto incrementa el uso de memoria, permite minimizar la
latencia de comunicación, a cambio de realizar cálculos redundantes [15].

Paralelización por fuerza o por átomo

Otra opción es paralelizar por tipo de cálculo, asignando por ejemplo a cada núcleo una
fracción de las interacciones a calcular (paralelización por fuerzas) o el seguimiento de un
conjunto de partículas específicas (paralelización por átomos). Aunque menos escalables,
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4. Algoritmos en Dinámica Molecular

estas estrategias pueden ser útiles en arquitecturas específicas o en algoritmos especializa-
dos [26].

Uso de arquitecturas HPC y GPUs

El uso de arquitecturas de computación de alto rendimiento (High-Performance Computing,
HPC) es fundamental para llevar a cabo simulaciones de dinámica molecular a gran escala.
Sistemas como supercomputadores o clústeres permiten dividir el trabajo entre múltiples
núcleos o nodos mediante bibliotecas paralelas como OpenMP [44] o MPI (Message Passing
Interface) [45], acelerando así la ejecución de las simulaciones.

Por otro lado, las unidades de procesamiento gráfico (GPUs) han supuesto un avance
significativo en este ámbito. A diferencia de las CPUs tradicionales, que están optimizadas
para ejecutar unos pocos hilos de manera muy eficiente, las GPUs están diseñadas para
manejar miles de hilos de manera simultánea. Esta arquitectura masivamente paralela es ideal
para realizar operaciones vectoriales repetitivas, como el cálculo de fuerzas entre partículas,
que constituye el núcleo computacional de la dinámica molecular [46].

Gracias a estas ventajas, muchos programas populares de simulación, como AMBER, GRO-
MACS [47] o NAMD, han incorporado versiones optimizadas para su ejecución en GPU,
permitiendo alcanzar aceleraciones de hasta un orden de magnitud (es decir, 10 veces más
rápidas) con respecto a implementaciones basadas únicamente en CPU.

En conclusión, la paralelización y el uso de arquitecturas aceleradas son elementos funda-
mentales en la dinámica molecular actual. No solo permiten simular sistemas más grandes
o durante más tiempo, sino que permiten llevar a cabo estudios que serían computacional-
mente inviables con recursos secuenciales.
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5. Implementación de una Simulación de Dinámica
Molecular

Una vez establecidos los conceptos teóricos fundamentales de la dinámica molecular en los
capítulos anteriores, una de las mejores formas de comprender una simulación es plantear
cómo se estructuraría un programa simple bajo las siguientes condiciones:

Condiciones termodinámicas y parámetros característicos de la simulación
La simulación presentada en esta sección se lleva a cabo bajo las condiciones del colectivo
microcanónico (NVE). En este conjunto estadístico se mantiene constante el número de
partículas N, el volumen V y la energía total E (ver Capítulo 2).

Durante la evolución temporal, se calculan diversas propiedades termodinámicas del siste-
ma, como la temperatura instantánea y la energía total por partícula.

Unidades reducidas

En simulaciones de dinámica molecular es habitual emplear un sistema de unidades redu-
cidas con el fin de simplificar los cálculos, mejorar la estabilidad numérica y evitar errores
derivados de trabajar con constantes físicas muy pequeñas (por ejemplo, kB ∼ 10−23 J/K). Es-
ta estrategia también permite escribir código más limpio y eficiente, eliminando la necesidad
de introducir factores dimensionales en cada paso del algoritmo [15].

La idea fundamental consiste en escoger magnitudes características del sistema como
escalas de referencia. En particular, cuando se emplea el potencial de Lennard-Jones, se fijan
como unidades base las siguientes constantes:

σ: longitud característica (diámetro efectivo de las partículas), se mide en metros [m].

ε: energía de interacción (profundidad del pozo de potencial), se mide en julios [J].

m: masa de las partículas, se mide en kilogramos [kg].

kB: constante de Boltzmann.

Esto permite expresar todas las demás magnitudes relevantes en forma adimensional, es
decir, sin unidades físicas explícitas. A partir de estas definiciones base, se pueden reescalar
el resto de variables del sistema, tal y como se resume en la Tabla 5.1.

Por ejemplo, supongamos que en una simulación se emplean los valores σ = ε = m =
kB = 1 (elección habitual en unidades reducidas), y se obtiene una temperatura reducida
T∗ = 1.2. Entonces, empleando los valores físicos reales del argón, se obtiene la siguiente
temperatura instantánea:

T =
T∗ · ε

kB
≈ 1.2 · 1.65× 10−21

1.38× 10−23 · J
J/K
≈ 1.98× 10−21

1.38× 10−23 K ≈ 143.5 K.
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5. Implementación de una Simulación de Dinámica Molecular

De igual forma, si se desea que, en valores físicos reales, el paso de tiempo empleado sea de
∆t = 10−15 s, entonces el paso de tiempo tomado en la simulación vendrá dado por:

t = t∗ · σ
√

m
ε
= t∗ · 3.405× 10−10

√
6.63× 10−26

1.65× 10−21 = 10−15 ⇒ t∗ ≈ 4.636× 10−4.

Magnitud Magnitud reducida Reescalado a unidades físicas

t t∗ =
t

σ
√

m/ε
t = t∗ · σ

√
m
ε

(s)

T T∗ =
kBT

ε
T =

T∗ · ε
kB

(K)

v⃗ v⃗∗ =
v⃗√
ε/m

v⃗ = v⃗∗ ·
√

ε

m
(m/s)

P P∗ =
P · σ3

ε
P = P∗ · ε

σ3 (Pa)

F⃗ F⃗∗ =
F⃗ · σ

ε
F⃗ = F⃗∗ · ε

σ
(N)

Tabla 5.1.: Conversión entre magnitudes físicas y reducidas

Aunque las variables numéricas utilizadas en simulaciones con unidades reducidas son
adimensionales y no poseen unidades físicas explícitas, sí representan de forma coherente
las proporciones y relaciones entre las propiedades del sistema. Esto permite interpretar
los resultados de forma cualitativa, comparar distintos sistemas moleculares y, si se desea,
convertir los valores obtenidos nuevamente a unidades físicas mediante las expresiones de
reescalado correspondientes [15].

Estructura del programa

En la Tabla 5.2 se muestra la secuencia típica de etapas que componen una simulación de
dinámica molecular.

Por tanto, el pseudocódigo desarrollado tendrá la siguiente estructura:

1. Lectura de los parámetros que especifican las condiciones iniciales de la simulación
(número de partículas, temperatura inicial, paso de tiempo, etc.).

2. Inicialización del sistema: incluye la preparación, el calentamiento y el equilibrado del
sistema.

3. Cálculo de las fuerzas que actúan sobre cada partícula.

4. Integración de las ecuaciones de movimiento de Newton.

5. Cálculo y visualización de propiedades termodinámicas del sistema.
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5.1. Inicialización del sistema

Etapa Descripción

Preparación del sistema
Definición de las coordenadas iniciales y asignación de veloci-
dades, habitualmente mediante una distribución de Maxwell-
Boltzmann.

Calentamiento Escalado de las velocidades a la temperatura deseada.

Equilibrado
El sistema se lleva a una situación de equilibrio a partir de su
configuración inicial.

Producción
Generación de las trayectorias del sistema, a partir de las cuales
se calculan propiedades físicas y termodinámicas.

Tabla 5.2.: Etapas del desarrollo de una simulación de dinámica molecular. [48]

A partir de esta estructura, se obtiene el siguiente pseudocódigo, que implementa una si-
mulación de dinámica molecular para un sistema atómico tridimensional sencillo, compuesto
por N partículas:

Algoritmo 4 Esquema general de una simulación de dinámica molecular

Leer parámetros ▷ Paso 1

Inicializar sistema ▷ Paso 2

t← 0
while t < tmax do

Calcular fuerzas ▷ Paso 3

Integrar ecuaciones de movimiento ▷ Paso 4

Calcular y mostrar propiedades ▷ Paso 5

t← t + ∆t
end while

Las subrutinas inicializar sistema, calcular fuerzas e integrar ecuaciones de movimiento
serán descritas en los algoritmos 5, 6 y 7, respectivamente.

5.1. Inicialización del sistema
En esta fase se llevan a cabo tres pasos esenciales: la preparación, el calentamiento y el
equilibrado del sistema. En primer lugar, se definen las coordenadas iniciales de las partículas,
que suelen colocarse sobre una red regular (como una red cúbica) para evitar solapamientos,
y se asignan velocidades iniciales extraídas de una distribución aleatoria. Luego, se realiza
un reescalado de las velocidades con el objetivo de que la energía cinética total del sistema
corresponda a la temperatura deseada, lo que se conoce como calentamiento del sistema.
Finalmente, se elimina la posible velocidad del centro de masas y se ajustan las condiciones
para alcanzar un estado de equilibrio termodinámico.

Estas tareas pueden implementarse de forma conjunta dentro de una única rutina de
inicialización (ver Algoritmo 5). A continuación se detallan los cálculos realizados en ella:

Preparación del sistema: Las posiciones iniciales r⃗i de las partículas se colocan so-
bre una red regular tridimensional (habitualmente cúbica), mediante una función
lattice_pos(i). Este paso evita solapamientos entre partículas que podrían producir
fuerzas repulsivas extremadamente grandes en los primeros pasos de simulación [15].
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5. Implementación de una Simulación de Dinámica Molecular

Asignación de velocidades aleatorias: A cada partícula i se le asignan tres componen-
tes de velocidad, una por cada dirección del espacio, utilizando números aleatorios
uniformemente distribuidos en el intervalo [−0.5, 0.5]. Esta elección se emplea exclu-
sivamente para garantizar una distribución inicial no sesgada. Posteriormente, tras el
equilibrado, las velocidades seguirán una distribución de Maxwell-Boltzmann.

Eliminación del movimiento del centro de masas: En una simulación de dinámica
molecular, es importante que el sistema no adquiera un movimiento global no deseado,
es decir, que el centro de masas permanezca en reposo. Si las velocidades iniciales
se asignan aleatoriamente, es muy probable que la velocidad total del sistema no sea
exactamente cero. Esto puede provocar un desplazamiento del sistema en su conjunto
a lo largo del tiempo, lo cual no se desea [15].

Para corregir esto, se calcula la velocidad del centro de masas en cada dirección espacial,
que, asumiendo m = 1, viene dada por la media de las velocidades individuales de
todas las partículas:

v̄j =
1
N

N

∑
i=1

v⃗ij para j = 1, 2, 3,

donde v⃗ij representa la componente j-ésima de la velocidad de la partícula i, y N es
el número total de partículas. Esta media define el vector de velocidad del centro de
masas del sistema:

v⃗CM = (v̄1, v̄2, v̄3).

Una vez calculado este vector, se elimina el movimiento del centro de masas restándolo
de la velocidad de cada partícula:

v⃗i ← v⃗i − v⃗CM para i = 1, . . . , N.

De este modo, se garantiza que el sistema tenga velocidad total nula.

Reescalado de las velocidades (calentamiento): Para garantizar que la energía cinética
media del sistema corresponde con la temperatura objetivo T, se utiliza el teorema de
la equipartición (12), donde, suponiendo m = 1 y kB = 1, se ajustan las velocidades
mediante un factor de escala:

fs =

√
3T

∑N
i=1 ∥v⃗i∥2/N

.

Por tanto, aplicando v⃗ij ← v⃗ij · fs se consigue que la temperatura inicial del sistema
sea exactamente T. Además, este procedimiento garantiza que las velocidades de las
partículas sigan una distribución de Maxwell-Boltzmann [15].

Cálculo de las posiciones en t−∆t: Finalmente, se calcula la posición de cada partícula
en el paso anterior (t− ∆t), necesaria para comenzar la integración mediante el algorit-
mo de Verlet (7). Para ello, se usan las velocidades asignadas suponiendo movimiento a
velocidad constante, es decir, sin suponer ningún tipo de interacción ni fuerza externa.
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5.2. Cálculo de fuerzas

Estos pasos completan la fase de inicialización del sistema, permitiendo comenzar la
simulación con condiciones físicas coherentes, sin movimiento global del centro de masas,
con una temperatura precisa y sin solapamientos significativos.

Algoritmo 5 Inicializar sistema

sumv1 ← 0, sumv2, sumv3 ← 0 ▷ Suma de las velocidades
sumv2← 0 ▷ Suma de las velocidades al cuadrado
for i = 1 to N do

r⃗i ← lattice_pos(i) ▷ Coloca la partícula i en una red regular
for j = 1 to 3 do

v⃗ij ← random()− 0.5 ▷ Velocidad aleatoria en cada dirección
sumvj ← sumvj + v⃗ij ▷ Suma para calcular velocidad del centro de masas
sumv2← sumv2 + v⃗2

ij ▷ Actualización velocidades al cuadrado
end for

end for
v⃗CM ← (sumv1/N, sumv2/N, sumv3/N) ▷ Velocidad del centro de masas
sumv2← sumv2/N ▷ Calcula la velocidad cuadrática media
fs ←

√
3 · Tobjetivo/sumv2 ▷ Escala para ajustar temperatura

for i = 1 to N do
v⃗i ← v⃗i − v⃗CM ▷ Sistema en reposo global
v⃗i ← v⃗i · fs ▷ Calentamiento
⃗r_previ ← r⃗i − v⃗i · ∆t ▷ Coordenadas de la partícula i en t− ∆t

end for

5.2. Cálculo de fuerzas
Una vez inicializado el sistema, en cada paso de la simulación es necesario calcular las fuerzas
que actúan sobre cada partícula. Este cálculo se basa en el modelo de potencial que describe
las interacciones entre partículas. En este caso, se emplea el potencial de Lennard-Jones (4),
ampliamente utilizado para modelar interacciones de tipo van der Waals.

El algoritmo 6 realiza el cálculo de las fuerzas interatómicas y de la energía potencial
total del sistema. Para mejorar la eficiencia computacional, se introduce un radio de corte rc
que evita calcular la interacción entre pares de partículas cuya distancia es suficientemente
grande como para que su efecto sea despreciable (ver Subsección 3.2.4). Además, se aplican
condiciones de contorno periódicas para simular un sistema infinito a partir de una celda
finita (ver Figura 6).

A continuación, se detalla el proceso llevado a cabo:

Inicialización de la energía y fuerzas: Se inicializa la energía potencial total del sistema
con Epot ← 0. Además, se pone a cero la fuerza total sobre cada partícula, es decir,
F⃗i ← (0, 0, 0) para i = 1, . . . , N. Esto garantiza que no queden restos de cálculos previos
que puedan alterar los resultados.

Bucle sobre pares de partículas: Se recorren todos los pares únicos de partículas (i, j)
con i < j, ya que la interacción de Lennard-Jones es simétrica (la fuerza de i sobre j es
igual y opuesta a la de j sobre i). Esto permite ahorrar tiempo de cómputo.
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5. Implementación de una Simulación de Dinámica Molecular

Cálculo de distancias con condiciones de contorno periódicas: Para cada par de
partículas (i, j) con i < j, se calcula el vector que une ambas posiciones:

r⃗ij = r⃗i − r⃗j.

Para simular un sistema infinito con una celda finita, se aplican condiciones de contorno
periódicas usando la mínima imagen, ya que puede ocurrir que la distancia más corta
entre dos partículas no sea la directa, sino a través del borde del sistema ((ver Figura 6)):

r⃗ij ← r⃗ij − L · round(⃗rij/L),

donde round es una función que redondea al entero más cercano, y L representa el
diámetro de la celda. Esto garantiza que cada interacción se calcula con la imagen más
cercana de la otra partícula, asegurando que las distancias se mantengan dentro del
intervalo [−L/2, L/2] [15].

Filtrado por radio de corte: Con el fin de evitar cálculos innecesarios de raíces cua-
dradas, que son computacionalmente costosos, se calcula la distancia al cuadrado
r2 = ∥⃗rij∥2, y solo se evalúa la interacción si r2 < r2

c ; es decir, si la distancia entre
las partículas es menor que el radio de corte rc. Este criterio mejora el rendimiento
computacional sin afectar significativamente a la precisión física.

Cálculo de la fuerza mediante el potencial de Lennard-Jones: El módulo de la fuerza
se obtiene a partir de la derivada del potencial de Lennard-Jones (4), donde, suponiendo
ϵ = 1, se tiene que:

F⃗ij = ∇VLJ(rij) ·
r⃗ij

rij
= 24 ·

(
2

r13
ij
− 1

r7
ij

)
·

r⃗ij

rij
= 24 ·

(
2

(r2
ij)

7
− 1

(r2
ij)

4

)
· r⃗ij = f · r⃗ij,

donde rij representa la distancia entre las partículas i y j. De forma análoga, esta
expresión se ha formulado usando r2

ij para evitar cómputos innecesarios de raíces
cuadradas.

Actualización de las fuerzas: La fuerza vectorial se obtiene multiplicando el módulo f
por el vector dirección r⃗ij:

F⃗i ← F⃗i + f · r⃗ij, F⃗j ← F⃗j − f · r⃗ij.

Esto asegura que se cumpla la tercera ley de Newton (2).

Cálculo de la energía potencial: La energía potencial entre i y j se suma al total:

Epot ← Epot + 4 ·
(

1
(r2

ij)
6
− 1

(r2
ij)

3

)
− Ecut,

donde Ecut es una constante que compensa el truncamiento del potencial, asegurando
la continuidad del mismo en el radio de corte [15]. Se puede calcular como el valor del
potencial en r = rc, luego:

Ecut ← 4
(

1
r12

c
− 1

r6
c

)
.
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5.3. Integración de las ecuaciones de movimiento

Algoritmo 6 Calcular fuerzas

Epot ← 0 ▷ Inicializa la energía potencial total
for i = 1 to N do

F⃗i ← (0, 0, 0) ▷ Inicializa la fuerza sobre la partícula i
end for
for i = 1 to N − 1 do

for j = i + 1 to N do
r⃗ij ← r⃗i − r⃗j ▷ Diferencia de posición
r⃗ij ← r⃗ij − L · round(⃗rij/L) ▷ Condiciones de contorno periódicas
r2← r⃗ij[0]2 + r⃗ij[1]2 + r⃗ij[2]2 ▷ Distancia al cuadrado
if r2 < r2

c then ▷ Verifica si está dentro del radio de corte

f ← 24 · ( 2
(r2)7 −

1
(r2)4 ) ▷ Potencial de Lennard-Jones divido por ∥⃗rij∥

F⃗i ← F⃗i + f · r⃗ij ▷ Actualiza fuerza sobre la partícula i
F⃗j ← F⃗j − f · r⃗ij ▷ Actualiza fuerza sobre la partícula j

Epot ← Epot + 4 · ( 1
(r2)6 −

1
(r2)3 )− Ecut ▷ Actualiza la energía potencial total

end if
end for

end for

5.3. Integración de las ecuaciones de movimiento
Tras calcular las fuerzas que actúan sobre cada partícula, se procede a integrar las ecuaciones
de movimiento para obtener las nuevas posiciones y velocidades (ver algoritmo 7). En este
caso, se utiliza el algoritmo de Verlet.

Por tanto, se estiman las posiciones de las partículas en cada paso de tiempo a partir de (7)
y, seguidamente, se estimarán las velocidades a partir de (8).

A continuación, se detalla el proceso llevado a cabo:

Inicialización de la energía cinética: Se define la variable sumv2, que acumulará el
valor de las velocidades al cuadrado de todas las partículas, necesaria para estimar la
temperatura y la energía cinética.

Cálculo de la nueva posición (Verlet): Para cada partícula i, se calcula la nueva posición
mediante la fórmula (7).

Estimación de la velocidad: Para cada partícula i, se calcula la nueva velocidad me-
diante la fórmula (8).

Actualización de posiciones: La posición anterior se actualiza como la actual, y la
actual se reemplaza por la nueva estimada. Así, en el siguiente paso, se puede reutilizar
el mismo esquema de Verlet.

Cálculo de la veclocidad del centro de masas: Se calcula la velocidad del centro de
masas para verificar que la simulación se ha realizado correctamente.
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Cálculo de la temperatura: La temperatura se calcula a partir de (12), luego, asumiendo
kB = 1 y m = 1, se tiene:

T =
1

3N

N

∑
i=1
∥v⃗i∥2.

Energía total por partícula: Finalmente, se calcula la energía total promedio por par-
tícula sumando la energía potencial (obtenida en el algoritmo anterior) y la energía
cinética, luego, asumiendo m = 1, se tiene:

Etot =
Epot +

1
2 ∑ ∥v⃗i∥2

N
.

Algoritmo 7 Integrar ecuaciones de movimiento

sumv1 ← 0, sumv2, sumv3 ← 0 ▷ Suma de las velocidades
sumv2← 0 ▷ Inicializa la suma de las velocidades al cuadrado
for i = 1 to N do ▷ Bucle principal

⃗r_nexti ← 2⃗ri − ⃗r_previ + ∆t2 · 1
mi

F⃗i ▷ Nueva posición (Verlet)

v⃗i ←
⃗r_nexti − ⃗r_previ

2∆t
▷ Estimación de velocidad

for j = 1 to 3 do
sumvj ← sumvj + v⃗ij ▷ Suma para calcular velocidad del centro de masas

end for
sumv2← sumv2 + v⃗2

i1 + v⃗2
i2 + v⃗2

i3 ▷ Actualización velocidades al cuadrado
⃗r_previ ← r⃗i ▷ Actualización posición anterior

r⃗i ← ⃗r_nexti ▷ Actualización posición actual
end for
v⃗CM ← (sumv1/N, sumv2/N, sumv3/N) ▷ Velocidad del centro de masas
Temp← sumv2

3N
▷ Temperatura instantánea

Etot ←
Epot + 0.5 · sumv2

N
▷ Energía total por partícula

La energía total por partícula Etot debería permanecer aproximadamente constante a lo
largo de la simulación. Del mismo modo, la velocidad del centro de masas v⃗CM debería
mantenerse cercana a cero en cada una de sus tres componentes. Cualquier desviación signi-
ficativa en estos valores podría ser señal de errores en la implementación del algoritmo [15].

5.4. Programas de dinámica molecular

A lo largo de las últimas décadas, se han desarrollado numerosos programas de simulación
de dinámica molecular, cada uno con características específicas orientadas a distintos tipos
de sistemas, escalas y recursos de cálculo. Estos programas permiten ejecutar simulaciones,
analizar trayectorias, visualizar estructuras y aplicar diversos campos de fuerza.

A continuación, se describen algunos de los campos de fuerza más conocidos:
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AMBER (Assisted Model Building with Energy Refinement): Desarrollado inicialmente
para simular ácidos nucleicos y proteínas. Utiliza una formulación bastante precisa de
los términos torsionales y electrostáticos. Está especialmente optimizado para sistemas
biológicos y se usa ampliamente en bioquímica computacional [49].

CHARMM (Chemistry at HARvard Macromolecular Mechanics): Campo de fuerza amplia-
mente utilizado en simulaciones de proteínas, lípidos y ácidos nucleicos. Está diseñado
para trabajar conjuntamente con el programa CHARMM, pero también es compatible
con otros paquetes como NAMD o GROMACS. Incluye parámetros específicos para
simular membranas biológicas y otros entornos complejos [50].

GROMOS (GROningen MOlecular Simulation): Enfocado inicialmente al modelado de
líquidos y biomoléculas, se ha usado tradicionalmente con el paquete de simulación
GROMOS. A diferencia de AMBER o CHARMM, GROMOS emplea funciones de po-
tencial ligeramente diferentes, como un término de Van der Waals basado en una forma
exponencial en lugar del clásico (4) [51].

OPLS (Optimized Potentials for Liquid Simulations): Diseñado para reproducir propieda-
des termodinámicas de líquidos orgánicos y biomoléculas. Se basa en una parametriza-
ción rigurosa contra datos experimentales y simulaciones de química cuántica. Existe
una versión OPLS-AA (All-Atom) que incluye todos los átomos explícitamente, lo cual
mejora la precisión en muchos contextos [52].

Estos modelos se basan en una combinación de términos empíricos (como enlaces, ángulos,
torsiones e interacciones de Van der Waals y electrostáticas) y están calibrados mediante
datos experimentales y cálculos de química cuántica sobre moléculas pequeñas. Cada uno se
desarrolla con un objetivo específico y está calibrado para ciertos tipos de moléculas, por lo
que su elección depende del sistema a estudiar y del tipo de simulación que se desee realizar.

Por otro lado, un programa de simulación es un software que implementa los algoritmos
necesarios para llevar a cabo la integración temporal, el cálculo de fuerzas y el análisis de
trayectorias. Muchos de estos programas permiten la utilización de distintos campos de
fuerza externos, lo que les proporciona una gran versatilidad y adaptabilidad a diversos
tipos de sistemas moleculares.

Entre los programas de simulación más relevantes se encuentran:

AMBER: Hace referencia tanto a un conjunto de programas como a una familia de
campos de fuerza, ya descritos anteriormente. Aunque está especialmente optimizado
para sistemas biológicos, sus campos de fuerza pueden exportarse a otros programas
como GROMACS.

GROMACS: Código libre y altamente optimizado para realizar simulaciones de MD,
especialmente en sistemas grandes como proteínas en membranas. Admite múltiples
campos de fuerza (incluyendo AMBER, CHARMM y OPLS), y destaca por su velocidad
y eficiencia en arquitecturas paralelas y GPU [47].

NAMD: Diseñado para simular sistemas biomoleculares de gran tamaño, aprovechando
recursos computacionales distribuidos (HPC). Compatible con los campos de fuerza
CHARMM y AMBER, es ampliamente utilizado en simulaciones a escala masiva [21].

45



5. Implementación de una Simulación de Dinámica Molecular

LAMMPS: Código versátil orientado a la simulación de materiales y polímeros, pero
también capaz de modelar sistemas biológicos. Soporta campos de fuerza clásicos
y avanzados, lo que le permite simular fenómenos complejos como la formación y
ruptura de enlaces o efectos electrónicos. Además, admite simulaciones a nivel atómico
y mesoscópico [53].

OpenMM: Librería orientada a la programación de simulaciones en Python con soporte
nativo para GPU. Permite construir simulaciones flexibles, usar campos de fuerza
estándar y desarrollar algoritmos personalizados de integración o energía [54].
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La dinámica molecular se ha convertido en una herramienta fundamental en numerosos
campos científicos y tecnológicos. Su aplicabilidad se extiende a múltiples disciplinas, desde
la biología estructural hasta la ciencia de materiales, lo que la convierte en una técnica con
gran relevancia en la ciencia computacional moderna [15, 55].

Antes de entrar en las distintas áreas de aplicación, es importante distinguir entre dos
grandes tipos de simulaciones: aquellas centradas en la evolución temporal del sistema (co-
mo las que estudian transporte, difusión o reacciones dinámicas), y aquellas cuyo objetivo es
obtener propiedades de equilibrio, lo que se denomina un estudio termodinámico5. En este
segundo caso, no interesa cómo cambia el sistema con el tiempo, sino cómo se comporta en
promedio, en condiciones de equilibrio. Sin embargo, incluso en estos casos se emplean algo-
ritmos de dinámica molecular, como el integrador de Verlet, con el fin de obtener trayectorias
representativas del colectivo estadístico considerado.

6.1. Bioquímica y biología estructural

En esta sección se presentan las principales macromoléculas biológicas y se analiza cómo
la dinámica molecular permite estudiar sus propiedades, interacciones y funciones, propor-
cionando una aproximación computacional que complementa las técnicas experimentales
clásicas de la biología estructural.

Para facilitar la comprensión, se parte de una breve descripción de los componentes clave,
antes de abordar sus aplicaciones concretas en simulación computacional.

6.1.1. Moléculas biológicas: conceptos básicos

En el contexto biológico, los protagonistas de las simulaciones suelen ser macromoléculas
como las siguientes:

Proteínas

Las proteínas son cadenas de aminoácidos que se pliegan en formas tridimensionales espe-
cíficas. Este plegamiento determina su función biológica, que puede ir desde actuar como
enzimas que catalizan reacciones hasta transportar oxígeno o servir como receptores en
membranas celulares. Estudiar su dinámica es clave para entender cómo se pliegan, cómo
interactúan con otras moléculas, o cómo ciertas mutaciones afectan a su comportamien-
to [55, 56].

5Un estudio termodinámico se centra en calcular propiedades macroscópicas de equilibrio del sistema, sin consi-
derar su evolución temporal.
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Ácidos nucleicos (ADN y ARN)

Los ácidos nucleicos son las moléculas encargadas de almacenar y transmitir la información
genética. El ADN es conocido por su estructura de doble hélice, pero su conformación puede
variar en función del entorno o de su interacción con proteínas. El ARN, además de su
papel en la síntesis de proteínas, puede adoptar estructuras tridimensionales complejas con
funciones catalíticas o regulatorias [57].

Membranas celulares

Las membranas celulares son estructuras flexibles que rodean y delimitan las células, se-
parando su interior del entorno exterior. Están compuestas principalmente por una doble
capa de moléculas similares a grasas, llamadas lípidos, que actúan como una barrera semi-
permeable. Esta barrera no solo protege la célula, sino que también regula qué sustancias
pueden entrar o salir. Mediante simulaciones de dinámica molecular, es posible modelar el
comportamiento de estas membranas a nivel atómico y estudiar procesos esenciales como
la difusión de pequeñas moléculas, el transporte controlado de sustancias, o cómo ciertas
proteínas se insertan y funcionan dentro de la membrana [58].

Complejos biomoleculares

Los complejos biomoleculares son conjuntos de varias moléculas (proteínas, ADN, lípidos)
que se ensamblan de forma funcional. Por ejemplo, un ribosoma o un canal iónico. Simu-
lar su comportamiento permite comprender mecanismos dinámicos que a menudo no son
observables directamente mediante técnicas experimentales [57].

6.1.2. Aplicaciones en simulación biomolecular

Gracias a la MD, es posible investigar numerosos procesos relevantes en biología y bioquí-
mica, que tienen un papel central en el diseño de fármacos. A continuación, se presentan
algunas de las aplicaciones más relevantes de la dinámica molecular en este contexto:

Plegamiento de proteínas

El plegamiento es el proceso mediante el cual una cadena lineal de aminoácidos adopta su
conformación tridimensional funcional. Las simulaciones se centran en la evolución temporal
del sistema, permitiendo explorar este fenómeno paso a paso, identificar intermedios estructu-
rales e incluso estudiar plegamientos erróneos asociados a enfermedades neurodegenerativas
como el Alzheimer o el Parkinson [56].

Dinámica estructural

Las proteínas y los ácidos nucleicos no son estructuras rígidas, sino que sufren cambios térmi-
cos y reordenamientos que pueden activar o inhibir sus funciones. La dinámica molecular se
centra en la evolución temporal del sistema, permitiendo estudiar estos cambios en función
del tiempo y en distintos contextos fisiológicos.
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Interacción ligando-receptor

Uno de los usos más relevantes de la dinámica molecular en farmacología es el estudio
del acoplamiento molecular, que describe cómo una molécula pequeña (ligando) se une a
una proteína diana (receptor). Este análisis se centra en la evolución temporal del sistema,
permitiendo predecir afinidades de unión, identificar sitios activos y guiar el diseño racional
de fármacos [59].

Estos mecanismos fundamentales son aprovechados conjuntamente en estrategias de des-
cubrimiento de fármacos:

Diseño de fármacos y descubrimiento molecular

Uno de los usos más avanzados de la dinámica molecular en biomedicina es el diseño racio-
nal de fármacos. Esta estrategia, conocida como drug discovery in silico, consiste en predecir
mediante simulaciones qué compuestos podrían unirse eficazmente a una proteína impli-
cada en una enfermedad, la cual actúa como diana biológica. A diferencia de los métodos
tradicionales de cribado experimental, que requieren analizar físicamente miles de molécu-
las, la simulación permite filtrar virtualmente grandes bibliotecas de ligandos, evaluando
su interacción con dianas biológicas en función de propiedades estructurales, energéticas y
dinámicas [56, 59].

Una técnica ampliamente utilizada en el diseño de fármacos es el docking, que consis-
te en predecir computacionalmente cómo se une un ligando a un receptor. El objetivo es
determinar la orientación y posición más probable del ligando dentro del sitio activo del
receptor, evaluando su ajuste espacial y la energía asociada a la interacción. Sin embargo, este
procedimiento suele asumir modelos rígidos, en los que tanto el ligando como el receptor
permanecen estáticos durante el proceso de acoplamiento. Esta simplificación limita la capa-
cidad del docking para capturar la flexibilidad estructural de las moléculas y la complejidad
real del entorno molecular.

Al combinar docking con simulaciones de dinámica molecular, es posible refinar las predic-
ciones iniciales y estudiar cómo evoluciona la interacción a lo largo del tiempo. Este enfoque
combinado permite detectar inestabilidades en la unión, explorar conformaciones alterna-
tivas del complejo y validar si la interacción predicha se mantiene estable en un entorno
solvado y dinámico [57]. Esto es especialmente útil para reducir falsos positivos, es decir,
aquellos casos en los que una predicción inicial sugiere una buena afinidad entre un ligando
y una proteína, pero que en realidad no resulta estable cuando se simula con más realismo.

Una vez identificadas moléculas con actividad prometedora frente a una diana biológica,
estas se consideran compuestos líderes, los cuales representan puntos de partida clave en el
proceso de desarrollo de fármacos.

Las simulaciones de dinámica molecular permiten analizar en detalle cómo interactúa un
compuesto líder con su diana, observando los contactos atómicos, los ajustes estructurales
y la estabilidad de la unión. A partir de esta información, es posible diseñar modificacio-
nes estructurales (por ejemplo, añadir o sustituir grupos químicos específicos) para mejorar
su eficacia, la selectividad (es decir, que actúe únicamente sobre la diana deseada) y otras
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propiedades farmacológicas como la solubilidad o la estabilidad en el organismo. Este pro-
ceso, conocido como optimización del compuesto líder, es esencial para avanzar desde un
candidato preliminar hasta un fármaco potencial.

Finalmente, esta estrategia ayuda a seleccionar candidatos farmacológicos, es decir, molé-
culas que, tras un filtrado computacional riguroso, presentan mayor probabilidad de éxito
en etapas posteriores como los ensayos preclínicos o clínicos. Este enfoque ha sido aplicado
con éxito al desarrollo de terapias frente a enfermedades como el cáncer, el VIH, trastornos
neurodegenerativos o infecciones virales como el SARS-CoV-2 [60].

En los últimos años, la combinación de MD con modelos de inteligencia artificial ha impul-
sado aún más el diseño computacional de fármacos. Modelos basados en redes neuronales,
como ANI [61] o DeepMD [62], permiten representar funciones de energía aprendidas a
partir de cálculos cuánticos, alcanzando una precisión similar pero con un coste computacio-
nal mucho menor [63]. Estas herramientas permiten generar nuevos compuestos, predecir
afinidades de unión o identificar patrones relevantes directamente a partir de grandes bases
de datos moleculares.

6.2. Materiales y nanotecnología
La dinámica molecular ha adquirido un papel fundamental en el campo de la ciencia de
materiales, al permitir simular el comportamiento de materiales a nivel atómico. En lugar
de describir los materiales mediante propiedades medias o macroscópicas, la MD permite
observar directamente cómo se mueven los átomos, cómo se rompen enlaces o cómo se
forman defectos internos bajo diferentes condiciones. Esto es especialmente útil en contextos
donde los métodos tradicionales (como modelos continuos o ensayos experimentales) no
permiten acceder a escalas nanométricas o tiempos extremadamente cortos. Esta técnica
proporciona una herramienta eficaz para investigar la estructura interna de sólidos cristalinos,
materiales amorfos, polímeros o aleaciones metálicas [26].

Simulación de propiedades de materiales
Mediante simulaciones de dinámica molecular es posible determinar muchas de las propie-
dades físicas clave de un material. En este contexto, el objetivo principal no es estudiar la
evolución temporal del sistema, sino realizar un análisis termodinámico que permita calcular
magnitudes a partir del comportamiento promedio del sistema en equilibrio. Por ejemplo, al
simular una red cristalina, como la del cobre o el silicio, es posible aplicar una deformación
virtual y observar cómo responden los átomos que la componen. A partir de esta respuesta,
se pueden calcular magnitudes relevantes como el módulo de elasticidad, que mide la rigidez
del material y cuantifica cuánto se deforma ante una tensión aplicada; la energía de cohesión,
que representa la energía necesaria para separar los átomos del sólido y refleja la estabilidad
interna de la estructura; y el límite elástico, que señala el punto a partir del cual el material
deja de comportarse de forma elástica y comienza a sufrir deformaciones permanentes. Estas
propiedades permiten caracterizar el comportamiento mecánico del material a nivel atómico,
algo fundamental para el diseño y la optimización de nuevos compuestos.

Además, se pueden estudiar defectos como dislocaciones (fallos lineales en la estructura),
vacantes (átomos que faltan) o intersticiales (átomos extra entre posiciones regulares), y ana-
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lizar cómo estos afectan a la resistencia mecánica, la difusión de átomos o la conductividad
térmica [64].

Otra aplicación importante es el estudio de procesos de fractura y fatiga. Simulando un
material con grietas o sometido a tensiones cíclicas, se puede observar cómo se propagan
fallos internos, lo cual es muy útil para diseñar materiales más resistentes o duraderos.

Modelado de superficies e interfaces
Muchas aplicaciones industriales y tecnológicas implican materiales con superficies o in-
terfaces (por ejemplo, un recubrimiento sobre una pieza metálica). La MD permite simular
qué ocurre en esas regiones de frontera, es decir, cómo se adsorben moléculas sobre una
superficie, cómo se produce el crecimiento de capas de material (crecimiento epitaxial) o
cómo se comportan los materiales en contacto cuando hay diferencias de estructura o com-
posición [65].

Este tipo de modelado es especialmente importante en áreas como la eléctronica, donde
se usan capas finas de materiales con propiedades específicas; en la nanofabricación, donde
se necesita entender procesos de deposición y litografía a escala atómica; o en fenómenos
como la corrosión y la adhesión, en los que se simula cómo interactúan los materiales con el
entorno o con otros sólidos.

Nanotecnología y materiales avanzados
La nanotecnología se basa en diseñar y manipular materiales a escala nanométrica (1 nanó-
metro = 10−9 metros). En este contexto, la dinámica molecular permite modelar estructuras
novedosas llamadas nanomateriales, que pueden tener propiedades muy diferentes a sus
contrapartes macroscópicas.

Algunos ejemplos importantes son:

Nanotubos de carbono (CNTs): estructuras cilíndricas formadas por átomos de car-
bono, extremadamente resistentes y ligeras. Con MD se puede estudiar su flexibilidad,
resistencia mecánica o capacidad de conducción térmica.

Fullerenos y nanocápsulas: esferas de carbono que pueden encapsular otras moléculas
(como fármacos), y cuya estabilidad y reactividad se pueden analizar por simulación.

Grafeno y materiales 2D: láminas de un átomo de grosor con propiedades electrónicas
y mecánicas excepcionales. La MD permite estudiar cómo vibran sus átomos (fonones),
cómo se comporta térmicamente o cómo se deforma bajo tensión [66].

Además, la dinámica molecular permite modelar fenómenos como el autoensamblaje de
nanopartículas, es decir, cómo ciertas moléculas se organizan espontáneamente formando
estructuras útiles. Estos fenómenos son clave en el diseño de nanodispositivos aplicados a la
medicina personalizada.

La interacción entre nanopartículas y sistemas biológicos (por ejemplo, nanopartículas
diseñadas para transportar fármacos) también ha sido ampliamente estudiada mediante di-
námica molecular, permitiendo predecir aspectos clave como la toxicidad, la absorción celular
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o la compatibilidad de los materiales utilizados en nanomedicina. Gracias a su capacidad
para incorporar entornos realistas (como agua, membranas o iones), la dinámica molecular
permite analizar estas interacciones con un nivel de detalle que complementa y profundiza
la información obtenida experimentalmente. [67].

En resumen, la dinámica molecular aporta una herramienta versátil para explorar y diseñar
materiales desde su estructura atómica, anticipando su comportamiento real incluso antes
de fabricarlos físicamente. Esta capacidad resulta especialmente útil en contextos de investi-
gación aplicada, innovación tecnológica y desarrollo de nuevos materiales con propiedades
a medida.

6.3. Química y física de fluidos
La dinámica molecular también se emplea para estudiar el comportamiento de fluidos a
escala molecular, es decir, considerando directamente la interacción entre las moléculas indi-
viduales que componen el líquido o gas. En este tipo de simulaciones, el objetivo principal
es caracterizar el sistema en equilibrio, por lo que se centran en el estudio termodinámico
del sistema, permitiendo calcular propiedades macroscópicas como la viscosidad (resisten-
cia al flujo), el coeficiente de difusión (cómo se dispersan las moléculas en el medio), la
tensión superficial (energía que se requiere para aumentar la superficie de un líquido) o la
conductividad térmica (capacidad del fluido para transferir calor) [15].

Esta forma de simular resulta especialmente útil cuando los modelos tradicionales, que
tratan los fluidos como medios continuos, no son suficientes para describir correctamente el
sistema. Esto ocurre, por ejemplo, cuando se trabaja a escalas muy pequeñas (nanométricas),
donde las propiedades del fluido dependen directamente del comportamiento individual
de las moléculas. En estos casos, tener en cuenta la naturaleza discreta de la materia y las
interacciones entre partículas es esencial para obtener resultados realistas [68].

Un ejemplo claro es el caso de los líquidos complejos, las soluciones iónicas (como la sal
disuelta en agua), los fluidos confinados en canales muy estrechos o las mezclas con muchos
tipos de moléculas. En todos ellos, las interacciones específicas entre moléculas pueden dar
lugar a efectos que los modelos continuos no predicen, como patrones de organización local,
separación de fases o transporte anómalo.

Por otro lado, la dinámica molecular también permite estudiar reacciones químicas en
medios líquidos utilizando enfoques híbridos, como el método QM/MM (Quantum Mecha-
nics/Molecular Mechanics). En este tipo de simulaciones, una parte del sistema (normalmente
donde tiene lugar la reacción) se modela con métodos de química cuántica, mientras que el
entorno restante se simula con dinámica clásica (ver Subsección 7.2.1). Este tipo de técnica
ha sido utilizado con éxito en el estudio de mecanismos enzimáticos, reacciones ácido-base
en disolución o procesos de transferencia electrónica [33, 56].

6.4. Estudios de energía y catalizadores
La dinámica molecular también se utiliza ampliamente en el estudio de tecnologías relaciona-
das con la producción, almacenamiento y conversión de energía. En particular, se ha aplicado
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al modelado de dispositivos como baterías de ion-litio, supercondensadores y celdas de com-
bustible [29]. Estos sistemas dependen críticamente de cómo se mueven los iones (átomos
cargados) dentro del material, de cómo interactúan con los electrodos y de los fenómenos que
ocurren en las interfaces entre diferentes fases (por ejemplo, entre un sólido y un líquido).

Mediante simulaciones de dinámica molecular es posible observar estos procesos a nivel
atómico, proporcionando información sobre la velocidad a la que se difunden los iones, cómo
afectan las impurezas o defectos estructurales al transporte iónico, o cómo varía la estructura
del material bajo diferentes condiciones de carga o temperatura. Esto es fundamental para
diseñar baterías más eficientes y duraderas, optimizar la estabilidad térmica de los materiales
activos o mejorar la conductividad de los electrolitos [64].

Otro campo muy importante en el que se aplica la dinámica molecular es la catálisis, es
decir, el estudio de materiales que aceleran las reacciones químicas sin consumirse en el
proceso. En catálisis heterogénea (donde el catalizador y los reactivos están en fases distintas,
como un sólido y un gas), la MD permite estudiar cómo se adsorben los reactivos sobre
la superficie del catalizador, cómo cambian de posición y reaccionan, y cómo se liberan los
productos. Estas simulaciones ayudan a entender la estructura y dinámica de los llamados
“sitios activos”, que son las regiones del material donde ocurren las reacciones [69].

En el caso de la catálisis homogénea (donde el catalizador está disuelto en el mismo medio
que los reactivos), la dinámica molecular también es útil para analizar el entorno solvatado6

del catalizador y cómo influye en su reactividad. Combinada con métodos cuánticos (como
el enfoque QM/MM), se pueden simular directamente las transformaciones químicas que
ocurren durante la catálisis [33, 56].

6Proceso por el cual las moléculas del disolvente (por ejemplo, agua) rodean a una especie química disuelta,
formando una capa de solvatación. Estas interacciones afectan a la estructura, estabilidad y reactividad de dicha
especie.
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A pesar de su consolidación como herramienta fundamental en la investigación computacio-
nal, la dinámica molecular continúa enfrentando importantes desafíos, tanto desde el punto
de vista metodológico como computacional. Aunque en las últimas décadas se han logra-
do avances significativos en técnicas numéricas robustas y en la capacidad computacional
disponible, sigue teniendo limitaciones que restringen su aplicabilidad en escenarios más
complejos o a escalas mayores. Estas limitaciones, sumadas al crecimiento exponencial de
los recursos de hardware y a los recientes avances en algoritmos inteligentes, han abierto
nuevas líneas de desarrollo con el objetivo de ampliar la aplicabilidad y mejorar la precisión
de esta técnica. En este capítulo se presentan dichas restricciones, se identifican tendencias
emergentes en el campo y se exponen diversas oportunidades de mejora que podrían marcar
la evolución futura de la MD.

7.1. Limitaciones actuales
A continuación, se describen algunas de las principales limitaciones actuales, tanto desde el
punto de vista computacional como metodológico:

7.1.1. Escalabilidad
Una de las principales limitaciones de la dinámica molecular clásica es su limitada escalabi-
lidad computacional. Si bien los métodos de paralelización y el uso de arquitecturas GPU
han permitido avances significativos en rendimiento, las simulaciones a gran escala siguen
estando condicionadas por el elevado coste computacional asociado al cálculo de fuerzas y
a la integración temporal. Esto se vuelve especialmente restrictivo cuando se desea simular
sistemas que contienen millones de átomos o que requieren tiempos de simulación del orden
de micro o milisegundos [15, 46].

Este cuello de botella impide que muchos fenómenos de interés, como el plegamiento de
proteínas, puedan ser simulados con suficiente resolución. Además, incluso en arquitecturas
de alto rendimiento, la comunicación entre procesos puede convertirse en un factor limitante,
especialmente cuando se emplean esquemas de descomposición espacial con frecuentes
intercambios de información entre nodos.

7.1.2. Precisión de los modelos de fuerza
Otra limitación crítica proviene de la precisión de los modelos de interacción utilizados, los
conocidos campos de fuerza. Los campos de fuerza clásicos, como AMBER, CHARMM o
OPLS, se basan en parametrizaciones empíricas que, si bien son eficientes, pueden carecer
de precisión cuando se aplican a entornos no estándar, como interfaces complejas, metales o
moléculas sintéticas, ya que en estos casos pueden darse tipos de enlace o interacciones que
no están correctamente representados en el modelo original [29]. Esta aproximación limita
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la transferibilidad de los modelos y su capacidad para predecir comportamientos fuera del
dominio de entrenamiento.

Además, estos campos de fuerza no incorporan efectos cuánticos explícitos, lo que puede
ser determinante en procesos donde se produce formación o ruptura de enlaces, transferencia
de carga o reorganización electrónica [33]. Por tanto, la calidad de los resultados obtenidos
depende en gran medida de la adecuación del modelo al problema específico.

7.1.3. Tiempo de simulación
Otro obstáculo importante es la restricción temporal de las simulaciones. Los algoritmos de
integración requieren pasos de tiempo muy pequeños (del orden de los femtosegundos) para
preservar la estabilidad numérica y resolver adecuadamente los modos vibracionales más
rápidos del sistema (ver Figura 10). Como consecuencia, para alcanzar escalas del orden de
microsegundos o más, se deben realizar millones de pasos, lo que incrementa notablemente
el coste computacional [56].

Esta limitación impide simular procesos lentos como el plegamiento de proteínas, la di-
fusión en materiales sólidos o los mecanismos de señalización celular. Muchas de estas
interacciones clave ocurren en escalas temporales inalcanzables para la dinámica molecu-
lar convencional, lo que requiere el uso de técnicas complementarias como simulaciones
multiescala, modelos acelerados o estrategias de muestreo mejorado [15].

7.2. Nuevas tendencias
Frente a estas limitaciones, se están explorando múltiples líneas de avance, entre las cuales
destacan las siguientes:

7.2.1. Métodos híbridos clásico-cuánticos (QM/MM)
Una de las estrategias más eficaces para estudiar sistemas complejos donde intervienen
tanto procesos mecánicos clásicos como fenómenos cuánticos es la combinación de dinámica
molecular clásica con métodos de estructura electrónica. Esta aproximación, conocida como
QM/MM (Quantum Mechanics/Molecular Mechanics), permite tratar una pequeña región del
sistema, donde ocurren procesos esencialmente cuánticos como reacciones químicas, ruptura
de enlaces o transferencia electrónica, mediante mecánica cuántica, mientras que el resto
del entorno (por ejemplo, el disolvente o la proteína circundante) se modela utilizando
potenciales clásicos menos costosos computacionalmente [33, 70, 71].

Sin embargo, conectar estas dos regiones no es trivial. Uno de los principales retos es lograr
una transición suave en la zona de frontera entre la región cuántica y la clásica, de forma que
no aparezcan efectos no realistas o inconsistencias en las fuerzas. Para conseguirlo, se han
desarrollado varias técnicas. Por ejemplo, los llamados átomos enlace se utilizan cuando un
enlace químico cruza la frontera QM/MM, simulando artificialmente una terminación para
mantener la validez del cálculo cuántico. También existen métodos de embebido electrostático,
en los que las cargas del entorno clásico afectan directamente al cálculo cuántico para simular
la influencia del entorno.
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Finalmente, en los enfoques de embedding polarizable, se permite que la región clásica
también responda a los cambios en la densidad electrónica de la región cuántica, simulando
un acoplamiento bidireccional más realista [71, 72].

Desde el punto de vista computacional, este método permite llevar a cabo simulaciones más
realistas de sistemas complejos sin asumir el elevado coste computacional que implicaría
un tratamiento cuántico completo. Actualmente, múltiples paquetes de simulación como
NAMD o GROMACS soportan implementaciones híbridas, combinando de forma eficiente
los cálculos de energía y fuerzas para ambas regiones [73, 74].

Por tanto, el enfoque QM/MM es una herramienta muy útil para estudiar procesos mole-
culares a diferentes escalas, tanto en sistemas biológicos como en materiales, proporcionando
un equilibrio entre precisión y eficiencia computacional. Su uso en simulaciones modernas
apunta a ser una de las formas más prometedoras de hacer que la dinámica molecular sea
aplicable a situaciones más realistas.

7.2.2. Aprendizaje automático para generación de campos de fuerza
En los últimos años, la combinación de dinámica molecular con técnicas de inteligencia
artificial y aprendizaje automático está revolucionando el campo [63]. Estas herramientas
están permitiendo abordar muchas de las limitaciones tradicionales de la dinámica molecular,
gracias a su capacidad para aprender patrones complejos a partir de grandes volúmenes de
datos y generalizar a nuevos escenarios.

Entre sus principales aplicaciones destacan:

La predicción eficiente de superficies de energía potencial, lo que permite evitar el
cálculo explícito de fuerzas mediante métodos cuánticos costosos.

La generación automática de campos de fuerza específicos mediante técnicas de apren-
dizaje supervisado o redes neuronales profundas.

La aceleración del muestreo del espacio de fases y la detección de eventos poco fre-
cuentes, como transiciones conformacionales o procesos de nucleación [60].

Una de las líneas más prometedoras en este ámbito son los neural network potentials, fun-
ciones de energía entrenadas sobre datos cuánticos de alta fidelidad, que permiten alcanzar
precisiones cercanas a la química cuántica a un coste computacional mucho menor. Modelos
avanzados como ANI o DeepMD, que se tratarán más adelante, han demostrado una nota-
ble capacidad para reproducir propiedades moleculares y dinámicas complejas, lo que los
convierte en herramientas clave para simulaciones de gran precisión [63].

7.2.3. Simulaciones multiescala y a gran escala
Otra tendencia creciente en el campo de la dinámica molecular es la simulación multiescala,
que busca combinar diferentes niveles de descripción para modelar sistemas complejos de
manera eficiente. Este enfoque permite acoplar modelos atomísticos de alta resolución con
representaciones más simplificadas o coarse-grained, manteniendo el detalle en las regiones
de interés sin caer en un coste computacional prohibitivo.
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El objetivo principal es conectar distintas escalas para poder simular sistemas de gran ta-
maño o procesos que ocurren en escalas de tiempo largas, como el plegamiento de proteínas,
la difusión de macromoléculas o fenómenos interfaciales. Esta técnica está siendo amplia-
mente utilizada en áreas como el diseño de materiales, la biología estructural y el estudio de
superficies y membranas [26, 75].

7.3. Oportunidades de mejora
La dinámica molecular está evolucionando a gran velocidad, gracias a mejoras en los métodos,
la tecnología y los enfoques teóricos. Esta sección explora algunas de las direcciones más
prometedoras para mejorar la precisión, eficiencia y aplicabilidad de las simulaciones en
ciencia de materiales, biología computacional y diseño molecular.

7.3.1. Nuevos algoritmos e integradores simplécticos
Como respuesta al elevado coste computacional de simular sistemas complejos durante
largos periodos de tiempo, se han desarrollado algoritmos de integración multiescala, entre
los que destaca el método RESPA (REference System Propagator Algorithm) [76]. Este enfoque
se basa en descomponer las fuerzas que actúan en el sistema según su escala temporal: las
fuerzas que varían rápidamente (como las vibraciones internas de una molécula) se integran
con pasos de tiempo pequeños, mientras que las fuerzas más lentas (como las interacciones
de largo alcance) se actualizan con menor frecuencia, utilizando pasos más grandes.

Gracias a esta división jerárquica, RESPA permite reducir significativamente el número
total de evaluaciones de fuerza sin comprometer la precisión ni la estabilidad numérica,
lo que lo convierte en una herramienta especialmente eficaz en sistemas que presentan
dinámicas en múltiples escalas temporales, como proteínas en disolución o materiales con
estructuras complejas.

Además de estos esquemas jerárquicos, se están desarrollando algoritmos de integración
adaptativos, que ajustan dinámicamente ciertos parámetros de la simulación, como el tamaño
del paso de integración, en función del comportamiento local del sistema. Por ejemplo, si
los átomos se mueven lentamente, el algoritmo puede aumentar el paso de integración para
reducir el tiempo de simulación; si detecta interacciones rápidas o colisiones, lo reduce
automáticamente para mantener la precisión y evitar errores numéricos. Gracias a este tipo
de integración adaptativa, se puede optimizar el uso de recursos computacionales sin perder
fiabilidad en los resultados.

Por otro lado, se están desarrollando algoritmos de integración de orden superior frente a
los esquemas clásicos vistos anteriormente. Estos nuevos métodos utilizan más información
(por ejemplo, derivadas de orden superior) para mejorar la precisión sin necesidad de usar
pasos de tiempo tan pequeños. Aunque su coste computacional por paso es mayor, permiten
emplear pasos de integración más grandes para alcanzar la misma precisión, lo que puede
traducirse en una mayor eficiencia a largo plazo.

Ambos enfoques se benefician del uso de arquitecturas modernas de computación paralela,
como GPUs o clústeres multinúcleo. Esto permite distribuir los cálculos más pesados y com-
plejos de forma eficiente, reduciendo significativamente los tiempos de simulación. Gracias
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a estas mejoras, la dinámica molecular puede usarse en sistemas más grandes y en procesos
de mayor duración [15, 28].

7.3.2. Avances en el diseño de campos de fuerza
Tradicionalmente, como se presentó en el Capítulo 5, los campos de fuerza más utilizados en
bioquímica y ciencia de materiales han sido AMBER, CHARMM, OPLS o GROMOS. Estos
modelos, aunque han demostrado ser eficaces en muchos contextos, presentan limitaciones
cuando se aplican a entornos no estándar, como sistemas metálicos, materiales con estructuras
poco convencionales, interfaces complejas o moléculas sintéticas. En estos casos, la precisión
de las simulaciones puede disminuir notablemente debido a la falta de parámetros adecuados
o a la incapacidad del modelo para capturar efectos cuánticos sutiles [29].

Para superar estas limitaciones, en los últimos años se han desarrollado campos de fuerza
de nueva generación basados en datos obtenidos mediante química cuántica y técnicas de
aprendizaje automático. Estos enfoques, conocidos como machine-learned potentials, buscan
aproximar con precisión la superficie de energía potencial de un sistema sin depender de
expresiones funcionales predefinidas, sino aprendiendo directamente de grandes conjuntos
de datos cuánticos.

Dos ejemplos destacados de esta nueva generación de campos de fuerza son los modelos
ANI (Accurate Neural Network Potentials) y DeepMD. Ambos combinan el aprendizaje automá-
tico con datos de alta precisión provenientes de cálculos de química cuántica para modelar
con mayor fidelidad las interacciones atómicas.

El modelo ANI [61] utiliza redes neuronales entrenadas con miles de cálculos realizados
mediante Density Functional Theory (DFT)7. Esta técnica proporciona energías y fuerzas de
referencia con alta precisión, lo que permite a la red aprender una aproximación muy cercana
a la verdadera superficie de energía potencial. Gracias a su arquitectura y a la forma en la
que se representan las moléculas (usando descriptores rotacional y traslacionalmente inva-
riantes), ANI puede generalizar a moléculas que no estaban en el conjunto de entrenamiento,
manteniendo una buena precisión energética. Esto lo hace especialmente útil en simulaciones
biomoleculares, farmacológicas o de materiales orgánicos.

Por otro lado, el modelo DeepMD [62] se centra en extender esta idea a materiales más
diversos, incluidos sólidos, líquidos y sistemas complejos como aleaciones metálicas o super-
ficies. A diferencia de ANI, DeepMD representa las configuraciones atómicas directamente
como entradas a una red neuronal profunda que respeta las simetrías físicas del sistema (tras-
lación, rotación y permutación). Esta red es capaz de reproducir con precisión las energías,
fuerzas y tensores de estrés obtenidos de cálculos ab initio, permitiendo realizar simulaciones
de dinámica molecular con calidad cuántica pero a un coste computacional similar al de los
modelos clásicos.

Este tipo de enfoques híbridos, que combinan datos obtenidos mediante cálculos cuánti-
cos con técnicas de aprendizaje automático, permiten aumentar notablemente la precisión
y transferibilidad de los campos de fuerza, superando muchas de las limitaciones de los
modelos clásicos cuando se enfrentan a entornos químicos no estándar [63].

7La teoría del funcional de la densidad (DFT) es un enfoque computacional de la mecánica cuántica que permite
calcular la energía de un sistema de muchos electrones a partir únicamente de su densidad electrónica, en lugar
de usar la función de onda completa, lo cual reduce considerablemente el coste computacional [77].
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Este trabajo se ha centrado en el estudio de la dinámica molecular, abarcando desde sus
fundamentos teóricos hasta sus principales aplicaciones, profundizando en los distintos
algoritmos empleados en las simulaciones.

En primer lugar, destacar la utilidad e importancia que tiene la dinámica molecular en
el estudio de sistemas atómicos y moleculares con muchos grados de libertad. Su capaci-
dad para describir la evolución temporal de sistemas complejos bajo distintas condiciones
termodinámicas la convierte en una técnica clave para calcular propiedades estructurales,
dinámicas y energéticas que son difíciles de obtener de forma experimental.

Del estudio teórico realizado se concluye que uno de los aspectos clave para obtener
una simulación fiable es la correcta elección del integrador numérico, junto con un paso de
integración adecuado, ya que ambos influyen directamente en la estabilidad del algoritmo.
Los métodos simplécticos, como el algoritmo de Verlet y sus variantes, garantizan una buena
conservación de la energía a largo plazo siempre que el paso de integración sea apropiado,
lo que resulta fundamental para evitar inestabilidades numéricas. Del mismo modo, tanto
el campo de fuerzas como la representación empleada para describir el sistema son factores
críticos, ya que influyen significativamente en el equilibrio entre la precisión y el coste
computacional de la simulación.

Además, en el trabajo se evidencia la importancia de hacer uso de mecanismos de control
como termostatos y barostatos, ya que sin ellos no sería posible simular muchos de los
escenarios que se dan en condiciones reales. No obstante, su aplicación debe realizarse con
precaución, pues pueden alterar las propiedades estadísticas del sistema y comprometer
la fiabilidad de la simulación. Asimismo, se ha destacado la importancia de llevar a cabo
una adecuada etapa de minimización de energía antes de iniciar la simulación, la cual
permite eliminar configuraciones artificiales no físicas y partir de un estado estable. En
sistemas complejos, donde la superficie de energía presenta múltiples mínimos locales, se
ha destacado el uso de metaheurísticas como complemento a los métodos deterministas
tradicionales, especialmente cuando se busca aproximarse al mínimo global.

Luego, se ha expuesto la utilidad de emplear unidades reducidas en simulaciones de
dinámica molecular, ya que permiten simplificar considerablemente las expresiones físicas
y evitar errores derivados de conversiones entre sistemas de unidades. Además, mejoran
la estabilidad numérica y la generalización del código, debido a que los resultados pueden
reescalarse posteriormente a unidades físicas reales si se desea. El uso de unidades reducidas
facilita también la comparación entre diferentes simulaciones y modelos. Por todo esto,
representa una práctica habitual en simulaciones de dinámica molecular.

Por otro lado, se ha mostrado que la dinámica molecular tiene aplicaciones de gran re-
levancia en numerosas disciplinas científicas y tecnológicas. Entre ellas, destaca el diseño
racional de fármacos, donde permite estudiar con detalle la interacción entre moléculas y
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sus posibles dianas terapéuticas. Esta capacidad resulta clave en la búsqueda de tratamientos
para enfermedades complejas como el cáncer, el VIH o los trastornos neurodegenerativos,
cuya cura representaría, sin duda, un hito histórico en la medicina. Además, la dinámica
molecular también se aplica en campos como la ciencia de materiales, la nanotecnología o la
biología estructural.

Finalmente, se ponen de manifiesto las limitaciones actuales de la dinámica molecular,
entre las que destacan la limitada escalabilidad computacional, la falta de precisión de los
modelos de campos de fuerza clásicos para describir fenómenos de naturaleza cuántica y los
elevados tiempos de simulación requeridos por ciertos experimentos. Frente a estas barreras,
se presentan líneas de investigación abiertas y prometedoras, como el uso de inteligencia
artificial, la integración de métodos multiescala o el aprovechamiento de arquitecturas de
alto rendimiento, que reflejan el gran potencial de la dinámica molecular para seguir evolu-
cionando.
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A. Código

Para apoyar la explicación de la simplecticidad y de la influencia del valor del paso de
integración ∆t en la estabilidad del integrador, se han implementado dos scripts:

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 # Parámetros del sistema

5 dt = 0.02 # paso de tiempo

6 tend = 20 # tiempo de finalización de la simulación

7 n = int(tend / dt) # números de iteraciones en la simulación

8 x0, v0 = 0.0, 1.0 # posición y velocidades iniciales

9 k, m = 1.0, 1.0 # constante de boltzmann y masa del cuerpo

10
11 # Vector de tiempos

12 tvec = np.linspace(0, tend , n)

13
14 # Algoritmo de Verlet

15 x_verlet = np.zeros(n) # vector de posición

16 v_verlet = np.zeros(n) # vector de velocidad

17 x_verlet [0] = x0 # posición inicial

18 v_verlet [0] = v0 # velocidad inicial

19 x_prev = x0 - v0 * dt + 0.5 * (-k * x0 / m) * dt**2 # x(-dt)

20
21 # Integración con Verlet (posición)

22 for i in range(0, n - 1):

23 force = -k * x_verlet[i]

24 x_next = 2 * x_verlet[i] - x_prev + (dt**2 / m) * force

25 x_prev = x_verlet[i]

26 x_verlet[i + 1] = x_next

27
28 # Cálculo de velocidades con Verlet

29 for i in range(1, n - 1):

30 v_verlet[i] = (x_verlet[i + 1] - x_verlet[i - 1]) / (2 * dt)

31
32 # Recorte para espacio de fases , ya que v[n] no se calcula

33 x_verlet_cut = x_verlet [:-1]

34 v_verlet_cut = v_verlet [:-1]

35
36 # Algoritmo de Euler

37 x_euler = np.zeros(n) # vector de posición

38 v_euler = np.zeros(n) # vector de velocidad

39 x_euler [0] = x0 # posición inicial

40 v_euler [0] = v0 # velocidad inicial

41
42 # Cálculo de posiciones y velocidades

43 for i in range(n - 1):
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44 x_euler[i + 1] = x_euler[i] + v_euler[i] * dt

45 v_euler[i + 1] = v_euler[i] - k * x_euler[i] * dt

46
47 # Solución exacta

48 x_exact = v0 * np.sin(tvec) + x0 * np.cos(tvec)

49
50 # Gráfica conjunta del algoritmo de Verlet

51 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(12, 5))

52
53 # Posición

54 ax1.plot(tvec , x_verlet , label='Verlet ', linewidth =2)

55 ax1.plot(tvec , x_exact , '--', label='Exacta ', linewidth =2)

56 ax1.set_title(f"Algoritmo de Verlet (dt = {dt})")

57 ax1.set_xlabel("Tiempo")

58 ax1.set_ylabel("Posición")

59 ax1.legend ()

60 ax1.grid(True)

61
62 # Espacio de fases

63 ax2.plot(x_verlet_cut , v_verlet_cut , color='tab:blue')

64 ax2.set_xlabel("Posición")

65 ax2.set_ylabel("Momento")

66 ax2.set_title("Verlet - Espacio de fases")

67 ax2.axis("equal")

68 ax2.grid(True)

69
70 plt.tight_layout(rect=[0, 0.03, 1, 0.95])

71 plt.show()

72
73 # Gráfica conjunta del algoritmo de Euler

74 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(12, 5))

75
76 # Posición

77 ax1.plot(tvec , x_euler , label='Euler ', linewidth =2)

78 ax1.plot(tvec , x_exact , '--', label='Exacta ', linewidth =2)

79 ax1.set_title(f"Algoritmo de Euler (dt = {dt})")

80 ax1.set_xlabel("Tiempo")

81 ax1.set_ylabel("Posición")

82 ax1.legend ()

83 ax1.grid(True)

84
85 # Espacio de fases

86 ax2.plot(x_euler , v_euler , color='tab:red')

87 ax2.set_xlabel("Posición")

88 ax2.set_ylabel("Momento")

89 ax2.set_title("Euler - Espacio de fases")

90 ax2.axis("equal")

91 ax2.grid(True)

92
93 plt.tight_layout(rect=[0, 0.03, 1, 0.95])

94 plt.show()
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Código A.1: Script para reflejar la diferencia entre los algoritmos simplécticos y no
simplécticos. Para ello, se ha simulado un oscilador armónico con el método de
Euler (no simpléctico) y con el de Verlet (simpléctico). En ambas simulaciones
se muestra la evolución temporal de la posición y la trayectoria en el espacio de
fases obtenidas.

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 def verlet_simulation(ax, dt, t_end=20, k=1.0, m=1.0, x0=0.0, v0=1.0):

5 n = int(t_end / dt) # números de iteraciones en la

simulación

6 x = np.zeros(n) # vector de posición

7 v = np.zeros(n) # vector de velocidad

8 tvec = np.linspace(0, t_end , n) # vector de tiempos

9
10 # Condiciones iniciales

11 x[0] = x0

12 x_prev = x0 - v0 * dt + 0.5 * (-k * x0 / m) * dt**2 # x(-dt)

13
14 # Integración con Verlet (posición)

15 for i in range(0, n - 1):

16 force = -k * x[i]

17 x_next = 2 * x[i] - x_prev + (dt**2 / m) * force

18 x_prev = x[i]

19 x[i + 1] = x_next

20
21 # Solución exacta

22 x_exact = x0 * np.cos(tvec) + v0 * np.sin(tvec)

23
24 # Gráfico

25 ax.plot(tvec , x, label="Verlet")

26 ax.plot(tvec , x_exact , '--', label="Exacta")

27 ax.set_xlabel("Tiempo")

28 ax.set_ylabel("Posición")

29 ax.set_title(f"dt = {dt}")

30 ax.legend ()

31 ax.grid(True)

32
33 # Crear una figura con 2 subplots

34 fig , (ax1 , ax2) = plt.subplots(2, 1, figsize =(10, 8))

35
36 # Ejecutar para dt = 0.02 y dt = 2

37 verlet_simulation(ax1 , dt =0.02)

38 verlet_simulation(ax2 , dt=2)

39
40 plt.tight_layout(rect=[0, 0.03, 1, 0.95])

41 plt.show()
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A. Código

Código A.2: Script para comprobar la estabilidad del algoritmo de Verlet para distintos
valores del paso de integración ∆t. Para ello, se ha simulado un oscilador
armónico y se ha mostrado la evolución temporal obtenida de la posición para
∆t = 0.02 y para ∆t = 2.

El código mostrado se puede encontrar en el siguiente repositorio:

https://github.com/Joarpe02/TFG_DinamicaMolecular.git
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Adhesión Capacidad de dos materiales diferentes para mantenerse unidos en una interfaz
común, debido a interacciones físicas (como fuerzas de Van der Waals) o químicas
(como enlaces covalentes o iónicos).

Aminoácido Molécula orgánica que contiene un grupo amino (–NH2), un grupo carboxilo
(–COOH) y una cadena lateral específica (grupo R). Los aminoácidos son las unidades
básicas que forman las proteínas mediante enlaces peptídicos.

Átomo Es la unidad básica de la materia. Está compuesto por un núcleo, que contiene proto-
nes (con carga positiva) y neutrones (sin carga), y por electrones (con carga negativa)
que giran alrededor del núcleo.

Baño térmico Entorno idealizado que intercambia energía térmica con el sistema simulado,
manteniendo su temperatura constante.

Baño barométrico Entorno idealizado que permite el intercambio de volumen con el sistema,
manteniendo la presión constante.

Barostato Mecanismo que regula la presión del sistema en una simulación de dinámica
molecular, ajustando el volumen de la celda simulada para mantener la presión deseada.

Campo de fuerza (force field) Modelo matemático que describe las fuerzas internas y externas
actuando sobre un sistema molecular. Incluye términos para enlaces, ángulos, torsiones,
y fuerzas de Van der Waals y electrostáticas.

Catálisis Estudio de materiales que aceleran las reacciones químicas sin consumirse en el
proceso.

Catalizador Sustancia que aumenta la velocidad de una reacción química sin consumirse en
el proceso.

Centro de masas Punto que representa el movimiento del sistema como un todo. Por ejemplo,
si no hay fuerza neta, entonces el centro de masas tiene un movimiento rectilíneo y
uniforme.

Coarse-graining Técnica de simplificación utilizada en simulaciones en la que se agrupan
varios átomos en una única partícula efectiva.

Colectivo En mecánica estadística, un colectivo (o ensamble) representa el conjunto de todas
las configuraciones microscópicas posibles de un sistema que cumplen ciertas condi-
ciones macroscópicas impuestas externamente, como número de partículas, volumen,
energía o temperatura.

Colectivo canónico (NVT) Colectivo en el que se mantienen constantes el número de partículas
(N), el volumen (V) y la temperatura (T) del sistema. Este tipo de simulación requiere
el uso de un termostato.
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Colectivo isóbaro-isotermo (NPT) Colectivo en el que se mantienen constantes el número de
partículas (N), la presión (P) y la temperatura (T) del sistema. Este tipo de simulación
requiere el uso tanto de un termostato como de un barostato.

Colectivo microcanónico (NVE) Colectivo en el que se mantienen constantes el número de par-
tículas (N), el volumen (V) y la energía total (E) del sistema.

Complejos biomoleculares Conjuntos de macromoléculas biológicas, como proteínas, ácidos
nucleicos o lípidos, que interactúan de manera específica y estable para llevar a cabo
funciones biológicas concretas.

Compuesto líder Molécula con actividad biológica prometedora que actúa sobre una diana te-
rapéutica concreta y que sirve como punto de partida para el desarrollo y optimización
de nuevos fármacos.

Configuración estable Estado del sistema en el que las partículas se encuentran en un mínimo
local de la superficie de energía potencial.

Corrosión Proceso químico o electroquímico mediante el cual un material, normalmente me-
tálico, se degrada debido a su interacción con el entorno.

CPU (Central Processing Unit) Unidad central de procesamiento de un ordenador. Es el compo-
nente encargado de ejecutar instrucciones secuenciales y coordinar el funcionamiento
del resto del sistema.

Deformación anisotrópica Cambio en la forma y/o volumen del sistema en el que las distintas
direcciones espaciales pueden escalarse de manera diferente.

Deformación isotrópica Cambio en el volumen de un sistema en el que todas las dimensiones
espaciales se escalan por igual, preservando la forma del sistema.

Deposición Técnica utilizada en ciencia de materiales y nanotecnología para depositar capas
delgadas de material sobre una superficie.

Diana biológica Molécula del organismo (generalmente una proteína, como un receptor o
una enzima) cuya modulación por parte de un compuesto químico produce un efecto
terapéutico deseado.

Docking Técnica computacional utilizada para predecir la orientación y afinidad de unión
entre una molécula pequeña (ligando) y una macromolécula (receptor o enzima).

Enlace peptídico Enlace covalente que une el grupo carboxilo (–COOH) de un aminoácido
con el grupo amino (–NH2) de otro, liberando una molécula de agua.

Entorno solvatado Sistema en el que una o más moléculas (solutos) están rodeadas por molé-
culas de disolvente, comúnmente agua.

Enzima Proteína especializada que actúa como catalizador biológico, acelerando reacciones
químicas específicas sin consumirse en el proceso.

Ergodicidad Propiedad estadística según la cual el promedio temporal de una magnitud a lo
largo de una trayectoria del sistema coincide con su promedio en el colectivo estadístico.

68



Glosario

Espacio de fases Espacio matemático multidimensional en el que cada punto representa un
estado completo del sistema, especificado por las coordenadas y los momentos de todas
las partículas.

Fase de equilibrado Etapa de la simulación en la que se lleva al sistema a una situación de
equilibrio a partir de su configuración inicial.

Fase de producción Etapa de la simulación en la que se generan las trayectorias del sistema, a
partir de las cuales se calculan propiedades físicas y termodinámicas.

Fluido Sustancia que puede fluir y adaptarse a la forma del recipiente que la contiene. In-
cluye líquidos, gases y plasmas. Los fluidos carecen de forma fija y pueden sufrir
deformaciones continuas bajo la acción de una fuerza, por pequeña que sea.

GPU (Graphics Processing Unit) Unidad de procesamiento gráfico especializada en operaciones
de cálculo en paralelo.

HPC (High-Performance Computing) Conjunto de técnicas y recursos computacionales que per-
miten resolver problemas de elevada complejidad mediante el uso de arquitecturas
paralelas, clústeres de ordenadores o supercomputadores.

Ligando Molécula que se une de manera específica y reversible a una macromolécula, como
una proteína o un receptor.

Lípido Molécula orgánica que desempeña funciones estructurales y de almacenamiento ener-
gético.

Litografía Técnica de microfabricación utilizada para transferir patrones definidos sobre una
superficie mediante el uso de radiación (habitualmente luz ultravioleta).

Membranas celulares Estructuras lipídicas que delimitan las células, regulando el transporte
de sustancias y la comunicación entre compartimentos.

Molécula Agrupación de dos o más átomos unidos mediante enlaces químicos.

Metaheurística Estrategia de optimización general que guía y controla algoritmos de bús-
queda para resolver problemas complejos donde los métodos deterministas resultan
ineficaces. Las metaheurísticas no garantizan encontrar el óptimo global, pero son útiles
para explorar y explotar adecuadamente el espacio de búsqueda.

Paisaje energético Representación conceptual de la energía potencial de un sistema en función
de sus configuraciones microscópicas. Cada punto del paisaje corresponde a un estado
del sistema, y la topología del mismo refleja la estabilidad relativa de las configuracio-
nes, así como las trayectorias posibles de transición entre ellas.

Paso de integración Unidad de tiempo que separa dos estados consecutivos en una simulación
numérica.

Período Tiempo que tarda una partícula en completar un ciclo completo de oscilación. En
simulaciones de dinámica molecular, se usa como referencia para seleccionar un paso de
integración adecuado, asegurando una representación precisa del movimiento atómico.

69



Glosario

PBC (Periodic Boundary Conditions) Condiciones de contorno periódicas utilizadas en simu-
laciones para evitar efectos de borde artificiales. Consisten en replicar la celda de
simulación en todas las direcciones del espacio, de modo que cuando una partícula
sale por un lado, entra por el lado opuesto. Esto permite simular sistemas infinitos a
partir de un número finito de partículas.

Potencial de interacción Función matemática que describe la energía potencial entre pares de
partículas en función de su distancia o configuración relativa. Ejemplos comunes son
el potencial de Lennard-Jones y el potencial de Coulomb.

Proteína Molécula biológica formada por cadenas de aminoácidos unidas mediante enlaces
peptídicos. Su estructura tridimensional determina su función.

Radio de corte Distancia máxima a la que se consideran las interacciones entre partículas
en una simulación. Más allá de este radio, las fuerzas (como las de Lennard-Jones o
electrostáticas) se despreciarán para reducir el coste computacional, asumiendo que su
contribución es insignificante.

Radio de vecindad Distancia superior al radio de corte que se utiliza para construir listas de
vecinos en simulaciones. Permite anticipar qué partículas podrían entrar en la zona de
interacción en los siguientes pasos de la simulación, evitando recalcular interacciones
en cada paso y mejorando la eficiencia computacional.

Receptor Proteína que reconoce y se une de manera específica a un ligando, desencadenando
una respuesta bioquímica o celular.

Reversibilidad temporal Propiedad de las ecuaciones de movimiento de la mecánica clásica
por la cual, si se invierte el sentido del tiempo y los momentos de las partículas, el
sistema sigue una trayectoria compatible con las leyes físicas originales. Esta simetría
implica que el sistema puede evolucionar hacia atrás en el tiempo siguiendo las mismas
ecuaciones que rigen su evolución hacia adelante.

Simplecticidad Propiedad matemática de ciertos integradores que preservan la estructura
geométrica del sistema hamiltoniano, evitando la acumulación sistemática de errores.
En particular, conservan el volumen en el espacio de fases.

Termostato Mecanismo que regula la temperatura del sistema en una simulación de dinámica
molecular, asegurando que permanezca próxima a un valor objetivo.

Tiempo de relajación Tiempo que tarda un sistema en volver a un estado de equilibrio o
cuasi-equilibrio tras una perturbación.

Trade-off Compromiso inherente en el diseño de modelos o algoritmos, donde la mejora de
una característica (como la precisión) suele implicar una pérdida en otra (como el coste
computacional).
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