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Summary

This Final Degree Project has focused on the study of molecular dynamics (MD), a com-
putational technique that enables the modeling of atomic and molecular systems based on
their interactions. Throughout the project, a comprehensive analysis of this methodology has
been carried out, covering everything from its theoretical foundations to its various practical
applications, with particular attention to the algorithmic tools used in simulations.

First, the historical and scientific context in which molecular dynamics emerged has been
introduced, from the pioneering experiments of Alder and Wainwright in the 1950s, through
the fundamental contributions of Rahman and Verlet, to the technological advances that
enabled the application of these methods to the study of complex biological systems and
materials using high-performance computing (HPC) and graphics processing units (GPUs).
In summary, the milestones that allowed the transition from simple hard-sphere gas sim-
ulations to advanced simulations of proteins, solvents, or crystalline networks have been
identified, consolidating molecular dynamics as a key tool in materials science, biophysics,
and molecular design.

Next, the project addresses the foundations of classical and statistical mechanics that form
the basis of simulations. On one hand, it analyzes how Newton’s laws lead to the equations
of motion governing the evolution of a particle system. These equations allow the problem
to be formulated as a Hamiltonian system, whose mathematical structure imposes certain
properties that must be respected by numerical algorithms. One of the most relevant is
symplecticity—a property that must be preserved by integration methods to ensure physi-
cally coherent long-term simulations. In this context, the Verlet algorithm and its variants
have been studied, highlighting their ability to conserve system energy over time and their
numerical stability compared to non-symplectic methods such as the Euler integrator. The
importance of selecting an appropriate integration step to ensure both stability and accuracy
has also been discussed.

On the other hand, the role of interaction potentials in molecular dynamics has been
analyzed, particularly classical force fields. These models approximate intermolecular forces
through terms representing bonds, angles, torsions, as well as Van der Waals and electrostatic
interactions. It has been emphasized how the choice of force field directly affects the precision
and applicability of the simulation, making proper parametrization essential to faithfully
represent the studied systems. Additionally, the importance of the level of detail with which
the system is represented has been highlighted, addressing the trade-off between accuracy
and computational cost.

An essential part of the work has been the discussion of the different thermodynamic
ensembles (NVE, NVT, NPT) and how they are implemented in practice through the use of
thermostats and barostats. The most commonly used methods have been examined, such as
the Berendsen and Nosé-Hoover thermostats, explaining their advantages, limitations, and
their impact on the system’s dynamics and statistics. Regarding barostats, the functioning of
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Summary

the Berendsen and Parrinello-Rahman methods has been explained, the latter being especially
useful in simulations of materials under stress.

Subsequently, the issue of simulation initialization has been addressed, highlighting the
importance of performing a prior energy minimization step to avoid artificial configurations
with high energies or particle overlaps. This step relies on optimization methods, such as gra-
dient descent or conjugate gradient, which allow for the identification of stable configurations
corresponding to local minima on the potential energy surface. In complex systems, where
this surface presents multiple local minima, the role of metaheuristics has been emphasized
as tools to escape from these minima and approach the global minimum. In this context,
Monte Carlo methods such as the Metropolis algorithm have also been introduced, offering
an alternative to molecular dynamics by generating random system configurations based on
probabilistic criteria.

A key aspect addressed in the project has been the use of reduced units in simulations.
This technique allows physical quantities to be expressed in a dimensionless form by using
characteristic parameters of the system as scaling factors. This not only simplifies the physical
expressions used but also improves numerical stability and facilitates comparison between
different simulations. Furthermore, it allows code generalization, since results can later be
rescaled to real physical units if desired. Finally, a pseudo-algorithm has been designed to
perform a molecular dynamics simulation using this unit system.

The great potential of molecular dynamics in real-world applications is also highlighted.
Its uses in materials science, computational chemistry, structural biology, and particularly
in drug design have been discussed. In the latter field, simulations help understand ligand-
protein binding, evaluate the stability of molecular complexes, and investigate interactions at
the atomic level. These capabilities are essential to accelerate the discovery of new treatments
for diseases such as cancer, HIV, and neurodegenerative disorders.

Finally, the project dedicates a section to the current limitations of molecular dynamics.
It analyzes how computational scalability remains a challenge, especially for large or long-
duration simulations. It also points out the inability of classical force fields to accurately
describe quantum phenomena, which has motivated the development of hybrid approaches
such as the QM /MM method. Based on these limitations, several opportunities for improve-
ment are identified, focusing on the application of artificial intelligence techniques, the inte-
gration of multiscale methods, and the exploitation of high-performance architectures—thus
reflecting the great potential of molecular dynamics.

In summary, this work provides an overview of molecular dynamics, covering its theoretical
foundations, computational methods, techniques for regulating thermodynamic conditions,
optimization strategies, and major applications in modern science. It concludes that, despite
its limitations, molecular dynamics is a fundamental tool for studying complex systems at
the atomic scale, with significant room for advancement.
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Resumen

Este Trabajo Fin de Grado se ha centrado en el estudio de la dindmica molecular (MD), una
técnica computacional que permite modelar sistemas atémicos y moleculares a partir de sus
interacciones. A lo largo del trabajo, se ha llevado a cabo un andlisis exhaustivo de esta meto-
dologia, abordando desde sus fundamentos teéricos hasta sus distintas aplicaciones practicas,
con especial atencién a las herramientas algoritmicas empleadas en las simulaciones.

En primer lugar, se ha introducido el contexto histérico y cientifico en el que surge la
dindmica molecular, desde los experimentos pioneros de Alder y Wainwright en los afios
50, pasando por las contribuciones fundamentales de Rahman y Verlet, hasta los avances
tecnolégicos que posibilitaron la aplicacién de estos métodos al estudio de sistemas biol6-
gicos complejos y materiales mediante el uso de ordenadores de alto rendimiento (HPC)
y unidades de procesamiento grafico (GPUs). En resumen, se han identificado los hitos
que permitieron pasar de simulaciones simples de gases duros a simulaciones avanzadas
de proteinas, disolventes o redes cristalinas, consolidando la dindmica molecular como una
herramienta clave en ciencia de materiales, biofisica y disefio molecular.

Seguidamente, el trabajo aborda los fundamentos de la mecénica cldsica y estadistica que
sustentan las simulaciones. Por un lado, se ha analizado cémo, a partir de las leyes de New-
ton, se establecen las ecuaciones de movimiento que gobiernan la evolucién de un sistema de
particulas. Estas ecuaciones permiten formular el problema como un sistema hamiltoniano,
cuya estructura matematica impone ciertas propiedades que deben ser respetadas por los
algoritmos numéricos. Una de las mas relevantes es la simplecticidad, propiedad que debe
preservarse en los métodos de integraciéon para garantizar una simulacién fisicamente cohe-
rente a largo plazo. En este contexto, se han estudiado el algoritmo de Verlet y sus variantes,
destacando su capacidad para conservar la energia del sistema a largo plazo y su estabilidad
numérica frente a otros métodos no simplécticos como el integrador de Euler. Asimismo, se
ha explicado la importancia de seleccionar un paso de integraciéon adecuado para asegurar
tanto la estabilidad como la precisién de la simulacién.

Por otro lado, se ha analizado el papel de los potenciales de interaccién en dindmica
molecular, en particular los campos de fuerza clésicos. Estos modelos permiten aproximar las
fuerzas intermoleculares mediante términos que representan enlaces, dngulos, torsiones, asi
como interacciones de Van der Waals y electrostaticas. Se ha destacado cémo la eleccién del
campo de fuerza condiciona directamente la precision y aplicabilidad de la simulacién, siendo
imprescindible una parametrizacién adecuada para representar con fidelidad los sistemas
estudiados. Ademads, se ha puesto de manifiesto la importancia del nivel de detalle con el
que se representa el sistema, abordando el trade-off entre precisién y coste computacional.

Una parte esencial del trabajo ha sido la discusion de los diferentes colectivos termodindmi-
cos (NVE, NVT, NPT) y como se implementan en la prictica mediante el uso de termostatos
y barostatos. Se ha profundizado en los métodos mads utilizados, como los termostatos de Be-
rendsen y Nosé-Hoover, explicando sus ventajas, limitaciones y su impacto sobre la dindmica
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Resumen

y la estadistica del sistema. En el caso de los barostatos, se ha explicado el funcionamiento
del método de Berendsen y del método de Parrinello-Rahman, este tltimo especialmente ttil
en simulaciones de materiales sometidos a tensiones.

Posteriormente, se ha abordado el problema de la inicializacién de las simulaciones, des-
tacando la importancia de realizar una etapa previa de minimizacién de energia para evitar
configuraciones artificiales con altas energias o solapamientos entre particulas. Esta etapa se
basa en métodos de optimizacién, como el descenso por gradiente o el gradiente conjugado,
que permiten encontrar configuraciones estables correspondientes a minimos locales de la
superficie de energia potencial. En sistemas complejos, donde dicha superficie presenta mul-
tiples minimos locales, se ha resaltado el papel de las metaheuristicas como herramientas
para escapar de estos minimos y aproximarse al minimo global. En este contexto, también
se han presentado los métodos de Monte Carlo, como el algoritmo de Metropolis, los cuales
ofrecen una alternativa a la dindmica molecular al generar configuraciones aleatorias del
sistema segun criterios probabilisticos.

Un aspecto clave tratado en el trabajo ha sido el uso de unidades reducidas en las si-
mulaciones. Esta técnica permite expresar las magnitudes fisicas de forma adimensional,
utilizando como escala parametros caracteristicos del sistema. Esto no solo simplifica las
expresiones fisicas empleadas, sino que también mejora la estabilidad numérica y facilita
la comparacién entre diferentes simulaciones. Ademads, permite generalizar el c6digo, ya
que los resultados pueden reescalarse posteriormente a unidades fisicas reales si se desea.
Finalmente, se ha disefiado un pseudo-algoritmo que realiza una simulacién de dindmica
molecular que pone en practica este sistema de unidades.

A continuacién, se sefiala el gran potencial de la dindmica molecular en aplicaciones
reales. Se han comentado sus usos en ciencia de materiales, quimica computacional, biologia
estructural y, en particular, en el disefio de firmacos. En este tiltimo dmbito, se ha discutido
cémo las simulaciones permiten entender el acoplamiento entre ligandos y proteinas, evaluar
la estabilidad de complejos moleculares e investigar las interacciones a nivel atémico. Estas
capacidades son fundamentales para acelerar el descubrimiento de nuevos tratamientos
frente a enfermedades como el cdncer, el VIH o enfermedades neurodegenerativas.

Finalmente, el trabajo dedica una seccién a las limitaciones actuales de la dindmica mo-
lecular. Se ha analizado cémo la escalabilidad computacional contintia siendo un desafio,
especialmente en simulaciones de gran tamafio o de larga duracién temporal. También se ha
sefialado la incapacidad de los campos de fuerza cldsicos para describir con precisién fené-
menos de naturaleza cudntica, lo que ha motivado el desarrollo de enfoques hibridos como
el método QM/MM. A partir de estas limitaciones, se identifican diversas oportunidades de
mejora, centradas en la aplicacién de técnicas de inteligencia artificial, integracién de méto-
dos multiescala y en el aprovechamiento de arquitecturas de alto rendimiento, reflejando asi
el gran potencial de la dindmica molecular.

En resumen, este trabajo ofrece una visién general de la dindmica molecular, abarcando
sus bases tedricas, sus métodos computacionales, las técnicas para regular condiciones termo-
dindmicas, las estrategias de optimizacion y las principales aplicaciones en ciencia moderna.
Se concluye que, pese a sus limitaciones, la dindmica molecular es una herramienta funda-
mental para el estudio de sistemas complejos a escala atémica, con un amplio margen de
mejora.



Introduccion

La dindmica molecular (MD) es una técnica computacional que permite estudiar el compor-
tamiento de sistemas atémicos y moleculares mediante la simulacién de sus interacciones y
movimientos a lo largo de un tiempo determinado. Dicha técnica se basa en la resolucién
de las ecuaciones de movimiento de Newton, a partir de las cuales consigue proporcionar
informacién detallada sobre la estructura, las propiedades y la evolucién de los sistemas
planteados.

Las simulaciones computacionales actian como puente (ver Figura 1) entre las escalas
microscépicas de longitud y tiempo y el mundo macroscépico del laboratorio, asi como entre
la teorfa y la experimentacion, ya que permiten validar modelos tedricos, contrastdndolos
con datos experimentales, y explorar fenémenos en condiciones extremas de temperatura
o de presién, a las que seria practicamente imposible llegar en el laboratorio. Ademas, la
MD ofrece grandes ventajas frente a otros métodos de simulacién, como el de Monte Carlo
(MC) [1], al proporcionar acceso a propiedades dindmicas del sistema, esencial en el escenario
planteado.

Experimental
! Results

Imermoleculay Complex Fluid T ol
N t
potential T (real system)

Structure
v(r) g(r) Simulation
e
r

Complex Fluid
\ (model system) @
c(t)|\ Dynamics

Theoretical

_71‘ Predictions

Results

Figura 1.: Simulaciones como puente entre (a) lo miscroscépico y lo macroscépico; (b) la
teorfa y el experimento [2].

El objetivo principal de este trabajo es proporcionar al lector un conocimiento detallado
sobre la dindmica molecular, abordando tanto sus fundamentos teéricos como su aplicacion
préctica. Ademds de ampliar la comprensién sobre esta técnica, se busca enfatizar la relevan-
cia de la investigacion y el desarrollo en este campo, asi como mostrar su evolucién histérica
y las tendencias actuales, incluyendo la integracion de inteligencia artificial.

El contenido del trabajo se estructura en siete capitulos:

= El Capitulo 1 ofrece un recorrido histérico por el desarrollo de la dindmica molecular,
donde se presentan los hitos més relevantes, desde las primeras simulaciones realizadas
por Alder y Wainwright hasta las recientes mejoras basadas en inteligencia artificial.
Este capitulo contextualiza la evolucién de la técnica en paralelo con los avances en
computacion y teoria fisica.
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Introduccion

= En el Capitulo 2 se introducen los fundamentos fisicos que sustentan la dindmica

molecular, analizandose las leyes y ecuaciones de Newton, asi como los conceptos clave
relacionados con la energia, la temperatura y las condiciones iniciales del sistema.

El Capitulo 3 trata sobre la modelizacién en dindmica molecular. Se profundiza en
los distintos potenciales de interaccién y condiciones de contorno, y se evidencia la
importancia de la representacién del sistema en MD.

El Capitulo 4 estd dedicado al estudio y andlisis de los principales algoritmos em-
pleados en dindmica molecular. Se presentan los métodos numéricos utilizados para
integrar las ecuaciones de movimiento, con especial atencién al algoritmo de Verlet y
sus variantes. Asimismo, se abordan técnicas para el control de las condiciones termo-
dindmicas del sistema mediante termostatos (como los de Berendsen y Nosé-Hoover) y
barostatos (como Andersen y Parrinello-Rahman). También se exploran algoritmos de
optimizacion, cuyo objetivo es hallar configuraciones de minima energfa. Finalmente,
se discuten estrategias para mejorar el rendimiento computacional mediante el uso
de simulaciones paralelas y técnicas de aceleracién por hardware, como el empleo de
unidades de procesamiento grafico (GPU) y arquitecturas de alto rendimiento (HPC).

En el Capitulo 5 se presenta una posible implementacion de un programa de dindmica
molecular, exponiendo un pseudo-algoritmo. Este capitulo permite ilustrar de forma
concreta los aspectos técnicos tratados en los anteriores.

En el Capitulo 6 se exploran algunas de las principales aplicaciones de la dindmica
molecular, con especial atencién a su uso en biologia computacional, simulacién de pro-
teinas y disefio de farmacos. Se destaca como la MD ha contribuido significativamente
a avances cientificos y tecnolégicos.

Finalmente, el Capitulo 7 aborda las tendencias actuales y futuras del campo. Se discute
la integracién de la inteligencia artificial y el aprendizaje automaético en la mejora de
potenciales y andlisis de resultados, asi como los enfoques hibridos que combinan
dindmica molecular cldsica con métodos cudnticos y redes neuronales.

A lo largo del documento, se vera reflejado el cardcter interdisciplinar de la dindmica
molecular, combinando fisica, quimica, matematicas e informatica con el fin de afrontar
problemas complejos en ciencia e ingenieria.

XII



Planificacion y Presupuesto

La planificacién de este proyecto se ha organizado dividiendo el trabajo en diferentes tareas,
las cuales se han distribuido a lo largo de las semanas de duracién del proyecto. Para
mejorar la claridad, dicha planificacién se ha representado mediante un diagrama de Gantt,
permitiendo asi visualizar las dependencias entre tareas y asegurar una gestion eficiente del
tiempo.

TBIEBS[" 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22
Definicién de objetivos

Revisién de la bibliografia

os de Dindmica Molecular

Modelizacién en Dindmica Molecular

Modelos de interaccion

Representacion de sistemas moleculares

Algoritmos en Dindmica Molecular

Integracién de ecuaciones de movimiento

Control de temperatura y presién

Algoritmos de optimizacién
Simulaciones paralelas y aceleracion
acion de una simulacién de MD

Disefio de la estructura del programa

pseudo-cadigo del programa

Estudio de las unidades empleadas en MD

Aplicaciones de la Dinamica Molecular

Desafios y futuras direcciones

Completar la memoria
Revision del trabajo

Figura 2.: Diagrama de Gantt del proyecto

En el diagrama se puede observar como se han planificado y distribuido las distintas tareas
del proyecto a lo largo de 22 semanas. En primer lugar, se lleva a cabo un estudio general de
los objetivos del proyecto y, a continuacioén, se realiza una revisién bibliogréfica relacionada
con dichos objetivos.

Luego, se estudian las bases tedricas de la dindmica molecular, profundizando en la mo-
delizacién, modelos de interaccién y representacion de sistemas moleculares. Estas tareas
se extienden, aproximadamente, hasta la semana 9, y sirven como base para los siguientes
bloques del proyecto.

Seguidamente, se introduce la etapa en la que se invierte mas tiempo: el estudio de los
algoritmos empleados en dindmica molecular. Esta fase se desarrolla durante 4 semanas,
diviendo su contenido en el anélisis de los métodos de integracion utilizados, los mecanismos
de control de temperatura y presion, los algoritmos de optimizacién y una revisién de las
simulaciones paralelas y el uso de aceleracién por hardware.

Entre las semanas 14 y 17 se disefia un algoritmo para realizar una simulacién de dinamica
molecular, incluyendo el desarrollo del pseudo-c6digo correspondiente y un andlisis de las

unidades fisicas utilizadas en dichas simulaciones.

Finalmente, se lleva a cabo un estudio de las aplicaciones de la dindmica molecular, asi
como de los desafios actuales y futuras posibles lineas de investigacién. Tras dicho estudio,
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Planificacion y Presupuesto

se completan las secciones restantes de la memoria y se realiza una revisién general del
proyecto.

Esta planificacién organizada ayuda a que el proyecto avance de forma clara y ordenada,
permitiendo ir incorporando conocimientos de forma progresiva.

En cuanto al presupuesto del proyecto, se tienen en cuenta los siguientes factores:

s Coste de personal: El proyecto ha sido desarrollado por una tinica persona, asumiendo
el rol de ingeniero informatico junior. Considerando un salario bruto medio de 2.250€
mensuales y una duracién estimada del proyecto de 5 meses, el coste total de personal
asciende a 11.250€.

= Coste de Hardware y Software: El tinico coste a considerar en este caso es el del
equipo empleado para desarrollar el proyecto, un MSI GF63 Thin 10SCXR, cuyo precio
aproximado es de 800€.

Por tanto, el coste total del proyecto es de, aproximadamente, 12.050€.
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1. Contexto historico

El desarrollo de la dindmica molecular ha estado ligado al avance de la computacién y la
fisica tedrica. Las primeras simulaciones se dieron en el afio 1957, cuando Alder y Wainw-
right simularon un gas de esferas duras, demostrando la existencia de transiciones de fase
mediante métodos computacionales [3]. Seguidamente, en el afio 1964, Rahman realiz6 la
primera simulacién con un potencial de Lennard-Jones, modelando el comportamiento del
argoén liquido [4].

En los afios 70 se introdujeron los primeros métodos de integracién numérica, como el
algoritmo de Verlet [5], que permiti6 calculos mas precisos y estables. Con ello, la dindmica
molecular se empez6 a aplicar en sdlidos, liquidos y sistemas bioldgicos en los afios 1976-
1979. Luego, en el afio 1985, Car y Parrinello desarrollaron la dindmica molecular ab initio,
integrando métodos cudanticos en la simulacién clasica [6]. Dicho método es ttil si se busca
comparar directamente los resultados de la simulacién con mediciones experimentales en
materiales especificos, sin embargo, tiene un gran costo computacional. Por ello, para lograr
un equilibrio entre precisién y eficiencia computacional, nos centraremos en la dindmica
molecular clasica, adecuada para el andlisis de fenémenos generales y la comparacién de
diferentes teorias, siempre que el modelo utilizado represente correctamente los principios
fisicos esenciales del sistema en estudio.

En la década de 1990 y principios de los 2000, la MD se convirti6é en una herramienta
fundamental para la simulacion de proteinas y ADN, impulsando avances en biomedicina
y el desarrollo de farmacos. A partir de 2010, la incorporacién de la computacién de alto
rendimiento (HPC) y los aceleradores GPU ha revolucionado el campo, permitiendo la simu-
lacién de sistemas con millones de 4tomos y reduciendo drésticamente los tiempos de calculo.
Mientras que una simulacién de 10 nanosegundos solia requerir aproximadamente una se-
mana, ahora puede completarse en tan solo 12 horas, lo que ha posibilitado simulaciones
mads precisas y extendidas hasta escalas del orden de los microsegundos.

Debido al gran impacto que ha tenido la dindmica molecular, siendo clave en proyectos
galardonados con el Premio Nobel de Quimica, como el de Karplus, Levitt y Warshel en
2013 “for the development of multiscale models for complex chemical systems”, hoy en dia se estdn
integrando la inteligencia artificial y el aprendizaje automético con el objetivo de mejorar la
precision de los potenciales de interaccion, ademds de explorar nuevos enfoques hibridos,
combinando MD con métodos cudnticos y redes neuronales.
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Para comprender el funcionamiento de la dindmica molecular y los algoritmos presentados
en este trabajo, es fundamental conocer sus principios bdsicos. En este capitulo, se introducen
los conceptos esenciales que sustentan la dindmica molecular.

2.1. Principios de la mecanica clasica

La dindmica molecular se fundamenta en la mecénica clésica, una rama de la fisica desarro-
llada principalmente por Isaac Newton en el siglo XVII, que estudia el movimiento de los
cuerpos bajo la accién de fuerzas. Su formulacién se apoya en las leyes de Newton [7], asi
como en los principios de conservacién de la energia y del momento, y en las ecuaciones de
movimiento que rigen la evolucién de un sistema en el tiempo.

2.1.1. Leyes de Newton

En MD, cada dtomo o molécula de un sistema se modela como una particula cldsica que se
mueve segun las leyes de Newton, también conocidas como leyes del movimiento de Newton.
Por tanto, las tres leyes del movimiento de Newton son los fundamentos sobre los cuales se
basa la dindmica molecular:

Primera Ley de Newton

La Primera Ley de Newton, conocida como el Principio de Inercia, establece que un cuerpo
mantiene su estado de reposo o de movimiento rectilineo uniforme a menos que una fuerza
externa acttie sobre él. En [8], Newton lo enuncia como “Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur
statum suum mutare”, lo que implica que un objeto no cambiard su estado de movimiento a
menos que una fuerza lo obligue a hacerlo. Aplicado al contexto de la dindmica molecular,
esto significa que, en ausencia de interacciones con otras particulas, los d4tomos seguirian
trayectorias rectilineas con velocidad constante dentro de la simulacién.

Segunda Ley de Newton

Dado que en la dindmica molecular clésica la masa de cada particula se considera un parame-
tro constante, la Segunda Ley de Newton, también conocida como el Principio Fundamental
de la Dindmica, establece que la aceleracién de un cuerpo es proporcional a la fuerza neta
aplicada e inversamente proporcional a su masa. En palabras de Newton: “Mutationem motus
proportionalem esse vi motrici impressee, & fieri secundum lineam rectam qua vis illa imprimitur.” [8].

Por tanto, la relacién fundamental que rige el movimiento es:

— 2=
F:m%:m%:mﬁ, (1)
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donde:

» F representa la fuerza aplicada sobre el cuerpo,
= m es la masa del cuerpo,

» 7 es la velocidad del cuerpo,

» 7 es la posicién del cuerpo,

» 7 es la aceleracion resultante del cuerpo.

Tercera Ley de Newton

La Tercera Ley de Newton, o Principio de Accién y Reaccién, establece que si un cuerpo
ejerce una fuerza sobre otro, entonces el segundo cuerpo ejerce una fuerza de igual magnitud,
pero direccion opuesta, sobre el primero:

“Actioni contrariam semper & aequalem esse reactionem: sive corporum duorum actiones in se mutuo
semper esse equales & in partes contrarias dirigi.” [8]

Es decir, sea F;; la fuerza ejercida por un cuerpo i sobre un cuerpo j, y sea Fj; la fuerza
ejercida por el cuerpo j sobre el cuerpo i, entonces

Fyj = —Fji. (2)

2.1.2. Principio de conservacion de la energia

El principio de conservacion de la energia establece que, en un sistema cerrado y aislado, la
energia no puede crearse ni destruirse, solo transformarse entre sus distintas formas [9]. En
el contexto de la MD, este principio es fundamental para comprender cémo se comportan
los sistemas a lo largo del tiempo.

En particular, este principio se manifiesta claramente en simulaciones que se realizan
bajo las condiciones del colectivo® microcanénico (NVE) [10]. En este tipo de simulaciones,
el namero de particulas (N), el volumen (V) y la energifa total (E) permanecen constantes
durante toda la simulacién, ya que el sistema estd completamente aislado del entorno.

Sin embargo, en ocasiones resulta necesario simular condiciones mads cercanas a la realidad,
lo que requiere introducir mecanismos de control externos, que regulen la temperatura o la
presion, por ejemplo. Con este fin, se recurre a los siguientes acomplamientos externos, que
permiten la entrada o salida de energia del sistema:

» Termostato: regula la temperatura (T), permitiendo realizar simulaciones en el colectivo
canoénico (NVT), donde se mantiene constante la temperatura media del sistema [11, 12].

» Barostato: regula la presién (P). Combinado con un termostato, permite simulaciones
en el colectivo isébaro-isotermo (NPT), en el que se conservan tanto la presién media
como la temperatura [13, 14].

"En mecdnica estadistica una colectividad representa todas las posibles configuraciones microscépicas de un
sistema bajo determinadas condiciones externas.
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En estos casos, como se ha comentado, el sistema puede intercambiar energfa con el exterior,
por lo que la energia interna total deja de ser constante. Por tanto, el balance energético
general se describe mediante la expresion:

Ur=U+W+Q,
donde:
= U7 es la energfa interna total del sistema,
= U; es la energfa interna inicial del sistema,
= W es el trabajo realizado por o sobre el sistema,
= Q es el calor anadido o eliminado del sistema.

En la Tabla 2.1 se muestra un resumen de los colectivos estadisticos mds empleados en
dindmica molecular, junto con las variables que permanecen constantes, los mecanismos de
control necesarios, y algunos ejemplos tipicos de aplicacion.

Colectivo | Variables constantes Control externo Ejemplos de uso
Anadlisis energético puro, vali-
dacién de integradores, estu-

NVE N,V,E Ninguno . .. o .
mnsu dios tedricos sin influencia exter-
na [15]
Procesos biolégicos a tempera-
NVT NV, T Termostato tura constante, simulaciones de

proteinas, andlisis estructural en
equilibrio térmico [11]

Estudio de fases (cristalizacion,
fusién), compresion, materiales
NPT N,P, T Termostato y barostato | a presién ambiente, simulacio-
nes biomoleculares con entorno
acuoso [14]

Tabla 2.1.: Colectividades estadisticas comunes en dindmica molecular.

Por dltimo, es importante sefialar que la eleccién del colectivo depende del tipo de proceso
que se desea simular, de las propiedades fisicas que se quieren medir y de la disponibilidad de
datos experimentales con los que contrastar los resultados. En la préctica, los colectivos NVT
y NPT son los més utilizados, ya que permiten replicar con mayor realismo las condiciones
experimentales habituales.

2.1.3. Introduccion a las ecuaciones de movimiento de Newton

Las ecuaciones de movimiento constituyen el nticleo matematico de la dindmica molecular, ya
que, a partir de ellas, se obtiene la evolucién de las posiciones y velocidades de las particulas
a lo largo del tiempo bajo la accién de fuerzas. Dichas ecuaciones derivan directamente de la
Segunda Ley de Newton (1).

En la préctica, debido a la complejidad que supone resolver estas ecuaciones de forma
analitica para sistemas que involucran un gran ntimero de particulas, se recurre a métodos
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numeéricos, que permiten alcanzar soluciones aproximadas mediante la discretizacion tem-
poral. Estos métodos, fundamentales para el desarrollo de simulaciones computacionales en
dindmica molecular, se abordan en detalle en el Capitulo 4.
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La modelizacién constituye una etapa fundamental en cualquier simulacién de dindmica
molecular, ya que determina el grado de fidelidad con el que el sistema fisico real sera
representado computacionalmente. En esta seccién se abordan los principales componentes
que conforman la modelizacién: los modelos de interaccién, la representacién de los sistemas
moleculares y las condiciones de contorno.

3.1. Modelos de interaccion

Los sistemas estdn compuestos por particulas (dtomos, iones o moléculas), que interaccionan
entre si mediante funciones matematicas llamadas potenciales de interaccion, las cuales estan
disefiadas para aproximar fuerzas fisicas entre las particulas. Estos potenciales describen
cémo varia la energfa potencial en funcién de la distancia entre las particulas. Las fuerzas se
obtienen a partir de dichos potenciales mediante la siguiente expresién matemaética:

Fj = =VV(rjj), (3)
donde:

= Fjj representa la fuerza ejercida por un cuerpo i sobre un cuerpo j,

= V(rj;) es el valor del potencial de interaccién segtin la distancia entre los cuerpos i y j.

3.1.1. Campos de fuerza

Un campo de fuerza agrupa los distintos potenciales de interaccién presentes en un sistema
con el objetivo de describir todas las fuerzas internas y externas del mismo. Estas fuerzas se
dividen, en general, en dos categorias: interacciones de corto alcance e interacciones de largo
alcance.

Lennard-Jones

Las fuerzas de Van der Waals [16] son aquellas que se producen entre dtomos y moléculas.
Tienen caracter atractivo y repulsivo. Las moéleculas y d4tomos se atraen hasta cierta distancia,
pero si se acercan demasiado, se repelen. El potencial mas comtnmente usado para modelar
dichas interacciones es el potencial de Lennard-Jones. Este potencial capta dos contribuciones
principales: una repulsiva a distancias muy cortas y otra atractiva a distancias intermedias.

Su forma tipica es:
o\ 12 o\ 6
VL](T’) = 4e |:(1’) - (;) ] ’ (4)
donde:

= ¢ representa la profundidad del pozo de potencial,
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= 0 representa el didmetro efectivo (Vij(o) = 0),
= 7 es la distancia entre particulas.

Se denomina profundidad del pozo de potencial al valor €, pues representa la energia
minima del potencial, donde la atraccién entre particulas es méxima. Con el objetivo de
calcular a qué distancia interatémica se alcanza dicha energia minima, se iguala la derivada
del potencial a cero:

dVL](T’) (712 (76
=0 < 4e |—-12 - — | =
dr 0 ¢ 13 +6 r’ 0
12 6
o o
Despejando r, se obtiene:
r=2Vog = imin-

Por otro lado, se verifica que:
o\ 12 o\ 6
Vij(r) =0 < (;) = (?) = r=o.

En la Figura 3 se pueden observar estos pardmetros, representados graficamente sobre el
potencial de Lennard-Jones.

VL]

—— Zona de repulsién (r < 1y,,)
—— Zona de atracciéon (r > ry,,)

— Viy(r)

Figura 3.: Representacion del potencial de Lennard-Jones.

Potenciales electrostaticos

Las interacciones electrostdticas se modelan mediante la ley de Coulomb, que define la fuerza
entre dos cargas puntuales mediante la siguiente ecuacién:

01

VCoulomb (7’) - 47'[606 7’I
r

donde:

= Q1 y Q2 representan las cargas,
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2
= ¢p es la permitividad del vacio (~ 8.854 - 10~12 Némz ),

= ¢, representa la permitividad relativa del medio,

= 7 es la distancia entre cargas.

En muchas simulaciones de dindmica molecular se asume que las interacciones se produ-
cen en el vacio, tomando ¢, = 1.

Estas interacciones, al tener un alcance teéricamente infinito (no se anulan completamente
a ninguna distancia finita), requieren tratamientos computacionales especializados, como el
método de Ewald [15] o la técnica de mallas de particulas (PME, Particle-Mesh Ewald) [17],
que permiten mantener la eficiencia sin comprometer la precisién.

Campos de fuerza biomoleculares

Uno de los enfoques més utilizados para representar la energia potencial en sistemas biol6-
gicos es el uso de funciones empiricas definidas por campos de fuerza como AMBER [18] o
CHARMM [19]. En estos modelos, ademés de las interacciones entre moléculas, se modelan
también las interacciones entre &tomos dentro de una misma molécula (ver Seccion 5.4). Esto
es especialmente necesario en moléculas con muchos grados de libertad internos. La forma
general del potencial total viene dada por:

Viotal = Venlace + Véngulo + Viorsion + VL] + Veoulomb =
V
= Y k(r—ro)*+ Y ke(0—60)*+ Y. 7”[1 + cos(np — )]+

enlaces angulos torsiones
12 6
Y .. .. L
i<j Tij Tij i<) 4Teoertij

donde, ademads de los pardmetros ya presentados, se tienen:

= kj: representa la constante de fuerza del enlace,

m 7: es la distancia actual entre los 4tomos considerados,

ro: es la distancia de equilibrio del enlace,

= kg: representa la constante de fuerza angular,

0: es el angulo actual entre los 4tomos considerados,

Bo: es el angulo de equilibrio,

= V,: representa la barrera de torsién,

n: es la periodicidad de la funcién,

¢: es el angulo de torsién actual entre los d&tomos considerados,

7v: representa la fase de desplazamiento.
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El ajuste de las constantes presentadas puede plantearse como un problema de optimiza-
cién, donde se busca minimizar la diferencia entre los valores obtenidos en la simulacién y los
de referencia. El proceso de parametrizacion se basa en una combinacién de datos experimen-
tales y célculos de estructura electrénica, garazantizando un equilibrio entre precision fisica
y viabilidad computacional. De esta forma, constituyen uno de los pilares fundamentales
para asegurar la fiabilidad de la simulacion.

Este tipo de representacion permite modelar con gran precisién tanto las interacciones
internas de una molécula (enlaces covalentes, angulos de enlace y torsiones), representadas en
la Figura 4, como las interacciones no enlazantes (fuerzas de Van der Waals y electrostaticas)
entre diferentes moléculas o partes de la misma.

Figura 4.: Representacion geométrica de una molécula en cadena simple, que ilustra la defin-
cicién de la distancia interatémica ro3, el &ngulo de flexién o angulo de enlace 634,
y el d&ngulo de torsién ¢34 [2].

Como ejemplo ilustrativo, en la practica existen distintos modelos para representar, por
ejemplo, una molécula de agua. La eleccién entre estos modelos depende del nivel de preci-
sién y coste computacional que se desee.

En primer lugar, se tiene el modelo TIP3P, donde la distancia de enlace O-H es de 1oy =
0.9572 A, el dngulo H-O-H es de 0 = 104.52°, y se utilizan interacciones de tipo Lennard-
Jones sobre el oxigeno junto con interacciones electrostaticas entre los tres dtomos [20].

Por otro lado, el modelo TIP4P mejora la representacién del agua desplazando la carga
negativa desde el d&tomo de oxigeno hacia un punto virtual sin masa (denominado massless
site o sitio M), que se coloca a una distancia de 0.15 A del 4tomo de oxigeno sobre el
bisector del angulo H-O-H. Esta modificacién permite obtener mejores resultados a la hora
de predecir propiedades fisicas como la densidad del agua o su calor de vaporizacién, pero
el coste computacional aumenta [20].

Finalmente, el modelo TIP5P va un paso mds alld incorporando dos puntos virtuales
adicionales que representan los pares de electrones no enlazantes del oxigeno, que se sittian

10
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a 0.7 A del oxigeno, con un angulo O-L-O de 109.47° (ver Figura 5). Esto da lugar a una
geometria mds cercana a la real que mejora la descripcién del comportamiento del agua en
estado liquido, permitiendo obtener estimaciones mds precisas de sus propiedades térmicas
y estructurales anémalas. Sin embargo, el coste computacional aumenta atiin mds [20].

Los modelos planteados son rigidos, es decir, que las distancias de enlace y los dngulos
se mantienen constantes durante la simulacién. Como consecuencia, no se incluyen térmi-
nos de torsiéon en el célculo del potencial total. Esta simplificacién no solo reduce el coste
computacional, sino que también ha demostrado ser suficiente para reproducir propiedades
estructurales y termodindmicas del agua cuando los parametros estdn correctamente ajusta-
dos. Sin embargo, en moléculas méds complejas, como proteinas, si se incorpora el término

¢ [20].

Figura 5.: Representaciéon de una molécula de agua segtn el modelo TIP5P [20].

3.2. Representacion de sistemas moleculares

3.2.1. Modelos atomisticos vs coarse-graining

El nivel de detalle con el que se representa un sistema molecular depende del objetivo de
la simulacién y de los recursos computacionales a disposicién. Existen principalmente dos
enfoques:

Modelos atomisticos

En primer lugar, los modelos atomisticos representan cada d4tomo de forma explicita, inclu-
yendo su masa, carga, tipo de enlace y posiciéon. Esta aproximacién es la més comtin y es
esencial en estudios en los que se requiere precision en los detalles estructurales y dindmicos,
como reacciones quimicas o interacciones especificas entre proteinas y ligandos. Aunque
proporcionan una gran precision, su coste computacional es elevado, ya que el nimero de
grados de libertad crece linealmente con el ntimero de dtomos.

11
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Coarse-graining

Por otro lado, los modelos coarse-grained (CG) simplifican el sistema representando grupos
de 4tomos como una tnica particula efectiva. De esta forma, se reduce considerablemente el
nimero de grados de libertad del sistema, permitiendo asi estudiar sistemas mds grandes y
durante escalas temporales mucho més largas, haciendo posible el estudio de procesos como
el plegamiento de proteinas. A pesar de perder resolucién, este tipo de modelizacién es
adecuado cuando se busca un comportamiento general en lugar de precisién local, ya que su
coste computacional es menor, introduciendo asi un trade-off entre eficiencia computacional
y precision.

Este tipo de modelizacién requiere asegurar que el modelo conserva las propiedades
macroscépicas relevantes del sistema original, representando asi una frontera entre la fisica
estadistica, el modelado matematico y la simulacién computacional.

Para llevar a cabo ambas representaciones, es habitual hacer uso de herramientas de pre-
procesado como tleap (en AMBER) o psfgen (en NAMD [21]), que permiten construir y
modificar estructuras moleculares, definir la topologia del sistema, generar las coordenadas
iniciales y asignar los pardmetros del campo de fuerza. Estas herramientas preparan los
archivos de entrada necesarios para ejecutar simulaciones de dindmica molecular. Puede
encontrarse mas informacién sobre sus usos en [22] y [23], respectivamente.

3.2.2. Cajas de simulacion

Tras elegir los modelos de interaccién y el nivel de resolucién , se debe decidir cémo orga-
nizar el sistema dentro del espacio simulado. Esta representacién se ve reflejada tanto en la
validez fisica de la simulacién como en la viabilidad computacional.

Para ello, las moléculas que conforman el sistema se encierran en una caja de simulacién,
que se comporta como un contenedor tridimensional. Dicha caja puede adoptar distintas geo-
metrias en funcion de la naturaleza del sistema y de las condiciones que se deseen reproducir.

Por otro lado, ademads de las moléculas de interés, se suelen incluir un ntimero determinado
de moléculas de solvente, como puede ser el agua, con el fin de imitar el entorno biolégico o
experimental.

3.2.3. Condiciones de contorno

Las condiciones de contorno definen cémo se comportan las moléculas cuando alcanzan los
limites del sistema simulado. Para evitar efectos de borde no fisicos, como acumulacién en
las paredes o vacio exterior, se imponen ciertas condiciones de contorno:

Condiciones periddicas (Periodic Boundary Conditions, PBC)

La caja se replica infinitamente en todas las direcciones, de modo que cuando una particula
sale por un lado, regresa por el lado opuesto (ver Figura 6), permitiendo asi simular un
entorno infinito a partir de un ntimero finito de particulas.

12
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Figura 6.: PBC. A medida que una particula sale de la caja de simulacién, una imagen de la
particula entra para reemplazarla [2].

Condiciones no periddicas

En este caso, se asume que el sistema estd aislado y que los bordes representan limites fisicos
reales. Por tanto, las particulas pueden escapar del sistema (condiciones de contorno abiertas)
o rebotar en los bordes (reflectantes). Estas condiciones se emplean en sistemas donde la
periodicidad no es deseable, como simulaciones de interfases, superficies o sistemas donde
el entorno exterior no se repite.

3.2.4. Métodos de truncamiento

En simulaciones de MD, es fundamental tratar eficientemente las interacciones entre particu-
las con el fin de reducir el coste computacional. Dado que las interacciones de largo alcance
decrecen con la distancia, se introduce un radio de corte 7, tal que V(rij) =0si tij > T, para
dos atomos i, j. Esto permite al programa omitir el calculo de fuerzas entre 4tomos alejados
mas alla de esa distancia, ahorrando una cantidad significativa de célculos.

No obstante, determinar en cada paso temporal qué particulas se encuentran dentro de
ese radio para todas las demds puede seguir siendo muy costoso. En efecto, en un sistema

1
compuesto por N particulas, se deben comprobar un total de EN (N — 1) pares posibles.

Para mejorar esta eficiencia, Verlet introdujo las llamadas listas de vecinos (o Verlet lists).
Estas listas mantienen un registro de las particulas que estdn dentro de un radio extendido
ty > t¢, llamado radio de vecindad, alrededor de cada particula (ver Figura 11 para una
representacion del entorno de una particula).

En el primer paso de la simulacién, se construye la lista de vecinos de cada atomo, y en los

siguientes pasos solo se calculan las fuerzas de las parejas que figuran en dicha lista. Cada
cierto namero de pasos, antes de que una pareja inicialmente fuera del radio de vecindad

13
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pueda entrar en el radio de corte, la lista debe ser reconstruida para mantener la precision
del modelo.

090 ‘e .0 VO
. .

s

o %0 : @

A

\J

Q

Figura 7.: Distintas etapas de la formacién de la lista de Verlet. Se puede observar el radio
de corte (circulo sélido) y el radio de vecindad (circulo discontinuo). La lista ha de
ser reconstruida antes de que las particulas negras (inicialmente fuera de la lista)
entren en el radio de corte [2].
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En dindmica molecular, como ya se comentd en el Capitulo 2, el comportamiento de las
particulas que componen un sistema se determina mediante la resolucién de un conjunto
de ecuaciones diferenciales ordinarias que derivan de (1). Estas ecuaciones describen la
evolucién de las posiciones y velocidades de dichas particulas a lo largo del tiempo. Sin
embargo, ante la imposibilidad de resolverlas de forma analitica debido a la complejidad
de los sistemas estudiados y el gran ntimero de grados de libertad implicados, se recurre
a algoritmos numéricos que permiten calcular la evolucién de las particulas paso a paso,
obteniendo asf una simulacién del sistema.

4.1. Integracion de ecuaciones de movimiento

Tomando como punto de partida las ecuaciones (1) y (3), la base matematica de toda simu-
lacién de dindmica molecular viene dada por la integracién de las siguientes ecuaciones
diferenciales:

&7,

W = E = —V;V(fi//fﬁl)

m; ;

La elecciéon de un método de integraciéon adecuado resulta fundamental, ya que debe
garantizar la conservaciéon de la energifa, estabilidad numérica a largo plazo y un coste
computacional razonable.

Los métodos numéricos que se presentardn discretizan el tiempo en intervalos de tamarfio
At, permitiendo asi obtener una evolucién aproximada de las trayectorias. Por ello, para
garantizar la estabilidad numérica a largo plazo, es necesario que el método sea capaz de
controlar los errores de redondeo y truncamiento a lo largo de la simulacién. Si el tamafio
del paso temporal At es demasiado grande, el error acumulado puede aumentar, provocando
inestabilidades, como explosiones de energia o trayectorias fisicamente irreales.

Por tanto, la eleccién del parametro At es crucial, ya que debe ser lo suficientemente
pequefio como para capturar las dindmicas rdpidas del sistema, como las vibraciones intra-
moleculares, pero lo bastante grande como para optimizar el tiempo de calculo, pues a menor
valor de At, mayor coste computacional.

En general, se asume que las aceleraciones (y, por tanto, las fuerzas) se mantienen aproxi-
madamente constantes durante cada paso temporal At, lo que permite que los integradores
numéricos utilicen la fuerza calculada al inicio del paso para predecir la evolucién del
sistema [24]. De esta forma, cuanto mds ligeros sean los dtomos, mas rdpidas serdn sus
oscilaciones, y menor deberd ser el paso At para evitar errores significativos.

En particular, el limite superior para At estd determinado por las frecuencias méds altas del
sistema, normalmente asociadas a vibraciones intramoleculares rdpidas. Una préctica comtn
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4. Algoritmos en Dindmica Molecular

consiste en seleccionar At al menos 10 veces menor que el periodo de oscilacién més corto del
sistema [24]. Por ejemplo, para una vibracién de periodo T =~ 10714 s, se recomienda tomar
At <1071 s = 1 femtosegundo (fs). Superar este umbral puede provocar un crecimiento
exponencial de los errores numéricos.

A pesar de ello, existe una cierta tension entre la necesidad de utilizar pasos de tiempo pe-
quefios para asegurar la precision numeérica y el deseo de alcanzar escalas temporales largas,
tipicas de muchos procesos microscépicos. Una simulacién de 1 microsegundo con At =1
fs requiere del orden de 10° ciclos de integracién, lo que implica un coste computacional
considerable, ya que en cada paso es necesario recalcular todas las fuerzas. Por ello, se busca
elegir el mayor valor de At posible que mantenga la estabilidad numérica y la conservacién
de la energia [24].

Ademds, aunque se utilicen representaciones de alta precisién (por ejemplo, doble precisién
en punto flotante), los errores de redondeo se acumulan gradualmente a lo largo de la
trayectoria, especialmente si se ejecutan simulaciones con millones de pasos. Por ello, la
eleccion adecuada del integrador y del tamafio del paso de integracion es fundamental para
garantizar la estabilidad y precisién global de la simulacién a largo plazo.

Propiedades geométricas: métodos simplécticos

La dindmica molecular se enmarca dentro del contexto de los sistemas hamiltonianos [25], los
cuales describen la evolucion temporal de un sistema mediante ecuaciones que dependen de
las coordenadas y los momentos generalizados. Estas ecuaciones derivan de un Hamiltoniano
H(7, ), que representa la energia total del sistema:

7. 5) Z” Al
/

i=i

2m1 (7’1,...,7]\]),

y cuya evolucién temporal se determina por:

donde:
H(7, ) es la energia total del sistema,
» 7 representa las coordenadas generalizadas?,

» = m -7 son los momentos conjugados.

*En este trabajo, por simplicidad, se considera tinicamente el movimiento traslacional de las particulas, es decir,
7; corresponde a las coordenadas espaciales del centro de masa de la particula i. Sin embargo, en dindmica
molecular también pueden intervenir grados de libertad rotacionales y vibracionales, especialmente relevantes
en moléculas poliatémicas o sistemas rigidos.
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4.1. Integracion de ecuaciones de movimiento

Una propiedad fundamental de estas ecuaciones es su naturaleza simpléctica, lo que im-
plica que las trayectorias del sistema conservan el volumen en el espacio de fases, segtin el
teorema de Liouville [25]. Es decir, aunque las configuraciones del sistema pueden evolucio-
nar deformando la forma de un volumen en el espacio de fases, el volumen total ocupado
permanece constante [24]. Esta caracteristica tiene importantes consecuencias en el dmbito
numérico. Asi, un algoritmo de integracion de las ecuaciones de Hamilton debe cumplir:

= Aunque se produzcan pequefias oscilaciones en la energia o el momento, los errores no
se acumulen sistemdticamente, permitiendo conservar estos invariantes a largo plazo.

» Garantizar la estabilidad estructural del sistema en simulaciones prolongadas.

Los integradores simplécticos estdn disefiados para respetar estas propiedades geométri-
cas, imitando el comportamiento del flujo hamiltoniano exacto, haciéndolos especialmente
adecuados para simular sistemas conservativos y estudiar propiedades de equilibrio. De
hecho, se ha demostrado que estos métodos pueden interpretarse como soluciones exactas
de un sistema hamiltoniano modificado, ligeramente perturbado, cuya forma depende del
paso de integracién utilizado [26]. Esta caracteristica explica su capacidad para conservar
invariantes del sistema, como la energfa o el volumen de fase, a lo largo de millones de pasos.

Para ilustrar las diferencias entre integradores simplécticos y no simplécticos, a continua-
cién se comparan los resultados obtenidos al simular un oscilador arménico utilizando los
métodos de Euler [27] (ver Figura 8) y Verlet (ver Figura 9). En todos los casos, se considera

una particula sometida a una fuerza lineal del tipo E = —k7#, donde k es la constante de
elasticidad.
a b.

Algoritmo de Euler (dt = 0.02)

1.0 4
.'/\\ 1.0+

051 A

Euler - Espacio de fases

0.54

0.0 4

Posicion

0.0+

[ \

\ [ \ \
—0.51 "\/ _054
—1.0 = Euler -1.04

Exacta

Momento

T T T T T T T T T
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 200 -1.5 -1.0 -0.5 0.0 0.5 10 15
Tiempo Posicion

Figura 8.: Simulacién con el método de Euler (no simpléctico). (a) Evolucién temporal de la

posicién; (b) Trayectoria en el espacio de fases. Se observa una trayectoria espiral
divergente, que indica una ganancia artificial de energfa.
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Posicion

Algoritmo de Verlet (dt = 0.02) Verlet - Espacio de fases
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\ | \ [ \ |
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~1.00 4 Exacta W/ AV, LV _1.004

T
—0.5 0.0 0.5 1.0 15
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Figura 9.: Simulacién con el método de Verlet (simpléctico). (a) Evolucién temporal de la
posicién; (b) Trayectoria en el espacio de fases. La energia se conserva a largo plazo
y el sistema describe una 6rbita cerrada.

Sin embargo, a pesar de sus ventajas, los integradores simplécticos no son incondicional-

mente estables, pues, como se ha comentado anteriormente, existe un limite superior para el
tamafio del paso temporal Af mds alld del cual las simulaciones pueden volverse inestables o
generar trayectorias inconsistentes con la fisica del sistema. Esto puede observarse claramen-
te en la Figura 10, al analizar el comportamiento del algoritmo de Verlet frente a diferentes
valores de At. Para pasos suficientemente pequefios, el método conserva su estabilidad y
mantiene las propiedades geométricas del sistema. Sin embargo, al superar el umbral critico,
el integrador pierde estabilidad y deja de reflejar adecuadamente la dindmica del sistema.

Posicion

Posicion

dt = 0.02

— Verlet N
--- Bxacta / N
/ N
Vi \
/ \

/

0.0 25 5.0

75

100
Tiempo

dt=2

— Verlet

0.0 25 5.0

100
Tiempo

Figura 10.: Evolucién temporal de la posicién con el algoritmo de Verlet para dos tamarios
de paso temporal. (a) At = 0.02, donde el algoritmo es estable; (b) At = 2, donde

es inestable.

Por tanto, aunque los integradores simplécticos tienen excelentes propiedades de conser-
vacién de invariantes geométricos, es fundamental elegir adecuadamente el paso de tiempo
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4.1. Integracion de ecuaciones de movimiento

para garantizar su estabilidad numérica.

Por otro lado, esta propiedad estéd estrechamente relacionada con la reversibilidad temporal,
pues un integrador simpléctico reversible es capaz de reproducir la trayectoria inversa exacta
al invertir los momentos (en ausencia de errores de redondeo). Este comportamiento refleja
fielmente la simetria del flujo hamiltoniano, y contribuye a la fiabilidad del método [26].

A continuacién se presentan algunos de los algoritmos simplécticos reversibles mas utiliza-
dos en simulaciones de MD, debido a su equilibrio entre eficiencia, precisién y simplicidad.

4.1.1. Algoritmo de Verlet

El algoritmo de Verlet constituye la base de muchos de los métodos mas utilizados en
dindmica molecular, destacando por su simplicidad y por sus excelentes propiedades de
conservacion de la energia [15]. Su formulacién matemadtica se apoya en un desarrollo en
serie de Taylor, mediante la cual se aproxima la posicién de una particula en los instantes
t 4+ At y t — At, a partir de su valor en t. Esta simetria temporal lo convierte en un método
reversible en el tiempo [26].

En primer lugar, se desarrolla 7;(t + At) en serie de Taylor alrededor de ¢:

o 7 1 1.
Fi(t+ Af) Z li = Fi() + T()AL + ST (AR + ()AL + O(AF). ()

Analogamente, se obtiene el desarrollo hacia atras:

AN =Fi(t) — Ti() At + %Zz’i(t)Atz — %fzi(t)At?’ +O(AtY).  (6)

*l

00
i(t—At) Z

Finalmente, combinando (5) y (6), se cancelan los términos impares y se obtiene la expre-
sién del algoritmo de Verlet: s

" . S At?
7i(t+ At) = 27;(t) — 7i(t — At) + ?F,«(t). (7)

i

La aproximacién obtenida presenta un error local de orden O(At4), luego, al tratarse de
una ecuacién diferencial de segundo orden, se tiene un error global de orden O(At?). Por
tanto, el algoritmo de Verlet se convierte en una herramienta muy precisa.

Ademas, el algoritmo de Verlet presenta una excelente estabilidad numérica. Al ser un
integrador simpléctico, no conserva exactamente la energfa total en cada paso, pero las fluc-
tuaciones que introduce permanecen acotadas y no se acumulan de forma sistemadtica. Esta
propiedad resulta especialmente importante en simulaciones realizadas bajo condiciones del
conjunto microcanénico (NVE), donde la conservacién de la energia es un criterio fundamen-
tal [28].
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4. Algoritmos en Dindmica Molecular

Una de las limitaciones del algoritmo de Verlet es que no actualiza las velocidades de las
particulas de forma explicita. No obstante, si se desea, estas se pueden estimar a partir de
las posiciones en distintos pasos de tiempo, aprovechando la simetria del método. Para ello,
restando las ecuaciones (5) y (6), se obtiene:

7i(t 4+ At) — Fi(t — At) = 27;(t) At + O (AL).

Despejando la velocidad:

5i(t) _ T’i(f +At)2;:i(t — Af) n O(Atz). ®)

Proporcionando asi una estimacién de las velocidades con un error local de orden O(At?),
lo cual resulta suficientemente preciso para la mayoria de aplicaciones practicas, como el
calculo de energia cinética o temperatura en simulaciones bajo condiciones del colectivo
microcanénico.

4.1.2. Velocity-Verlet

El algoritmo Velocity-Verlet es una de las variantes mds populares del método de Verlet, ya
que calcula de forma explicita, ademads de la posicién, la velocidad de la particula en cada
paso de tiempo, lo que resulta muy ttil para calcular propiedades como la energfa cinética o
la temperatura [15, 29].

Aligual que el algoritmo de Verlet clésico, este algoritmo también se basa en un desarrollo
en serie de Taylor de las posiciones y velocidades, convirtiéndose asi en un método reversible
en el tiempo [26].

El desarrollo en serie de Taylor de la velocidad hacia adelante nos da:

i(t + At) = T;(t) + d@;(t) At + O(AF).

Sin embargo, dicha expresién solo utiliza la aceleracién actual, ignorando la que la particula
alcanzara durante el desplazamiento. Por tanto, en busca de obtener una mayor precisién
y simetria temporal, se calcula la velocidad en dos pasos: una mitad antes de actualizar la
posicién, y otra mitad después de calcular la nueva aceleracién [30].

1. Primero se actualiza la velocidad a mitad de paso:
" At -
o; | t+ 7 = Ul'(t) +

2. Seguidamente, tomando (9), se actualiza la posicién completa:

@;(t) At + O(AF). (9)

N —

7i(t+ At) = 7;(t) + T () At + %Zz’i(t)Atz +O(At%) =7(t) + 7; (t + A;) At+O(AF).
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4.1. Integracion de ecuaciones de movimiento

3. Tras actualizar la posicién, se recalcula la aceleraciéon en el nuevo tiempo t + At a partir
de (1):

1 -
ai(t+ At) = —Fi(t + At).

1

4. Finalmente, se completa la otra mitad de la velocidad:

T;(t 4+ At) = 7; <t + A;) + %Ei(t + A AL+ O(AE).

Obteniendo asi las expresiones del algoritmo Velocity-Verlet:

At
Fi(t+ At) = Fi(t) + ; (t + 2) At,

At 1
U;(t+ At) =7 (f + 2) + Eﬁi(f + Af)AL.

Se obtiene un error local de orden O(At®) tanto en el célculo de la posicién como de
velocidad, luego, al tratarse de ecuaciones diferenciales de primer orden, presenta un error
global de orden O(At?) en ambos célculos.

Ademads, al igual que el algoritmo de Verlet, el algoritmo Velocity-Verlet muestra una
excelente estabilidad numérica para sistemas conservativos.

Por tanto, el algoritmo Velocity-Verlet representa un perfecto equilibrio entre precisién nu-
mérica, fidelidad fisica y eficiencia computacional, haciéndolo asi uno de los algoritmos mas
empleados en simulaciones de dindmica molecular, destacando sobre todo en simulaciones
biomoleculares [30].

4.1.3. Leap-Frog

El método Leap-Frog, o “salto de rana”, debe su nombre al hecho de que las posiciones
y velocidades se actualizan en pasos de tiempo intercalados. Aunque esta caracteristica
introduce cierta dificultad a la hora de calcular magnitudes como la energia cinética o la
temperatura en tiempos enteros, su simpleza y eficiencia lo convierten en una opcién ade-
cuada para muchas simulaciones, especialmente en combinacién con algunos controladores
de temperatura [15, 29].

Para obtener la expresién de la velocidad, se parte del desarrollo en serie de Taylor centrada

. At N ) ) . .
en t para los instantes t + EX conviertiéndose asi en un método reversible en el tiempo [26]:

7; (t + A;) = Ti(t) + S d@:(t) At + < d: () A + O(AP),

| — |

@i(H) AP + O(AP).
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Restando ambas expresiones y despejando, se obtiene:

At At
5i (t + 2) = 51' (t — 2) +ﬁi(t)Af. (10)

. . . At . o
Una vez conocida la velocidad en el instante ¢ + - se actualiza la posicién con:

7i(t+ At) = Fi(t) + 7; (t+A2t> At. (11)

Las ecuaciones (10) y (11) constituyen el nticleo del algoritmo Leap-Frog, con un error local
de orden O(At?®) tanto en posicién como en velocidad.

En caso de que se desee obtener la velocidad en un paso de tiempo completo ¢, se puede
aproximar mediante el promedio de las velocidades:

5i(t) % [51- (t—A;) +7; (t+A2tﬂ .

Al igual que el algoritmo Velocity-Verlet, Leap-Frog presenta un error local de orden
O(A#3) tanto en el calculo de la posicién como de velocidad, luego, al tratarse de ecuaciones
diferenciales de primer orden, presenta un error global de orden O(At?) en ambos célculos.

Por otro lado, el algoritmo Leap-Frog, al ser simpléctico, también presenta una excelente
estabilidad numérica para sistemas conservativos.

Finalmente, una ventaja destacable del algoritmo Leap-Frog es que proporciona una forma
eficiente y estable de integrar las velocidades en pasos intermedios, lo cual puede resultar
ttil en combinacién con ciertos termostatos que requieren acceso frecuente a las velocidades
del sistema [28].

Conclusion

Los algoritmos de Verlet y sus variantes son ampliamente utilizados en MD debido a:
= Su derivacién simple (por desarrollo de Taylor).
= Su reversibilidad temporal.

» Su estructura simpléctica, que, para un valor adecuado de At, garantiza estabilidad y
conservacion del volumen en el espacio de fases.

= Su bajo coste computacional, ya que solo requieren una evaluacién de fuerzas por paso.

En la Tabla 4.1 se puede ver un resumen de las propiedades de los algoritmos introducidos.
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Rgoime [ vuguitad | o, Eror ol T o lobal T penivte | simpicic
Verlet Z; ﬁg ﬁii Si s
Velocity-Verlet Z i:z i:ﬁ Si s
Leap-Frog ; 2? ﬁg Si 5

Tabla 4.1.: Propiedades del algoritmo de Verlet y de sus variantes.

4.2. Control de temperatura y presion

Las simulaciones de dindmica molecular no siempre se realizan bajo las condiciones del colec-
tivo microcanénico (NVE), es decir, en condiciones de energia constante. En la practica, con
el fin de representar de forma realista las condiciones experimentales, suele ser necesario tra-
bajar bajo condiciones del colectivo canénico (NVT), manteniendo constante la temperatura,
o del isébaro-isotermo (NPT), manteniendo constante tanto la presién como la temperatura.
Para ello, se introducen mecanismos de control externos como termostatos y barostatos, que
permiten acoplar el sistema a un bafio térmico o barométrico, respectivamente [10, 15].

Desde un punto de vista fisico-matematico, estos mecanimos modifican las ecuaciones de
movimiento del sistema, ya sea mediante la introduccién de términos adicionales o mediante
un reescalado dindmico de las variables, en busca de establecer las condiciones deseadas.

La incorporacién de termostatos y barostatos es necesaria porque, sin mecanismos de con-
trol, la temperatura y la presién del sistema pueden alejarse considerablemente de los valores
deseados, ya sea por fluctuaciones estadisticas o por el propio proceso de inicializacién. Por
ejemplo, aplicando el teorema de equiparticiéon de la energia para un sistema tridimensional
con N particulas se tiene que:

L L = 2T > T= Y a2 (12
N &2 — 2B T 3Nkg = ’

donde:
= m; es la masa de la particula i,
= 7; es la velocidad de la particula i,
= kg es la constante de Boltzmann (= 1.38065 x 1072 J/K),
= T es la temperatura instantdnea del sistema.

Por tanto, sin termostato, la temperatura del sistema puede derivar progresivamente de-
bido a errores numéricos acumulados, especialmente en simulaciones largas. Esto puede
provocar resultados fisicamente incorrectos o inconsistentes con condiciones experimentales.
Por ejemplo, si se desea modelar una proteina a 300 K pero no se regula la temperatura,
la simulacién puede desviarse de este valor, afectando a la estructura y la dindmica del
sistema [12, 31].
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Andlogamente, la presion instantanea del sistema se puede estimar mediante la ecuacién
virial de Clausius [32]:

P

NkgT
= B +

vV 3V Fi- B (Pa),

=1

donde:
= V es el volumen de la celda de simulacién,
» 7; es la posicion de la particula i,
= [ es la fuerza que actua sobre ella.

Luego, sin un barostato que ajuste dindmicamente el volumen, la presién puede desviarse
considerablemente del valor deseado, lo cual afecta a propiedades dependientes del volumen,
como la densidad, estructura o energfa libre del sistema. En muchos sistemas biolégicos o de
materiales blandos, las propiedades estructurales dependen de la presién ambiental. Si esta
no se controla, se pierde la posibilidad de reproducir comportamientos fisicos realistas [10].

4.21. Termostatos

Los termostatos permiten regular la temperatura del sistema durante la simulacién, repro-
duciendo su interaccién con un entorno térmico. Su uso es esencial en simulaciones bajo
condiciones del colectivo canénico (NVT), donde la temperatura se mantiene constante, con
el fin de asegurar un muestreo adecuado del espacio de fases [15, 24].

En este contexto, resulta deseable que las velocidades de las particulas muestren una

distribucién estadistica coherente con la distribucién de Maxwell-Boltzmann, la cual surge
del tratamiento clésico del equilibrio térmico [15]. Esta distribucién adopta la forma:

3/2 2
B m ” _ mo
flo) =4 (anBT) v ep ( ZkBT) /

donde v = ||7||. Esta expresion describe la probabilidad de encontrar una particula con
velocidad v en un sistema en equilibrio térmico.

Sin embargo, la aplicabilidad de esta distribucion no es universal. Su validez se restringe a
sistemas cldsicos, en los que los efectos cuanticos pueden despreciarse, y que se encuentran
en equilibrio térmico. Ademads, presupone que las velocidades de las particulas no estan
fuertemente correlacionadas entre si, lo que se cumple tipicamente en gases ideales o fluidos
diluidos. En sistemas densos como liquidos o sélidos, donde las interacciones entre particulas
son significativas y duraderas, pueden aparecer desviaciones locales respecto a la distribucién
de Maxwell-Boltzmann. No obstante, en muchas simulaciones se observa que, en equilibrio
termodindmico, la distribucién global de velocidades se aproxima razonablemente a la forma
predicha [33, 24].

Por tanto, un termostato eficaz no debe limitarse a mantener constante la energfa cinética
media del sistema. En condiciones ideales, debe inducir una dindmica compatible con la ergo-
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dicidad3 del mismo, permitiendo que, tras un ndmero suficiente de pasos de simulacion, las
velocidades de las particulas sigan estadisticamente la distribucién de Maxwell-Boltzmann.
Esta propiedad es clave para asegurar que el sistema explore correctamente el espacio de
fases del colectivo estadistico correspondiente y, en consecuencia, que las propiedades ter-
modindmicas obtenidas sean fisicamente representativas [15, 33].

En la practica, sin embargo, no se alcanza un equilibrio térmico exacto, sino una apro-
ximacion al mismo. Debido a la finitud del sistema, a los errores numéricos asociados al
método de integracién y a la duracién limitada de las simulaciones, lo que se observa es que
el sistema tiende hacia un estado estacionario en el que la distribucién global de velocidades
se aproxima razonablemente a la forma predicha por Maxwell-Boltzmann [24, 33].

Comprobar que la distribucién de velocidades generada en la simulacién coincide con la
de Maxwell-Boltzmann constituye, por tanto, un criterio empirico til para evaluar si el siste-
ma ha alcanzado un estado compatible con el equilibrio térmico. Si se observan desviaciones
significativas respecto a dicha distribucién, esto puede indicar problemas de acoplamiento
térmico, un tiempo de relajacién insuficiente o errores sistemadticos en la integracién de las
ecuaciones de movimiento [24]. Por tanto, el uso adecuado de termostatos, junto con la vali-
dacién estadistica de los resultados obtenidos, es fundamental para garantizar la fiabilidad
de las simulaciones.

Existen distintos algoritmos:

Termostato de Berendsen

El termostato de Berendsen realiza un reescalado suave de las velocidades con el fin de ajustar
la temperatura del sistema hacia un valor objetivo [31]. Mateméaticamente, las velocidades se
actualizan de la siguiente forma, asegurando que se cumple el teorema de equiparticion:

L At (T,
T — AT, A= 1+TT<T°1),

donde:

= T representa la temperatura instantdnea del sistema,
= T es la temperatura objetivo,

= 77 es la constante de relajacién, tiempo que tarda el sistema en alcanzar el nuevo estado
de equilibrio térmico.

Este método es sencillo, computacionalmente eficiente y estable [15]. Sin embargo, no
reproduce con exactitud la distribucién de velocidades de Maxwell-Boltzmann, por lo que no
garantiza un correcto muestreo del colectivo canénico (NVT) [29]. Por ello, su uso se limita
habitualmente a etapas de equilibrado inicial (ver Tabla 5.2), y no a fases de produccién (ver
Tabla 5.2) donde se requiera rigurosidad estadistica.

3En este contexto, la ergodicidad implica que el promedio temporal de una magnitud a lo largo de una trayec-
toria del sistema coincide con su promedio en el colectivo estadistico, lo que permite obtener propiedades
termodindmicas mediante simulaciones.
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Termostato de Andersen

El termostato de Andersen simula el acoplamiento del sistema con un bafio térmico me-
diante colisiones aleatorias con particulas ficticias del entorno [34]. Para ello, en cada paso
de simulacién, una particula es seleccionada al azar con una probabilidad p y su veloci-
dad se reasigna a partir de una distribucién de Maxwell-Boltzmann correspondiente a la
temperatura objetivo.

Este procedimiento se basa en la siguiente distribucién de probabilidad para la velocidad

en una dimensién:
_ m il
flo) = \ 27tk To eXp( 2Ty )’

» 7 es la velocidad instantdnea de la particula,

donde:

» m es la masa de la particula,
= kg es la constante de Boltzmann,
» T es la temperatura objetivo.

Luego la velocidad en tres dimensiones se genera como un vector cuyas componentes se
sortean de manera independiente segtn esta distribucion.

Este método permite una correcta generacién del colectivo canénico (NVT), ya que repro-
duce fielmente la distribucién de velocidades térmicas [15, 29]. Sin embargo, al introducir
aleatoriedad, puede provocar una ruptura de la conservacién del momento lineal total del
sistema, lo que puede ser un incoveniente en ciertos contextos fisicos [28].

Termostato de Nosé-Hoover

El termostato de Nosé-Hoover extiende las ecuaciones de movimiento mediante la introduc-
cién de una variable dindmica adicional ¢ que actia como un “termostato virtual", permi-
tiendo el intercambio de energia entre el sistema y un bafio térmico ficticio [11, 12].

La evolucién temporal de las particulas en este caso viene dada por:

1

B = =
1 ml

F—¢5, &= 1 <Zmi||?7i|2 - 3NkBTO> ,
a2
donde:
» ¥; es la velocidad de la particula i,
= [ es la fuerza que actda sobre dicha particula,
= ( es un parametro que representa el “momento de inercia térmico"del bafio,
» ¢ es la variable de friccién generalizada que evoluciona con el sistema,

= Ty es la temperatura objetivo,
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4.2. Control de temperatura y presion

= kg es la constante de Boltzmann,

= N es el nimero de particulas.

Despejando en (12), se observa que, en equilibrio térmico, se cumple la siguiente relacién:
=112 z
Zmi||vi|| = 3NkBTO = g =0.
i

Por tanto, esta formulacién permite generar correctamente el colectivo canénico (NVT),
asegurando tanto la reversibilidad temporal como el determinismo del sistema, a diferencia
de los métodos vistos anteriormente [15]. Ademds, mantiene la continuidad de las trayectorias
en el espacio de fases, lo que lo hace adecuado para el estudio de propiedades dindmicas [33].

No obstante, la eleccién del pardmetro Q es critica. Si se escoge un valor demasiado grande,
el sistema responde lentamente al termostato y tarda mucho en alcanzar la temperatura
deseada. Si, por el contrario, Q es muy pequefio, el sistema puede sufrir oscilaciones no
fisicas o inestabilidades numéricas. Por ello, su correcta parametrizacién suele ajustarse
empiricamente o mediante técnicas de andlisis de estabilidad [28].

4.2.2. Barostatos

Los barostatos modifican el volumen del sistema, ajustando dindmicamente el volumen de
la celda de simulacién, permitiendo asi simular un entorno con presién constante. Al igual
que con la temperatura, existen distintos métodos que abordan este objetivo:

Barostato de Berendsen

El barostato de Berendsen regula la presion del sistema mediante un reescalado suave y con-
tinuo del volumen hacia un valor objetivo, de forma anéloga al termostato de Berendsen [31].

Este método se basa en una ecuacion diferencial que modifica el volumen de la celda de
simulacién segin la diferencia entre la presion actual y la deseada:

dv 1
a ?P(Po - P)V,

donde:

= V representa el volumen del sistema,
= P es la presion instantanea del sistema,
= Py representa la presiéon objetivo,

= 7Tp es la constante de relajacion, tiempo que tarda el sistema en alcanzar el nuevo estado
de equilibrio.

Una vez actualizado el volumen del sistema, es necesario reescalar las posiciones de todas

las particulas para que se ajusten coherentemente al nuevo volumen. Para ello, se define un
factor de escala de longitud y como:
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()

Entonces, las posiciones se reescalan mediante:
7 — ]/l?l

Este reescalado preserva la estructura relativa del sistema al modificar las distancias inter-
atémicas en proporcién al cambio de volumen. En simulaciones con condiciones periddicas
de contorno, también se debe aplicar dicho reescalado a las dimensiones de la celda periédica.

En algunas implementaciones, también puede aplicarse un reescalado a las velocidades
para mantener la coherencia dindmica, aunque en el barostato de Berendsen original esto no
es estrictamente necesario.

Esta técnica es computacionalmente eficiente y estable, y permite controlar la presién
media del sistema durante la simulacion [15].

Sin embargo, al igual que ocurre con el termostato de Berendsen, este barostato no repro-
duce correctamente las fluctuaciones de volumen esperadas en un colectivo isébaro-isotermo
(NPT), lo que limita su rigor estadistico [29]. Por ello, aunque es titil en fases iniciales de equi-
librado, no se recomienda su uso en la etapa de produccién si se desean obtener propiedades
termodindmicas con precisién, como el volumen promedio o la densidad del sistema.

Barostato de Parrinello-Rahman

El barostato de Parrinello-Rahman extiende la idea de Nosé-Hoover para permitir que no
solo el volumen, sino también la forma de la celda de simulacién, pueda cambiar de manera
dindmica. Para ello, introduce como variable dindmica la matriz de celda /, cuyas colum-
nas definen los vectores base del sistema simulado. Asi, cada vector de la celda unitaria
puede evolucionar de forma independiente, lo que permite deformaciones tanto isotrépicas
como anisotrépicas [35]. Este enfoque resulta especialmente 1til para simular materiales s6li-
dos, fases cristalinas o sistemas sometidos a tensiones externas, donde no basta con escalar
uniformemente el volumen, sino que también es necesario permitir cambios de forma.

Este método se basa en una formulacién lagrangiana extendida, en la que se afiaden grados
de libertad adicionales asociados a la dindmica de la celda simulada. El sistema evoluciona
bajo una dindmica acoplada entre las particulas y la matriz i, permitiendo asi que la celda
cambie de tamafio y forma en respuesta a la presion y al tensor de esfuerzos internos [15].

Aunque su implementacién es mds compleja y computacionalmente costosa que la de otros
métodos, el barostato de Parrinello-Rahman permite una descripcion precisa del colectivo
is6baro-isotermo (NPT), reproduciendo adecuadamente las fluctuaciones de volumen, por lo
que es uno de los métodos mads utilizados para simulaciones precisas en sistemas cristalinos
o materiales bajo deformacién [28].
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Consideraciones sobre los tiempos de relajacion

La eleccién de los tiempos de relajacién, tanto térmica (77) como barométrica (7p), es un
aspecto critico, ya que controlan la rapidez con la que el sistema se ajusta a la temperatura o
presion objetivo [15].

Por tanto, si T es demasiado pequefio, el sistema se fuerza de forma excesiva hacia el
valor deseado, suprimiendo las variaciones naturales del sistema. Esto puede conducir a
una evolucién artificial del sistema y a una mala representacion estadistica, lo que resulta
inadecuado para etapas de produccién. Por otro lado, si T es demasiado grande, la relajacién
serd demasiado lenta, alargando innecesariamente la fase de equilibrado y pudiendo impedir
alcanzar las condiciones deseadas en el tiempo de simulacién disponible [15, 31].

En busca de programas mas eficientes, se suele usar valores pequefios de T durante las
primeras etapas de equilibrado, en sistemas que parten de configuraciones lejos del equilibrio
o en simulaciones en la que la precisién estadistica no es una prioridad. Por el contrario, se
suele usar valores grandes de T durante las etapas finales de equilibrado, reduciendo gra-
dualmente las perturbaciones externas, en sistemas pequerios o altamente sensibles, donde
las oscilaciones provocadas por cambios bruscos pueden afectar negativamente a la simula-
cién o en simulaciones més largas donde se busca una transicién progresiva hacia la fase de
produccién.

Relajaciones sucesivas

En la practica es habitual emplear una estrategia escalonada con varias etapas de relajacion.
Por ejemplo, en simulaciones bajo condiciones del colectivo NPT, se suele adoptar la siguiente
secuencia:

1. En primer lugar, se aplica un termostato de Berendsen con un valor pequefio de 7
para alcanzar rdpidamente la temperatura objetivo.

2. A continuacidn, se introduce un barostato (también de Berendsen) con un valor reduci-
do de 7p para ajustar la presion del sistema.

3. Una vez estabilizado el sistema, se incrementan gradualmente los valores de 1 y 7p,
0 bien se cambia a métodos maés rigurosos, como Nosé-Hoover o Parrinello-Rahman,
para iniciar la fase de produccién [29].

Esta estrategia permite un control eficiente y progresivo de las condiciones termodindmicas,
evitando inestabilidades numéricas y asegurando un muestreo estadistico mas fiable durante
la etapa de andlisis.

4.3. Algoritmos de optimizacion

Antes de iniciar una simulacién de dindmica molecular, tras establecer la configuracién inicial
del sistema, es habitual llevar a cabo una etapa de minimizacién de energia, cuyo objetivo
es encontrar una configuracién estable del sistema que sirva como punto de partida para
la integracién de las ecuaciones de movimiento. En esta etapa se busca eliminar tensiones
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artificiales o solapamientos entre d4tomos que pueden haber sido introducidos durante la
construccién inicial del sistema [29].

Por otro lado, los métodos de Monte Carlo ofrecen una alternativa interesante a la dindmica
molecular cldsica. Mientras que la MD resuelve ecuaciones diferenciales para obtener la
evolucion temporal del sistema, el enfoque de Monte Carlo introduce aleatoriedad y se centra
en el muestreo de configuraciones segtin una determinada distribucién de probabilidad. Este
enfoque resulta especialmente ttil en estudios termodindmicos o en simulaciones donde la
evolucién temporal explicita no es relevante [15].

4.3.1. Minimizacion de energia

La etapa de minimizaciéon de energfa, como se ha mencionado anteriormente, constituye
un paso previo habitual en muchas simulaciones de dindmica molecular. Su objetivo es
encontrar una configuracion estable del sistema, es decir, una disposicién de las particulas que
minimice la energia potencial total. Esta configuracién corresponde, en general, a un minimo
local de la superficie de energfa potencial, ya que el minimo global suele ser inaccesible
computacionalmente para sistemas con muchos grados de libertad [15, 29].

Ademads de garantizar la estabilidad mecénica local, esta etapa es crucial para evitar que
fuerzas no fisicas generen aceleraciones extremas o inestabilidades numéricas al comienzo
de la simulacién [15]. En particular, iniciar la integracién desde una configuracién alejada del
equilibrio puede dar lugar a explosiones numéricas o a errores de integracién acumulados.

En ciertos contextos, como el estudio del plegamiento de protefnas o el disefio de materiales,
se recurre a técnicas de optimizacion global, como las metaheuristicas, que permiten escapar
de minimos locales y explorar regiones mds amplias del paisaje energético [15, 36].

Desde un punto de vista matematico, esto equivale a resolver el siguiente problema de
optimizacion:
min V(7,...,7Nn),
r1,---/'N
donde V(7,...,7xn) representa la energia potencial total del sistema en funcion de las posi-
ciones de los dtomos.

Para alcanzar dicho minimo local, muchos de los métodos més utilizados se basan en el
gradiente del potencial, ya que los minimos locales satisfacen las siguientes condiciones de
primer y segundo orden:

ViV =0, HessV (7;) > 0, (13)

donde la primera condicién indica que la fuerza neta sobre cada particula es nula, y la
segunda que la matriz Hessiana es definida positiva en ese punto [37].

Recordemos que la matriz Hessiana de V viene dada por:

vV r?v._ . 2V
o7, r110r12 9r1197N3
PV v &V
5 orip0r or2 dryp0r
HESSV(T’) _ 120711 £V 1207N3 , (14)
v v . 2V
Jrn3dry1  0rN3Orip 012,
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donde 7 = (111,712,713, ---,'N1, 'N2/ 1’N3)T € R3N, para un sistema de N particulas, cada
una con posicion tridimensional 7; = (r;1, 72, 7;3). Lo habitual en el contexto de dinamica
molecular es que esta matriz sea simétrica, ya que, en general, se trabaja con funciones
suaves [26].

En la préctica, se considera que el sistema ha alcanzado un equilibrio mecénico local
cuando la fuerza neta sobre cada dtomo es inferior a un umbral prefijado.

A continuacién se presentan algunos de los métodos de optimizaciéon mads utilizados en
simulaciones de dindmica molecular:

Descenso por gradiente

Este método, estudiado en la asignatura Aprendizaje Automatico, consiste en actualizar itera-
tivamente las posiciones de las particulas en la direccién del gradiente negativo del potencial
hasta que la fuerza neta sobre cada d4tomo quede por debajo del umbral prefijado [15, 37]:

Algoritmo 1 Descenso por gradiente

7 ?0

while |[VV(7)|| > ¢ do
7+ 7—aVV(7)

end while

return 7

donde 7 representa la configuracién inicial del sistema, « es el paso de aprendizaje o tasa
de actualizacién, y € el umbral prefijado.

Este método es especialmente 1til cuando la configuracién inicial se encuentra lejos del
minimo local. Sin embargo, el método puede volverse ineficiente al aproximarse al minimo,
ya que si el valor de & es demasiado grande, se producirdn oscilaciones, mientras que si el
valor de & es muy pequefio, la convergencia serd muy lenta (ver Figura 11).

Tasa de aprendizaje pequefia Tasa de aprendizaje grande

Figura 11.: Comparacién del descenso por gradiente segtn la tasa de aprendizaje [38].
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Gradiente conjugado

El método del gradiente conjugado mejora la eficiencia del descenso por gradiente al generar,
en cada iteracién, una direccién de bisqueda conjugada respecto a la matriz Hessiana del
sistema [37]. Esto permite una convergencia mds rapida, especialmente cerca del minimo.

Desde un punto de vista matematico, desarrollando V (¥) alrededor de la configuracion
inicial 7y:

V(F) % V(o) + V()T (F—Fo) + 5 (7 — 7o) THessV (7o) (7 — 7o),

donde HessV (7y) es la matriz Hessiana (14) evaluada en 7.

Ahora, definiendo ¥ = 7 — 7 y observando que el término constante V(7)) no afecta al
calculo del minimo local (véase (13)), pues su derivada es nula, se escribe:

V(7) ~ %J‘C'THessV(?o)f—i- VV (7)) % = %fTASc' —%Tp,
tomando A = HessV (7)) y b = —V V(7). Por tanto, el método del gradiente conjugado

busca minimizar la funcién cuadrética:

f(x) = %ETA;? —%Tp.

El algoritmo del gradiente conjugado viene dado por:

Algoritmo 2 Gradiente conjugado

fo(—A70—E
ﬁo(——fo
k<0

while ||X;|| > ¢ do
=T =

g1 < T+ & Px
Xki1 <—Txk + A Apk
7o Mkr1tkl
Bi < B
Xp Xk
Prs1 < —Xkp1 + Brr1Pr
k+k+1
end while
return 7

En simulaciones reales se suele emplear una combinacién de ambos métodos, comenzan-
do con descenso por gradiente para escapar rdpidamente de regiones de alta energfa, y
continuando con gradiente conjugado cerca del minimo local [15].
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Metaheuristicas y optimizacién global

Si bien el descenso por gradiente y el gradiente conjugado son ampliamente utilizados
por su eficacia y simplicidad, por lo que son preferibles en simulaciones rutinarias, tienen
limitaciones importantes en escenarios donde la funcién objetivo posee multiples minimos
locales, como ocurre en biomoléculas plegadas.

Para estos casos, han ganado relevancia las metaheuristicas, técnicas de optimizacién global
que no dependen tnicamente de informacién local del gradiente, sino que estan disefiadas
para explorar globalmente el espacio de biisqueda, permitiendo escapar de minimos locales
a través de mecanismos estocésticos o evolutivos. Entre las més utilizadas se encuentran
los algoritmos genéticos y evolutivos [39], estudiados en la asignatura Metaheuristicas, el
método de Basin Hopping [36] y el descenso estocastico del gradiente (Stochastic Gradient Des-
cent, SGD) [40], estudiado en la asignatura Aprendizaje Automatico. Estas técnicas, aunque
no garantizan encontrar el minimo global, aumentan significativamente la probabilidad de
alcanzarlo.

Si bien exigen un mayor coste computacional en comparacién con los métodos determinis-
tas basados en gradientes, su uso estd justificado en situaciones donde es prioritario encontrar
minimos globales, como en el estudio del plegamiento de proteinas o el disefio de materiales.

En resumen, la eleccién del método de optimizaciéon depende de la topologia de la super-
ficie de energfa potencial, del conocimiento previo del sistema y de los recursos computacio-
nales disponibles.

4.3.2. Métodos de Monte Carlo

El enfoque de Monte Carlo (MC), disefiado principalmente para el colectivo canénico (NVT),
ofrece una alternativa eficaz y conceptualmente diferente a la dindmica molecular tradicional.
Mientras que la dindmica molecular integra las ecuaciones de movimiento para obtener la
evolucién temporal de las particulas, los métodos de MC generan configuraciones aleatorias
del sistema y deciden si se aceptan o no segtin un criterio probabilistico. El objetivo es mues-
trear configuraciones de acuerdo con una distribucién de probabilidad del tipo Boltzmann:

. 1 V(7
P() = gop (—or ) (15)

donde Z es la constante de normalizacién o funcién de particién:

7= / exp (‘];E?) i, (16)

A partir de esta expresion, las configuraciones con menor energia tienen mayor probabilidad
de ser aceptadas. Sin embargo, también se permite aceptar configuraciones con mayor energia
para evitar quedar atrapados en minimos locales.

Los métodos de Monte Carlo tienen la ventaja de ser mds faciles de implementar y suelen
ser mds eficientes cuando se trata de muestrear grandes espacios de configuracién, especial-
mente en sistemas con restricciones geométricas, como sélidos, redes cristalinas o polime-
ros [41].
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El algoritmo més conocido en este contexto es el algoritmo de Metropolis [42], desarrollado
en 1953. Este método permite muestrear eficientemente el espacio de configuraciones de un
sistema a temperatura constante, generando un conjunto de estados que siguen la distri-
bucién de Boltzmann (15). Su ventaja fundamental es que no requiere calcular la funcién
de particién (16), una cantidad computacionalmente inalcanzable en sistemas con muchos
grados de libertad, ya que implica una integral en un espacio de alta dimensionalidad [15, 43].

En su lugar, el algoritmo trabaja con el cociente de probabilidades entre estados consecuti-

VOS:
1 V()
P(fry 7P (_ ksT ) B V(@) -V AV, _AE
P71 vy PN kT ) TP\ TkeT) T P TheT )
799 (~%7)

Aunque este cociente no representa una probabilidad en sentido estricto, el algoritmo lo

emplea como probabilidad de aceptacién cuando AE > 0. En tal caso, se define p =

exp (fé—%) € (0,1), y se compara con un namero aleatorio r € [0,1], lo que permite al

sistema aceptar configuraciones energéticamente desfavorables con cierta probabilidad, fa-
cilitando asi la salida de minimos locales. En cambio, si AE < 0, se acepta directamente la
nueva configuracién, asegurando que el sistema puede evolucionar hacia estados de menor
energia.

Por tanto, su implementacién viene dada por:

Algoritmo 3 Algoritmo de Metropolis

Inicializar configuracién 7 al azar
for paso = 1 hasta N do
Elegir una particula i al azar
Calcular 77 a partir de 7, modificando la posicién de la particula i
Calcular AE = V(71) — V(7)
if AE < 0 then
Aceptar la nueva configuracion: 7 < 7/

else AE
Calcular p = exp (_kBT)
Generar numero aleatorio r € [0,1]
if » < p then
Aceptar: 7 + 7/
else
Rechazar: mantener configuracién actual
end if
end if
end for

4En el contexto del algoritmo de Metropolis aplicado a simulaciones Monte Carlo bajo el colectivo canénico (NVT),
los términos cinéticos no se consideran explicitamente, ya que la energia cinética no influye en la distribucién
de probabilidad configuracional. Por ello, se asume que el incremento de energia AE equivale al cambio en la
energia potencial AV [15].
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Este método garantiza que, tras un nimero suficiente de pasos, las configuraciones visi-
tadas siguen la distribucién de Boltzmann, lo cual es ttil para el cdlculo de propiedades
termodindmicas en equilibrio.

Por tanto, aunque el método no permite estudiar trayectorias o dindmicas temporales, es
especialmente ttil para explorar estados de equilibrio, detectar configuraciones estables y
estimar propiedades macroscépicas del sistema.

En resumen, mientras que la minimizacién de energia busca una configuracién estable
inicial resolviendo un problema de optimizacién determinista, los métodos de Monte Carlo
exploran distintas configuraciones del sistema mediante una estrategia probabilistica.

4.4. Simulaciones paralelas y aceleracion

Las simulaciones de dindmica molecular requieren una elevada carga computacional debido
a la complejidad de los célculos implicados. A medida que el ntiimero de particulas crece
o se desea simular procesos en escalas temporales més largas, el niimero de operaciones
necesarias se incrementa de forma exponencial. En particular, el cdlculo de fuerzas entre
particulas y la integracién de las ecuaciones de movimiento representan los principales
cuellos de botella computacionales, siendo estos calculos de complejidad O(N?) en el caso
mads general [15, 29].

Para poder simular sistemas de interés biol6gico o materiales realistas con millones de
dtomos durante tiempos fisicamente relevantes, es fundamental paralelizar el proceso de
simulacién. Este objetivo se logra mediante diferentes estrategias de paralelizacién, que
permiten distribuir el trabajo entre multiples procesadores o unidades de computo:

Descomposicion espacial

Una de las técnicas més utilizadas es la descomposicién espacial, donde el espacio simulado
se divide en subdominios (cajas) y cada procesador es responsable de calcular las fuerzas e
integrar las trayectorias de las particulas dentro de su regién. Para mantener la coherencia
global, los procesadores deben intercambiar informacién sobre particulas cercanas a los
limites de sus dominios, denominadas particulas fantasma, lo cual requiere comunicacién
eficiente entre nodos [21].

Replicacion de datos

En sistemas de menor tamafio o con baja comunicacién entre procesos, se puede optar por
replicar los datos en todos los procesadores, de manera que cada uno tenga una copia
completa del sistema. Aunque esto incrementa el uso de memoria, permite minimizar la
latencia de comunicacién, a cambio de realizar calculos redundantes [15].

Paralelizacion por fuerza o por atomo

Otra opcién es paralelizar por tipo de cdlculo, asignando por ejemplo a cada nicleo una
fraccién de las interacciones a calcular (paralelizacion por fuerzas) o el seguimiento de un
conjunto de particulas especificas (paralelizacién por dtomos). Aunque menos escalables,
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estas estrategias pueden ser ttiles en arquitecturas especificas o en algoritmos especializa-
dos [26].

Uso de arquitecturas HPC y GPUs

El uso de arquitecturas de computacién de alto rendimiento (High-Performance Computing,
HPC) es fundamental para llevar a cabo simulaciones de dindmica molecular a gran escala.
Sistemas como supercomputadores o cltsteres permiten dividir el trabajo entre multiples
nidcleos o nodos mediante bibliotecas paralelas como OpenMP [44] o MPI (Message Passing
Interface) [45], acelerando asf la ejecucién de las simulaciones.

Por otro lado, las unidades de procesamiento grafico (GPUs) han supuesto un avance
significativo en este &mbito. A diferencia de las CPUs tradicionales, que estan optimizadas
para ejecutar unos pocos hilos de manera muy eficiente, las GPUs estdn disefiadas para
manejar miles de hilos de manera simultanea. Esta arquitectura masivamente paralela es ideal
para realizar operaciones vectoriales repetitivas, como el calculo de fuerzas entre particulas,
que constituye el niicleo computacional de la dindmica molecular [46].

Gracias a estas ventajas, muchos programas populares de simulacién, como AMBER, GRO-
MACS [47] o NAMD, han incorporado versiones optimizadas para su ejecucién en GPU,
permitiendo alcanzar aceleraciones de hasta un orden de magnitud (es decir, 10 veces mas
rdpidas) con respecto a implementaciones basadas tinicamente en CPU.

En conclusién, la paralelizacién y el uso de arquitecturas aceleradas son elementos funda-
mentales en la dindmica molecular actual. No solo permiten simular sistemas méas grandes
o durante mds tiempo, sino que permiten llevar a cabo estudios que serfan computacional-
mente inviables con recursos secuenciales.
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Molecular

Una vez establecidos los conceptos tedricos fundamentales de la dindmica molecular en los
capitulos anteriores, una de las mejores formas de comprender una simulacién es plantear
cémo se estructuraria un programa simple bajo las siguientes condiciones:

Condiciones termodinamicas y parametros caracteristicos de la simulacion

La simulacién presentada en esta seccién se lleva a cabo bajo las condiciones del colectivo
microcanénico (NVE). En este conjunto estadistico se mantiene constante el ntimero de
particulas N, el volumen V y la energia total E (ver Capitulo 2).

Durante la evolucién temporal, se calculan diversas propiedades termodindmicas del siste-
ma, como la temperatura instantdnea y la energia total por particula.

Unidades reducidas

En simulaciones de dindmica molecular es habitual emplear un sistema de unidades redu-
cidas con el fin de simplificar los calculos, mejorar la estabilidad numérica y evitar errores
derivados de trabajar con constantes fisicas muy pequefias (por ejemplo, kg ~ 10723 J/K). Es-
ta estrategia también permite escribir cédigo méas limpio y eficiente, eliminando la necesidad
de introducir factores dimensionales en cada paso del algoritmo [15].

La idea fundamental consiste en escoger magnitudes caracteristicas del sistema como
escalas de referencia. En particular, cuando se emplea el potencial de Lennard-Jones, se fijan
como unidades base las siguientes constantes:

= ¢ longitud caracteristica (didmetro efectivo de las particulas), se mide en metros [m].
= ¢ energia de interaccién (profundidad del pozo de potencial), se mide en julios [J].

= m: masa de las particulas, se mide en kilogramos [kg].

» kp: constante de Boltzmann.

Esto permite expresar todas las demdas magnitudes relevantes en forma adimensional, es
decir, sin unidades fisicas explicitas. A partir de estas definiciones base, se pueden reescalar
el resto de variables del sistema, tal y como se resume en la Tabla 5.1.

Por ejemplo, supongamos que en una simulaciéon se emplean los valores 0 = ¢ = m =
kp = 1 (eleccién habitual en unidades reducidas), y se obtiene una temperatura reducida
T* = 1.2. Entonces, empleando los valores fisicos reales del argén, se obtiene la siguiente
temperatura instantanea:

T ¢ 12-165x10721 ] 198x10°2

T — ~ AP i S
kg 1.38 x 10—23 J/K ~ 138 x10-23

K~ 143.5K.
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De igual forma, si se desea que, en valores fisicos reales, el paso de tiempo empleado sea de
At = 10715 s, entonces el paso de tiempo tomado en la simulacién vendra dado por:

B m _10 [663x107% s ~ 4
t_t*-a,/?_t*-3.405><10 Tesxio-m — 10 = t* ~4.636 x 107,

Magnitud | Magnitud reducida | Reescalado a unidades fisicas

t m

t = — t=t"0,/— S
ovm/e 3 (5)
kBT T - ¢
. s (K)
7]

U
<
I
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I~
3
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Tabla 5.1.: Conversion entre magnitudes fisicas y reducidas

Aunque las variables numéricas utilizadas en simulaciones con unidades reducidas son
adimensionales y no poseen unidades fisicas explicitas, si representan de forma coherente
las proporciones y relaciones entre las propiedades del sistema. Esto permite interpretar
los resultados de forma cualitativa, comparar distintos sistemas moleculares y, si se desea,
convertir los valores obtenidos nuevamente a unidades fisicas mediante las expresiones de
reescalado correspondientes [15].

Estructura del programa

En la Tabla 5.2 se muestra la secuencia tipica de etapas que componen una simulacién de
dindmica molecular.

Por tanto, el pseudocédigo desarrollado tendrd la siguiente estructura:

1. Lectura de los pardmetros que especifican las condiciones iniciales de la simulacién
(ntmero de particulas, temperatura inicial, paso de tiempo, etc.).

2. Inicializacién del sistema: incluye la preparacion, el calentamiento y el equilibrado del
sistema.

3. Célculo de las fuerzas que actian sobre cada particula.
4. Integracion de las ecuaciones de movimiento de Newton.

5. Célculo y visualizacién de propiedades termodindmicas del sistema.

38



5.1. Inicializacion del sistema

Etapa Descripcion

Definicién de las coordenadas iniciales y asignacién de veloci-
Preparacién del sistema | dades, habitualmente mediante una distribucién de Maxwell-

Boltzmann.
Calentamiento Escalado de las velocidades a la temperatura deseada.
e El sistema se lleva a una situacién de equilibrio a partir de su
Equilibrado . R
configuracioén inicial.
L Generacion de las trayectorias del sistema, a partir de las cuales
Produccién

se calculan propiedades fisicas y termodindmicas.

Tabla 5.2.: Etapas del desarrollo de una simulacién de dindmica molecular. [48]

A partir de esta estructura, se obtiene el siguiente pseudocédigo, que implementa una si-
mulacién de dindmica molecular para un sistema atémico tridimensional sencillo, compuesto
por N particulas:

Algoritmo 4 Esquema general de una simulacién de dindmica molecular

Leer pardmetros > Paso 1

Inicializar sistema > Paso 2

t+0

while t < tyax do
Calcular fuerzas > Paso 3
Integrar ecuaciones de movimiento > Paso 4
Calcular y mostrar propiedades > Paso 5
t < t+ At

end while

Las subrutinas inicializar sistema, calcular fuerzas e integrar ecuaciones de movimiento
seran descritas en los algoritmos 5, 6 y 7, respectivamente.

5.1. Inicializacion del sistema

En esta fase se llevan a cabo tres pasos esenciales: la preparacién, el calentamiento y el
equilibrado del sistema. En primer lugar, se definen las coordenadas iniciales de las particulas,
que suelen colocarse sobre una red regular (como una red ctibica) para evitar solapamientos,
y se asignan velocidades iniciales extraidas de una distribucién aleatoria. Luego, se realiza
un reescalado de las velocidades con el objetivo de que la energia cinética total del sistema
corresponda a la temperatura deseada, lo que se conoce como calentamiento del sistema.
Finalmente, se elimina la posible velocidad del centro de masas y se ajustan las condiciones
para alcanzar un estado de equilibrio termodindmico.

Estas tareas pueden implementarse de forma conjunta dentro de una tinica rutina de
inicializacién (ver Algoritmo 5). A continuacién se detallan los calculos realizados en ella:

= Preparacion del sistema: Las posiciones iniciales 7; de las particulas se colocan so-
bre una red regular tridimensional (habitualmente ctbica), mediante una funcién
lattice_pos(i). Este paso evita solapamientos entre particulas que podrian producir
fuerzas repulsivas extremadamente grandes en los primeros pasos de simulacién [15].
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= Asignacion de velocidades aleatorias: A cada particula i se le asignan tres componen-

tes de velocidad, una por cada direccién del espacio, utilizando ntimeros aleatorios
uniformemente distribuidos en el intervalo [—0.5,0.5]. Esta eleccién se emplea exclu-
sivamente para garantizar una distribucién inicial no sesgada. Posteriormente, tras el
equilibrado, las velocidades seguiran una distribuciéon de Maxwell-Boltzmann.

Eliminacién del movimiento del centro de masas: En una simulacién de dindmica
molecular, es importante que el sistema no adquiera un movimiento global no deseado,
es decir, que el centro de masas permanezca en reposo. Si las velocidades iniciales
se asignan aleatoriamente, es muy probable que la velocidad total del sistema no sea
exactamente cero. Esto puede provocar un desplazamiento del sistema en su conjunto
a lo largo del tiempo, lo cual no se desea [15].

Para corregir esto, se calcula la velocidad del centro de masas en cada direccién espacial,
que, asumiendo m = 1, viene dada por la media de las velocidades individuales de
todas las particulas:

1
=N,

1

Y

M=

171-]- paraj=1,23,

Il
—_

donde 7j; representa la componente j-ésima de la velocidad de la particula i, y N es
el niimero total de particulas. Esta media define el vector de velocidad del centro de
masas del sistema:

Una vez calculado este vector, se elimina el movimiento del centro de masas restdndolo
de la velocidad de cada particula:

U« 0;—tUcm parai=1,...,N.

De este modo, se garantiza que el sistema tenga velocidad total nula.

Reescalado de las velocidades (calentamiento): Para garantizar que la energia cinética
media del sistema corresponde con la temperatura objetivo T, se utiliza el teorema de
la equiparticién (12), donde, suponiendo m = 1y kg = 1, se ajustan las velocidades

mediante un factor de escala:
3T
fS = N 1= /n7"
Y 1@l2/N

Por tanto, aplicando Tj; < Tj; - fs se consigue que la temperatura inicial del sistema
sea exactamente T. Ademds, este procedimiento garantiza que las velocidades de las
particulas sigan una distribucién de Maxwell-Boltzmann [15].

Calculo de las posiciones en t — At: Finalmente, se calcula la posicién de cada particula
en el paso anterior (t — At), necesaria para comenzar la integracién mediante el algorit-
mo de Verlet (7). Para ello, se usan las velocidades asignadas suponiendo movimiento a
velocidad constante, es decir, sin suponer ningtn tipo de interaccién ni fuerza externa.



5.2. Cdlculo de fuerzas

Estos pasos completan la fase de inicializaciéon del sistema, permitiendo comenzar la
simulacién con condiciones fisicas coherentes, sin movimiento global del centro de masas,
con una temperatura precisa y sin solapamientos significativos.

Algoritmo 5 Inicializar sistema

sumvy <— 0, sumvy, sumvjz <« 0 > Suma de las velocidades
sumv2 < 0 > Suma de las velocidades al cuadrado
fori =1to N do
7; < lattice_pos(i) > Coloca la particula 7 en una red regular
forj=1to 3 do
Ujj < random() — 0.5 > Velocidad aleatoria en cada direcciéon
sumv; «— sumv; + U;; > Suma para calcular velocidad del centro de masas
sumv2 <— sumvz —+ z‘z’lzj > Actualizacién velocidades al cuadrado
end for
end for
cm < (sumvy/N,sumvy /N, sumvs/N) > Velocidad del centro de masas
sumv2 ¢ sumv2/N > Calcula la velocidad cuadratica media
fs <= 1/3 " Tobjetivo/sSUmv2 > Escala para ajustar temperatura
fori =1to N do
Ui < U; — Ucpm > Sistema en reposo global
Ui < Ui« fs > Calentamiento
r_prev; < 7; — U; - At > Coordenadas de la particula i en t — Af
end for

5.2. Calculo de fuerzas

Una vez inicializado el sistema, en cada paso de la simulacién es necesario calcular las fuerzas
que acttian sobre cada particula. Este célculo se basa en el modelo de potencial que describe
las interacciones entre particulas. En este caso, se emplea el potencial de Lennard-Jones (4),
ampliamente utilizado para modelar interacciones de tipo van der Waals.

El algoritmo 6 realiza el cdlculo de las fuerzas interatémicas y de la energia potencial
total del sistema. Para mejorar la eficiencia computacional, se introduce un radio de corte 7.
que evita calcular la interaccién entre pares de particulas cuya distancia es suficientemente
grande como para que su efecto sea despreciable (ver Subsecciéon 3.2.4). Ademads, se aplican
condiciones de contorno periédicas para simular un sistema infinito a partir de una celda
finita (ver Figura 6).

A continuacién, se detalla el proceso llevado a cabo:

= Inicializacién de la energia y fuerzas: Se inicializa la energia potencial total del sistema
con Epot < 0. Ademds, se pone a cero la fuerza total sobre cada particula, es decir,
F; < (0,0,0) parai =1,...,N. Esto garantiza que no queden restos de calculos previos
que puedan alterar los resultados.

= Bucle sobre pares de particulas: Se recorren todos los pares tnicos de particulas (i, j)
coni < j, ya que la interaccién de Lennard-Jones es simétrica (la fuerza de i sobre j es
igual y opuesta a la de j sobre 7). Esto permite ahorrar tiempo de cémputo.
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» Calculo de distancias con condiciones de contorno periédicas: Para cada par de

particulas (i,) con i < j, se calcula el vector que une ambas posiciones:

Para simular un sistema infinito con una celda finita, se aplican condiciones de contorno
periédicas usando la minima imagen, ya que puede ocurrir que la distancia méas corta
entre dos particulas no sea la directa, sino a través del borde del sistema ((ver Figura 6)):

7ij < 7;j — L -round(7;; /L),

donde round es una funcién que redondea al entero mds cercano, y L representa el
didmetro de la celda. Esto garantiza que cada interaccién se calcula con la imagen mas
cercana de la otra particula, asegurando que las distancias se mantengan dentro del
intervalo [—L/2,L/2] [15].

Filtrado por radio de corte: Con el fin de evitar calculos innecesarios de raices cua-
dradas, que son computacionalmente costosos, se calcula la distancia al cuadrado
r? = H?,«]-Hz, y solo se evalta la interaccién si 2 < r2; es decir, si la distancia entre
las particulas es menor que el radio de corte .. Este criterio mejora el rendimiento
computacional sin afectar significativamente a la precision fisica.

Cilculo de la fuerza mediante el potencial de Lennard-Jones: El médulo de la fuerza
se obtiene a partir de la derivada del potencial de Lennard-Jones (4), donde, suponiendo
€ =1, se tiene que:

- ﬁj 2 1 ?ﬁ 2 1 o o
Fi=VVi(ri) - —=24-| m— = | - —=24-| - _ Fii=f T,
U A\ D)

donde r;; representa la distancia entre las particulas i y j. De forma andloga, esta
expresion se ha formulado usando rl.zj para evitar computos innecesarios de raices
cuadradas.

Actualizacién de las fuerzas: La fuerza vectorial se obtiene multiplicando el médulo f
por el vector direccién 7;;:

FeF+f-7 F<F—f7
Esto asegura que se cumpla la tercera ley de Newton (2).
Calculo de la energia potencial: La energia potencial entre i y j se suma al total:
Epot < Epot +4- (; - 21> ~ Feut,
(rﬁ)é (rﬁ)3

donde E.yt es una constante que compensa el truncamiento del potencial, asegurando
la continuidad del mismo en el radio de corte [15]. Se puede calcular como el valor del

potencial en r = 7., luego:
1 1
Ecut“‘*(rué)-

Cc rC



5.3. Integracion de las ecuaciones de movimiento

Algoritmo 6 Calcular fuerzas

Epot < 0 > Inicializa la energia potencial total
fori =1to N do

E « (0,0,0) > Inicializa la fuerza sobre la particula i
end for

fori=1toN—1do

forj=i+1to N do

Fij < T —Tj > Diferencia de posicion

7ij = 7;j — L - round(7;; /L) > Condiciones de contorno periédicas

12 7y [0]2 + ?1-]-[1}2 + 7 [2]? > Distancia al cuadrado

if r2 < 12 then > Verifica si estd dentro del radio de corte

2 1

f+24. (W ) 1) > Potencial de Lennard-Jones divido por ||7;;|
E « E+ f-7 > Actualiza fuerza sobre la particula i
1_3}- — Z_-"} —f 7 : : > Actualiza fuerza sobre la particula j
Epot <= Epot +4- ( (25 — ) 3) — Ecut > Actualiza la energia potencial total

end if

end for
end for

5.3.

Integracion de las ecuaciones de movimiento

Tras calcular las fuerzas que acttian sobre cada particula, se procede a integrar las ecuaciones
de movimiento para obtener las nuevas posiciones y velocidades (ver algoritmo 7). En este
caso, se utiliza el algoritmo de Verlet.

Por tanto, se estiman las posiciones de las particulas en cada paso de tiempo a partir de (7)
y, seguidamente, se estimaran las velocidades a partir de (8).

A continuacion, se detalla el proceso llevado a cabo:

Inicializacién de la energia cinética: Se define la variable sumv2, que acumulara el
valor de las velocidades al cuadrado de todas las particulas, necesaria para estimar la
temperatura y la energfa cinética.

Calculo de la nueva posicién (Verlet): Para cada particula 7, se calcula la nueva posicién
mediante la férmula (7).

Estimacién de la velocidad: Para cada particula i, se calcula la nueva velocidad me-
diante la féormula (8).

Actualizacién de posiciones: La posiciéon anterior se actualiza como la actual, y la
actual se reemplaza por la nueva estimada. Asf, en el siguiente paso, se puede reutilizar
el mismo esquema de Verlet.

Cilculo de la veclocidad del centro de masas: Se calcula la velocidad del centro de
masas para verificar que la simulacién se ha realizado correctamente.

43



5. Implementacion de una Simulacion de Dindmica Molecular

» Calculo de la temperatura: La temperatura se calcula a partir de (12), luego, asumiendo
kp =1y m =1, se tiene:
1 ﬁ 2
3N 2 [Tl
T 3N b

» Energia total por particula: Finalmente, se calcula la energia total promedio por par-
ticula sumando la energfa potencial (obtenida en el algoritmo anterior) y la energia
cinética, luego, asumiendo m = 1, se tiene:

Epot +5 Z ||Uz||2

Eiot = N

Algoritmo 7 Integrar ecuaciones de movimiento

sumvy <~ 0, sumvy, sumvz <0 > Suma de las velocidades
sumv2 < 0 > Inicializa la suma de las velocidades al cuadrado
fori=1to N do > Bucle principal
r_next; < 27; — r_ptrev; + At . mil_f, > Nueva posicién (Verlet)
1
U; r_nextizlzf_p i > Estimacion de velocidad
for j=1to3 do
sumv; «— sumv; + U;; > Suma para calcular velocidad del centro de masas
end for
sumvz < sumvz + 171-21 + 271-22 + 271-23 > Actualizacién velocidades al cuadrado
r_prev; < 7 > Actualizacién posicién anterior
7; < r_next; > Actualizacion posicion actual
end for
Tcm < (sumvy/N,sumvy /N, sumvs/N) > Velocidad del centro de masas
sumv2 .
Temp < > Temperatura instantanea

Epot + 0.5 - sumv2
N

Etot < > Energia total por particula

La energia total por particula Eiyt deberfa permanecer aproximadamente constante a lo
largo de la simulacién. Del mismo modo, la velocidad del centro de masas ¥cp; deberia
mantenerse cercana a cero en cada una de sus tres componentes. Cualquier desviacién signi-
ficativa en estos valores podria ser sefial de errores en la implementacién del algoritmo [15].

5.4. Programas de dinamica molecular
A lo largo de las dltimas décadas, se han desarrollado numerosos programas de simulaciéon
de dindmica molecular, cada uno con caracteristicas especificas orientadas a distintos tipos

de sistemas, escalas y recursos de célculo. Estos programas permiten ejecutar simulaciones,
analizar trayectorias, visualizar estructuras y aplicar diversos campos de fuerza.

A continuacién, se describen algunos de los campos de fuerza més conocidos:
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= AMBER (Assisted Model Building with Energy Refinement): Desarrollado inicialmente
para simular 4dcidos nucleicos y proteinas. Utiliza una formulacién bastante precisa de
los términos torsionales y electrostdticos. Estd especialmente optimizado para sistemas
biolégicos y se usa ampliamente en bioquimica computacional [49].

» CHARMM (Chemistry at HARvard Macromolecular Mechanics): Campo de fuerza amplia-
mente utilizado en simulaciones de proteinas, lipidos y dcidos nucleicos. Esta disefiado
para trabajar conjuntamente con el programa CHARMM, pero también es compatible
con otros paquetes como NAMD o GROMACS. Incluye pardmetros especificos para
simular membranas biolégicas y otros entornos complejos [50].

= GROMOS (GROningen MOlecular Simulation): Enfocado inicialmente al modelado de
liquidos y biomoléculas, se ha usado tradicionalmente con el paquete de simulacién
GROMOS. A diferencia de AMBER o CHARMM, GROMOS emplea funciones de po-
tencial ligeramente diferentes, como un término de Van der Waals basado en una forma
exponencial en lugar del clasico (4) [51].

» OPLS (Optimized Potentials for Liquid Simulations): Disefiado para reproducir propieda-
des termodindmicas de liquidos orgédnicos y biomoléculas. Se basa en una parametriza-
cién rigurosa contra datos experimentales y simulaciones de quimica cuantica. Existe
una versién OPLS-AA (All-Atom) que incluye todos los dtomos explicitamente, lo cual
mejora la precisiéon en muchos contextos [52].

Estos modelos se basan en una combinacién de términos empiricos (como enlaces, angulos,
torsiones e interacciones de Van der Waals y electrostaticas) y estdn calibrados mediante
datos experimentales y célculos de quimica cudntica sobre moléculas pequefias. Cada uno se
desarrolla con un objetivo especifico y estd calibrado para ciertos tipos de moléculas, por lo
que su eleccién depende del sistema a estudiar y del tipo de simulacién que se desee realizar.

Por otro lado, un programa de simulacién es un software que implementa los algoritmos
necesarios para llevar a cabo la integracién temporal, el cdlculo de fuerzas y el andlisis de
trayectorias. Muchos de estos programas permiten la utilizacién de distintos campos de
fuerza externos, lo que les proporciona una gran versatilidad y adaptabilidad a diversos
tipos de sistemas moleculares.

Entre los programas de simulacién més relevantes se encuentran:

= AMBER: Hace referencia tanto a un conjunto de programas como a una familia de
campos de fuerza, ya descritos anteriormente. Aunque estéd especialmente optimizado
para sistemas biolégicos, sus campos de fuerza pueden exportarse a otros programas
como GROMACS.

= GROMACS: Cédigo libre y altamente optimizado para realizar simulaciones de MD,
especialmente en sistemas grandes como proteinas en membranas. Admite multiples
campos de fuerza (incluyendo AMBER, CHARMM y OPLS), y destaca por su velocidad
y eficiencia en arquitecturas paralelas y GPU [47].

= NAMBD: Disefiado para simular sistemas biomoleculares de gran tamafio, aprovechando
recursos computacionales distribuidos (HPC). Compatible con los campos de fuerza
CHARMM y AMBER, es ampliamente utilizado en simulaciones a escala masiva [21].
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= LAMMPS: Cédigo versétil orientado a la simulacién de materiales y polimeros, pero
también capaz de modelar sistemas biolégicos. Soporta campos de fuerza clasicos
y avanzados, lo que le permite simular fenémenos complejos como la formacién y
ruptura de enlaces o efectos electrénicos. Ademads, admite simulaciones a nivel atémico
y mesoscépico [53].

s OpenMM: Libreria orientada a la programacién de simulaciones en Python con soporte
nativo para GPU. Permite construir simulaciones flexibles, usar campos de fuerza
estdndar y desarrollar algoritmos personalizados de integracién o energfa [54].
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6. Aplicaciones de la Dinamica Molecular

La dindmica molecular se ha convertido en una herramienta fundamental en numerosos
campos cientificos y tecnolégicos. Su aplicabilidad se extiende a multiples disciplinas, desde
la biologia estructural hasta la ciencia de materiales, lo que la convierte en una técnica con
gran relevancia en la ciencia computacional moderna [15, 55].

Antes de entrar en las distintas dreas de aplicacién, es importante distinguir entre dos
grandes tipos de simulaciones: aquellas centradas en la evolucién temporal del sistema (co-
mo las que estudian transporte, difusién o reacciones dindmicas), y aquellas cuyo objetivo es
obtener propiedades de equilibrio, lo que se denomina un estudio termodindmico>. En este
segundo caso, no interesa como cambia el sistema con el tiempo, sino cémo se comporta en
promedio, en condiciones de equilibrio. Sin embargo, incluso en estos casos se emplean algo-
ritmos de dindmica molecular, como el integrador de Verlet, con el fin de obtener trayectorias
representativas del colectivo estadistico considerado.

6.1. Bioquimica y biologia estructural

En esta seccién se presentan las principales macromoléculas bioldgicas y se analiza como
la dindmica molecular permite estudiar sus propiedades, interacciones y funciones, propor-
cionando una aproximacién computacional que complementa las técnicas experimentales
clasicas de la biologfa estructural.

Para facilitar la comprension, se parte de una breve descripcién de los componentes clave,
antes de abordar sus aplicaciones concretas en simulacién computacional.

6.1.1. Moléculas biologicas: conceptos basicos

En el contexto biolégico, los protagonistas de las simulaciones suelen ser macromoléculas
como las siguientes:

Proteinas

Las proteinas son cadenas de aminoacidos que se pliegan en formas tridimensionales espe-
cificas. Este plegamiento determina su funcién biolégica, que puede ir desde actuar como
enzimas que catalizan reacciones hasta transportar oxigeno o servir como receptores en
membranas celulares. Estudiar su dindmica es clave para entender cémo se pliegan, como
interacttian con otras moléculas, o como ciertas mutaciones afectan a su comportamien-

to [55, 56].

5Un estudio termodindmico se centra en calcular propiedades macroscépicas de equilibrio del sistema, sin consi-
derar su evolucién temporal.
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Acidos nucleicos (ADN y ARN)

Los 4cidos nucleicos son las moléculas encargadas de almacenar y transmitir la informacién
genética. El ADN es conocido por su estructura de doble hélice, pero su conformacién puede
variar en funcién del entorno o de su interaccién con proteinas. E1 ARN, ademds de su
papel en la sintesis de proteinas, puede adoptar estructuras tridimensionales complejas con
funciones cataliticas o regulatorias [57].

Membranas celulares

Las membranas celulares son estructuras flexibles que rodean y delimitan las células, se-
parando su interior del entorno exterior. Estdn compuestas principalmente por una doble
capa de moléculas similares a grasas, llamadas lipidos, que actian como una barrera semi-
permeable. Esta barrera no solo protege la célula, sino que también regula qué sustancias
pueden entrar o salir. Mediante simulaciones de dindmica molecular, es posible modelar el
comportamiento de estas membranas a nivel atémico y estudiar procesos esenciales como
la difusién de pequefias moléculas, el transporte controlado de sustancias, o cémo ciertas
proteinas se insertan y funcionan dentro de la membrana [58].

Complejos biomoleculares

Los complejos biomoleculares son conjuntos de varias moléculas (proteinas, ADN, lipidos)
que se ensamblan de forma funcional. Por ejemplo, un ribosoma o un canal iénico. Simu-
lar su comportamiento permite comprender mecanismos dindmicos que a menudo no son
observables directamente mediante técnicas experimentales [57].

6.1.2. Aplicaciones en simulacion biomolecular

Gracias a la MD, es posible investigar numerosos procesos relevantes en biologia y bioqui-
mica, que tienen un papel central en el disefio de farmacos. A continuacién, se presentan
algunas de las aplicaciones mds relevantes de la dindmica molecular en este contexto:

Plegamiento de proteinas

El plegamiento es el proceso mediante el cual una cadena lineal de aminoacidos adopta su
conformacién tridimensional funcional. Las simulaciones se centran en la evolucién temporal
del sistema, permitiendo explorar este fendmeno paso a paso, identificar intermedios estructu-
rales e incluso estudiar plegamientos erréneos asociados a enfermedades neurodegenerativas
como el Alzheimer o el Parkinson [56].

Dinamica estructural

Las proteinas y los dcidos nucleicos no son estructuras rigidas, sino que sufren cambios térmi-
cos y reordenamientos que pueden activar o inhibir sus funciones. La dindmica molecular se
centra en la evolucién temporal del sistema, permitiendo estudiar estos cambios en funcién
del tiempo y en distintos contextos fisiolégicos.
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Interaccion ligando-receptor

Uno de los usos mds relevantes de la dindmica molecular en farmacologia es el estudio
del acoplamiento molecular, que describe coémo una molécula pequenia (ligando) se une a
una proteina diana (receptor). Este andlisis se centra en la evolucién temporal del sistema,
permitiendo predecir afinidades de unién, identificar sitios activos y guiar el disefio racional
de farmacos [59].

Estos mecanismos fundamentales son aprovechados conjuntamente en estrategias de des-
cubrimiento de farmacos:

Disefio de farmacos y descubrimiento molecular

Uno de los usos mds avanzados de la dindmica molecular en biomedicina es el disefio racio-
nal de farmacos. Esta estrategia, conocida como drug discovery in silico, consiste en predecir
mediante simulaciones qué compuestos podrian unirse eficazmente a una proteina impli-
cada en una enfermedad, la cual acttia como diana biolégica. A diferencia de los métodos
tradicionales de cribado experimental, que requieren analizar fisicamente miles de molécu-
las, la simulacién permite filtrar virtualmente grandes bibliotecas de ligandos, evaluando
su interaccién con dianas bioldgicas en funcién de propiedades estructurales, energéticas y
dindmicas [56, 59].

Una técnica ampliamente utilizada en el disefio de farmacos es el docking, que consis-
te en predecir computacionalmente cémo se une un ligando a un receptor. El objetivo es
determinar la orientacién y posicion mas probable del ligando dentro del sitio activo del
receptor, evaluando su ajuste espacial y la energia asociada a la interacciéon. Sin embargo, este
procedimiento suele asumir modelos rigidos, en los que tanto el ligando como el receptor
permanecen estdticos durante el proceso de acoplamiento. Esta simplificacién limita la capa-
cidad del docking para capturar la flexibilidad estructural de las moléculas y la complejidad
real del entorno molecular.

Al combinar docking con simulaciones de dindmica molecular, es posible refinar las predic-
ciones iniciales y estudiar cémo evoluciona la interaccién a lo largo del tiempo. Este enfoque
combinado permite detectar inestabilidades en la unién, explorar conformaciones alterna-
tivas del complejo y validar si la interaccion predicha se mantiene estable en un entorno
solvado y dindmico [57]. Esto es especialmente ttil para reducir falsos positivos, es decir,
aquellos casos en los que una prediccién inicial sugiere una buena afinidad entre un ligando
y una proteina, pero que en realidad no resulta estable cuando se simula con maés realismo.

Una vez identificadas moléculas con actividad prometedora frente a una diana bioldgica,
estas se consideran compuestos lideres, los cuales representan puntos de partida clave en el
proceso de desarrollo de farmacos.

Las simulaciones de dindmica molecular permiten analizar en detalle como interacttia un
compuesto lider con su diana, observando los contactos atémicos, los ajustes estructurales
y la estabilidad de la unién. A partir de esta informacién, es posible disefiar modificacio-
nes estructurales (por ejemplo, afiadir o sustituir grupos quimicos especificos) para mejorar
su eficacia, la selectividad (es decir, que acttie inicamente sobre la diana deseada) y otras
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propiedades farmacoldgicas como la solubilidad o la estabilidad en el organismo. Este pro-
ceso, conocido como optimizacién del compuesto lider, es esencial para avanzar desde un
candidato preliminar hasta un farmaco potencial.

Finalmente, esta estrategia ayuda a seleccionar candidatos farmacolégicos, es decir, molé-
culas que, tras un filtrado computacional riguroso, presentan mayor probabilidad de éxito
en etapas posteriores como los ensayos preclinicos o clinicos. Este enfoque ha sido aplicado
con éxito al desarrollo de terapias frente a enfermedades como el cancer, el VIH, trastornos
neurodegenerativos o infecciones virales como el SARS-CoV-2 [60].

En los tltimos afios, la combinacién de MD con modelos de inteligencia artificial ha impul-
sado atin més el disefio computacional de foirmacos. Modelos basados en redes neuronales,
como ANI [61] o DeepMD [62], permiten representar funciones de energia aprendidas a
partir de calculos cuanticos, alcanzando una precisién similar pero con un coste computacio-
nal mucho menor [63]. Estas herramientas permiten generar nuevos compuestos, predecir
afinidades de unién o identificar patrones relevantes directamente a partir de grandes bases
de datos moleculares.

6.2. Materiales y nanotecnologia

La dindmica molecular ha adquirido un papel fundamental en el campo de la ciencia de
materiales, al permitir simular el comportamiento de materiales a nivel atémico. En lugar
de describir los materiales mediante propiedades medias o macroscopicas, la MD permite
observar directamente como se mueven los dtomos, cémo se rompen enlaces o como se
forman defectos internos bajo diferentes condiciones. Esto es especialmente titil en contextos
donde los métodos tradicionales (como modelos continuos o ensayos experimentales) no
permiten acceder a escalas nanométricas o tiempos extremadamente cortos. Esta técnica
proporciona una herramienta eficaz para investigar la estructura interna de sélidos cristalinos,
materiales amorfos, polimeros o aleaciones metélicas [26].

Simulacién de propiedades de materiales

Mediante simulaciones de dindmica molecular es posible determinar muchas de las propie-
dades fisicas clave de un material. En este contexto, el objetivo principal no es estudiar la
evolucién temporal del sistema, sino realizar un andlisis termodindmico que permita calcular
magnitudes a partir del comportamiento promedio del sistema en equilibrio. Por ejemplo, al
simular una red cristalina, como la del cobre o el silicio, es posible aplicar una deformacién
virtual y observar como responden los 4tomos que la componen. A partir de esta respuesta,
se pueden calcular magnitudes relevantes como el médulo de elasticidad, que mide la rigidez
del material y cuantifica cudnto se deforma ante una tensién aplicada; la energfa de cohesion,
que representa la energia necesaria para separar los 4tomos del sélido y refleja la estabilidad
interna de la estructura; y el limite eldstico, que sefiala el punto a partir del cual el material
deja de comportarse de forma eldstica y comienza a sufrir deformaciones permanentes. Estas
propiedades permiten caracterizar el comportamiento mecanico del material a nivel atémico,
algo fundamental para el disefio y la optimizaciéon de nuevos compuestos.

Ademas, se pueden estudiar defectos como dislocaciones (fallos lineales en la estructura),
vacantes (dtomos que faltan) o intersticiales (d4tomos extra entre posiciones regulares), y ana-
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lizar cémo estos afectan a la resistencia mecénica, la difusién de 4tomos o la conductividad
térmica [64].

Otra aplicaciéon importante es el estudio de procesos de fractura y fatiga. Simulando un
material con grietas o sometido a tensiones ciclicas, se puede observar como se propagan
fallos internos, lo cual es muy ttil para disefiar materiales mas resistentes o duraderos.

Modelado de superficies e interfaces

Muchas aplicaciones industriales y tecnolégicas implican materiales con superficies o in-
terfaces (por ejemplo, un recubrimiento sobre una pieza metélica). La MD permite simular
qué ocurre en esas regiones de frontera, es decir, como se adsorben moléculas sobre una
superficie, como se produce el crecimiento de capas de material (crecimiento epitaxial) o
cémo se comportan los materiales en contacto cuando hay diferencias de estructura o com-
posicion [65].

Este tipo de modelado es especialmente importante en areas como la eléctronica, donde
se usan capas finas de materiales con propiedades especificas; en la nanofabricacién, donde
se necesita entender procesos de deposicién y litografia a escala atémica; o en fenémenos
como la corrosion y la adhesioén, en los que se simula cémo interactiian los materiales con el
entorno o con otros sélidos.

Nanotecnologia y materiales avanzados

La nanotecnologia se basa en disefiar y manipular materiales a escala nanométrica (1 nané-
metro = 10~° metros). En este contexto, la dindmica molecular permite modelar estructuras
novedosas llamadas nanomateriales, que pueden tener propiedades muy diferentes a sus
contrapartes macroscopicas.

Algunos ejemplos importantes son:

= Nanotubos de carbono (CNTs): estructuras cilindricas formadas por d4tomos de car-
bono, extremadamente resistentes y ligeras. Con MD se puede estudiar su flexibilidad,
resistencia mecénica o capacidad de conduccién térmica.

= Fullerenos y nanocdpsulas: esferas de carbono que pueden encapsular otras moléculas
(como farmacos), y cuya estabilidad y reactividad se pueden analizar por simulacién.

= Grafeno y materiales 2D: laminas de un dtomo de grosor con propiedades electrénicas
y mecénicas excepcionales. La MD permite estudiar como vibran sus 4tomos (fonones),
cémo se comporta térmicamente o cémo se deforma bajo tensién [66].

Ademais, la dindmica molecular permite modelar fenémenos como el autoensamblaje de
nanoparticulas, es decir, cémo ciertas moléculas se organizan espontdneamente formando
estructuras ttiles. Estos fendmenos son clave en el disefio de nanodispositivos aplicados a la
medicina personalizada.

La interaccién entre nanoparticulas y sistemas biol6gicos (por ejemplo, nanoparticulas
disefladas para transportar farmacos) también ha sido ampliamente estudiada mediante di-
ndmica molecular, permitiendo predecir aspectos clave como la toxicidad, la absorcién celular
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o la compatibilidad de los materiales utilizados en nanomedicina. Gracias a su capacidad
para incorporar entornos realistas (como agua, membranas o iones), la dindmica molecular
permite analizar estas interacciones con un nivel de detalle que complementa y profundiza
la informacién obtenida experimentalmente. [67].

En resumen, la dindmica molecular aporta una herramienta versatil para explorar y disefiar
materiales desde su estructura atémica, anticipando su comportamiento real incluso antes
de fabricarlos fisicamente. Esta capacidad resulta especialmente ttil en contextos de investi-
gacion aplicada, innovacién tecnoldgica y desarrollo de nuevos materiales con propiedades
a medida.

6.3. Quimica y fisica de fluidos

La dindmica molecular también se emplea para estudiar el comportamiento de fluidos a
escala molecular, es decir, considerando directamente la interaccion entre las moléculas indi-
viduales que componen el liquido o gas. En este tipo de simulaciones, el objetivo principal
es caracterizar el sistema en equilibrio, por lo que se centran en el estudio termodindmico
del sistema, permitiendo calcular propiedades macroscépicas como la viscosidad (resisten-
cia al flujo), el coeficiente de difusién (cémo se dispersan las moléculas en el medio), la
tension superficial (energfa que se requiere para aumentar la superficie de un liquido) o la
conductividad térmica (capacidad del fluido para transferir calor) [15].

Esta forma de simular resulta especialmente ttil cuando los modelos tradicionales, que
tratan los fluidos como medios continuos, no son suficientes para describir correctamente el
sistema. Esto ocurre, por ejemplo, cuando se trabaja a escalas muy pequefias (nanométricas),
donde las propiedades del fluido dependen directamente del comportamiento individual
de las moléculas. En estos casos, tener en cuenta la naturaleza discreta de la materia y las
interacciones entre particulas es esencial para obtener resultados realistas [68].

Un ejemplo claro es el caso de los liquidos complejos, las soluciones iénicas (como la sal
disuelta en agua), los fluidos confinados en canales muy estrechos o las mezclas con muchos
tipos de moléculas. En todos ellos, las interacciones especificas entre moléculas pueden dar
lugar a efectos que los modelos continuos no predicen, como patrones de organizacién local,
separacion de fases o transporte anémalo.

Por otro lado, la dindmica molecular también permite estudiar reacciones quimicas en
medios liquidos utilizando enfoques hibridos, como el método QM /MM (Quantum Mecha-
nics/Molecular Mechanics). En este tipo de simulaciones, una parte del sistema (normalmente
donde tiene lugar la reaccién) se modela con métodos de quimica cudntica, mientras que el
entorno restante se simula con dindmica clasica (ver Subseccién 7.2.1). Este tipo de técnica
ha sido utilizado con éxito en el estudio de mecanismos enzimaéticos, reacciones acido-base
en disolucién o procesos de transferencia electrénica [33, 56].

6.4. Estudios de energia y catalizadores

La dindmica molecular también se utiliza ampliamente en el estudio de tecnologias relaciona-
das con la produccién, almacenamiento y conversién de energia. En particular, se ha aplicado
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al modelado de dispositivos como baterias de ion-litio, supercondensadores y celdas de com-
bustible [29]. Estos sistemas dependen criticamente de cémo se mueven los iones (4tomos
cargados) dentro del material, de cémo interacttian con los electrodos y de los fenémenos que
ocurren en las interfaces entre diferentes fases (por ejemplo, entre un sélido y un liquido).

Mediante simulaciones de dindmica molecular es posible observar estos procesos a nivel
atémico, proporcionando informacién sobre la velocidad a la que se difunden los iones, cémo
afectan las impurezas o defectos estructurales al transporte iénico, o como varia la estructura
del material bajo diferentes condiciones de carga o temperatura. Esto es fundamental para
disefiar baterias més eficientes y duraderas, optimizar la estabilidad térmica de los materiales
activos o mejorar la conductividad de los electrolitos [64].

Otro campo muy importante en el que se aplica la dindmica molecular es la catélisis, es
decir, el estudio de materiales que aceleran las reacciones quimicas sin consumirse en el
proceso. En catélisis heterogénea (donde el catalizador y los reactivos estdn en fases distintas,
como un sélido y un gas), la MD permite estudiar como se adsorben los reactivos sobre
la superficie del catalizador, cémo cambian de posicién y reaccionan, y cémo se liberan los
productos. Estas simulaciones ayudan a entender la estructura y dindmica de los llamados
“sitios activos”, que son las regiones del material donde ocurren las reacciones [69].

En el caso de la catalisis homogénea (donde el catalizador estd disuelto en el mismo medio
que los reactivos), la dindmica molecular también es ttil para analizar el entorno solvatado®
del catalizador y cémo influye en su reactividad. Combinada con métodos cudnticos (como
el enfoque QM/MM), se pueden simular directamente las transformaciones quimicas que
ocurren durante la catélisis [33, 56].

Proceso por el cual las moléculas del disolvente (por ejemplo, agua) rodean a una especie quimica disuelta,
formando una capa de solvatacién. Estas interacciones afectan a la estructura, estabilidad y reactividad de dicha
especie.
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7. Desafios y futuras direcciones

A pesar de su consolidacién como herramienta fundamental en la investigacién computacio-
nal, la dindmica molecular continta enfrentando importantes desafios, tanto desde el punto
de vista metodolégico como computacional. Aunque en las tltimas décadas se han logra-
do avances significativos en técnicas numéricas robustas y en la capacidad computacional
disponible, sigue teniendo limitaciones que restringen su aplicabilidad en escenarios mds
complejos o a escalas mayores. Estas limitaciones, sumadas al crecimiento exponencial de
los recursos de hardware y a los recientes avances en algoritmos inteligentes, han abierto
nuevas lineas de desarrollo con el objetivo de ampliar la aplicabilidad y mejorar la precisién
de esta técnica. En este capitulo se presentan dichas restricciones, se identifican tendencias
emergentes en el campo y se exponen diversas oportunidades de mejora que podrian marcar
la evolucioén futura de la MD.

7.1. Limitaciones actuales

A continuacion, se describen algunas de las principales limitaciones actuales, tanto desde el
punto de vista computacional como metodolégico:

7.1.1. Escalabilidad

Una de las principales limitaciones de la dinamica molecular clédsica es su limitada escalabi-
lidad computacional. Si bien los métodos de paralelizacién y el uso de arquitecturas GPU
han permitido avances significativos en rendimiento, las simulaciones a gran escala siguen
estando condicionadas por el elevado coste computacional asociado al calculo de fuerzas y
a la integracion temporal. Esto se vuelve especialmente restrictivo cuando se desea simular
sistemas que contienen millones de 4&tomos o que requieren tiempos de simulacién del orden
de micro o milisegundos [15, 46].

Este cuello de botella impide que muchos fendmenos de interés, como el plegamiento de
proteinas, puedan ser simulados con suficiente resolucién. Ademas, incluso en arquitecturas
de alto rendimiento, la comunicacién entre procesos puede convertirse en un factor limitante,
especialmente cuando se emplean esquemas de descomposicién espacial con frecuentes
intercambios de informacién entre nodos.

7.1.2. Precision de los modelos de fuerza

Otra limitacién critica proviene de la precisién de los modelos de interaccion utilizados, los
conocidos campos de fuerza. Los campos de fuerza clasicos, como AMBER, CHARMM o
OPLS, se basan en parametrizaciones empiricas que, si bien son eficientes, pueden carecer
de precisién cuando se aplican a entornos no estandar, como interfaces complejas, metales o
moléculas sintéticas, ya que en estos casos pueden darse tipos de enlace o interacciones que
no estdn correctamente representados en el modelo original [29]. Esta aproximacién limita
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la transferibilidad de los modelos y su capacidad para predecir comportamientos fuera del
dominio de entrenamiento.

Ademas, estos campos de fuerza no incorporan efectos cuanticos explicitos, lo que puede
ser determinante en procesos donde se produce formacién o ruptura de enlaces, transferencia
de carga o reorganizacion electrénica [33]. Por tanto, la calidad de los resultados obtenidos
depende en gran medida de la adecuacién del modelo al problema especifico.

7.1.3. Tiempo de simulacion

Otro obstaculo importante es la restriccion temporal de las simulaciones. Los algoritmos de
integracion requieren pasos de tiempo muy pequefios (del orden de los femtosegundos) para
preservar la estabilidad numérica y resolver adecuadamente los modos vibracionales maés
rapidos del sistema (ver Figura 10). Como consecuencia, para alcanzar escalas del orden de
microsegundos o mas, se deben realizar millones de pasos, lo que incrementa notablemente
el coste computacional [56].

Esta limitacién impide simular procesos lentos como el plegamiento de proteinas, la di-
fusién en materiales s6lidos o los mecanismos de sefializacion celular. Muchas de estas
interacciones clave ocurren en escalas temporales inalcanzables para la dindmica molecu-
lar convencional, lo que requiere el uso de técnicas complementarias como simulaciones
multiescala, modelos acelerados o estrategias de muestreo mejorado [15].

7.2. Nuevas tendencias

Frente a estas limitaciones, se estan explorando mdltiples lineas de avance, entre las cuales
destacan las siguientes:

7.2.1. Métodos hibridos clasico-cuanticos (QM/MM)

Una de las estrategias mas eficaces para estudiar sistemas complejos donde intervienen
tanto procesos mecénicos cldsicos como fenémenos cudnticos es la combinacién de dindmica
molecular clasica con métodos de estructura electrénica. Esta aproximacién, conocida como
QM /MM (Quantum Mechanics/Molecular Mechanics), permite tratar una pequea regién del
sistema, donde ocurren procesos esencialmente cudnticos como reacciones quimicas, ruptura
de enlaces o transferencia electrénica, mediante mecanica cudntica, mientras que el resto
del entorno (por ejemplo, el disolvente o la proteina circundante) se modela utilizando
potenciales cldsicos menos costosos computacionalmente [33, 70, 71].

Sin embargo, conectar estas dos regiones no es trivial. Uno de los principales retos es lograr
una transicion suave en la zona de frontera entre la region cuéntica y la clasica, de forma que
no aparezcan efectos no realistas o inconsistencias en las fuerzas. Para conseguirlo, se han
desarrollado varias técnicas. Por ejemplo, los llamados dtomos enlace se utilizan cuando un
enlace quimico cruza la frontera QM /MM, simulando artificialmente una terminacién para
mantener la validez del célculo cudntico. También existen métodos de embebido electrostdtico,
en los que las cargas del entorno clésico afectan directamente al cdlculo cudntico para simular
la influencia del entorno.
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Finalmente, en los enfoques de embedding polarizable, se permite que la regién clésica
también responda a los cambios en la densidad electrénica de la regién cuédntica, simulando
un acoplamiento bidireccional més realista [71, 72].

Desde el punto de vista computacional, este método permite llevar a cabo simulaciones mas
realistas de sistemas complejos sin asumir el elevado coste computacional que implicaria
un tratamiento cudntico completo. Actualmente, multiples paquetes de simulacién como
NAMD o GROMACS soportan implementaciones hibridas, combinando de forma eficiente
los célculos de energia y fuerzas para ambas regiones [73, 74].

Por tanto, el enfoque QM/MM es una herramienta muy ttil para estudiar procesos mole-
culares a diferentes escalas, tanto en sistemas biolégicos como en materiales, proporcionando
un equilibrio entre precisién y eficiencia computacional. Su uso en simulaciones modernas
apunta a ser una de las formas mds prometedoras de hacer que la dindmica molecular sea
aplicable a situaciones mads realistas.

7.2.2. Aprendizaje automatico para generacion de campos de fuerza

En los ultimos afios, la combinacién de dindmica molecular con técnicas de inteligencia
artificial y aprendizaje automético estd revolucionando el campo [63]. Estas herramientas
estan permitiendo abordar muchas de las limitaciones tradicionales de la dindmica molecular,
gracias a su capacidad para aprender patrones complejos a partir de grandes volimenes de
datos y generalizar a nuevos escenarios.

Entre sus principales aplicaciones destacan:

= La prediccién eficiente de superficies de energia potencial, lo que permite evitar el
calculo explicito de fuerzas mediante métodos cudnticos costosos.

= La generacion automatica de campos de fuerza especificos mediante técnicas de apren-
dizaje supervisado o redes neuronales profundas.

= La aceleracion del muestreo del espacio de fases y la detecciéon de eventos poco fre-
cuentes, como transiciones conformacionales o procesos de nucleacién [60].

Una de las lineas mds prometedoras en este dmbito son los neural network potentials, fun-
ciones de energia entrenadas sobre datos cudnticos de alta fidelidad, que permiten alcanzar
precisiones cercanas a la quimica cudntica a un coste computacional mucho menor. Modelos
avanzados como ANI o DeepMD, que se tratardn mds adelante, han demostrado una nota-
ble capacidad para reproducir propiedades moleculares y dindmicas complejas, lo que los
convierte en herramientas clave para simulaciones de gran precision [63].

7.2.3. Simulaciones multiescala y a gran escala

Otra tendencia creciente en el campo de la dindmica molecular es la simulacién multiescala,
que busca combinar diferentes niveles de descripcion para modelar sistemas complejos de
manera eficiente. Este enfoque permite acoplar modelos atomisticos de alta resolucién con
representaciones mas simplificadas o coarse-grained, manteniendo el detalle en las regiones
de interés sin caer en un coste computacional prohibitivo.
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El objetivo principal es conectar distintas escalas para poder simular sistemas de gran ta-
mafio o procesos que ocurren en escalas de tiempo largas, como el plegamiento de proteinas,
la difusién de macromoléculas o fenémenos interfaciales. Esta técnica estd siendo amplia-
mente utilizada en dreas como el disefio de materiales, la biologfa estructural y el estudio de
superficies y membranas [26, 75].

7.3. Oportunidades de mejora

La dindmica molecular esta evolucionando a gran velocidad, gracias a mejoras en los métodos,
la tecnologia y los enfoques tedricos. Esta seccién explora algunas de las direcciones mas
prometedoras para mejorar la precision, eficiencia y aplicabilidad de las simulaciones en
ciencia de materiales, biologia computacional y disefio molecular.

7.3.1. Nuevos algoritmos e integradores simplécticos

Como respuesta al elevado coste computacional de simular sistemas complejos durante
largos periodos de tiempo, se han desarrollado algoritmos de integracién multiescala, entre
los que destaca el método RESPA (REference System Propagator Algorithm) [76]. Este enfoque
se basa en descomponer las fuerzas que acttan en el sistema segtn su escala temporal: las
fuerzas que varian rdpidamente (como las vibraciones internas de una molécula) se integran
con pasos de tiempo pequefios, mientras que las fuerzas mas lentas (como las interacciones
de largo alcance) se actualizan con menor frecuencia, utilizando pasos mas grandes.

Gracias a esta division jerdrquica, RESPA permite reducir significativamente el nimero
total de evaluaciones de fuerza sin comprometer la precisiéon ni la estabilidad numérica,
lo que lo convierte en una herramienta especialmente eficaz en sistemas que presentan
dindmicas en multiples escalas temporales, como proteinas en disolucién o materiales con
estructuras complejas.

Ademas de estos esquemas jerdrquicos, se estan desarrollando algoritmos de integracién
adaptativos, que ajustan dindmicamente ciertos parametros de la simulacién, como el tamarfio
del paso de integracién, en funcién del comportamiento local del sistema. Por ejemplo, si
los atomos se mueven lentamente, el algoritmo puede aumentar el paso de integracién para
reducir el tiempo de simulacién; si detecta interacciones rdpidas o colisiones, lo reduce
automdticamente para mantener la precisién y evitar errores numéricos. Gracias a este tipo
de integracién adaptativa, se puede optimizar el uso de recursos computacionales sin perder
fiabilidad en los resultados.

Por otro lado, se estan desarrollando algoritmos de integracién de orden superior frente a
los esquemas clésicos vistos anteriormente. Estos nuevos métodos utilizan mds informacién
(por ejemplo, derivadas de orden superior) para mejorar la precisién sin necesidad de usar
pasos de tiempo tan pequefios. Aunque su coste computacional por paso es mayor, permiten
emplear pasos de integracién mds grandes para alcanzar la misma precisién, lo que puede
traducirse en una mayor eficiencia a largo plazo.

Ambos enfoques se benefician del uso de arquitecturas modernas de computacién paralela,
como GPUs o clasteres multinticleo. Esto permite distribuir los cdlculos méds pesados y com-
plejos de forma eficiente, reduciendo significativamente los tiempos de simulacién. Gracias
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a estas mejoras, la dindmica molecular puede usarse en sistemas mas grandes y en procesos
de mayor duracién [15, 28].

7.3.2. Avances en el disefio de campos de fuerza

Tradicionalmente, como se present6 en el Capitulo 5, los campos de fuerza mas utilizados en
bioquimica y ciencia de materiales han sido AMBER, CHARMM, OPLS o GROMOS. Estos
modelos, aunque han demostrado ser eficaces en muchos contextos, presentan limitaciones
cuando se aplican a entornos no estdndar, como sistemas metélicos, materiales con estructuras
poco convencionales, interfaces complejas o moléculas sintéticas. En estos casos, la precision
de las simulaciones puede disminuir notablemente debido a la falta de parametros adecuados
o a la incapacidad del modelo para capturar efectos cudnticos sutiles [29].

Para superar estas limitaciones, en los tiltimos afios se han desarrollado campos de fuerza
de nueva generacién basados en datos obtenidos mediante quimica cudntica y técnicas de
aprendizaje automdtico. Estos enfoques, conocidos como machine-learned potentials, buscan
aproximar con precision la superficie de energia potencial de un sistema sin depender de
expresiones funcionales predefinidas, sino aprendiendo directamente de grandes conjuntos
de datos cuanticos.

Dos ejemplos destacados de esta nueva generaciéon de campos de fuerza son los modelos
ANI (Accurate Neural Network Potentials) y DeepMD. Ambos combinan el aprendizaje automa-
tico con datos de alta precisién provenientes de célculos de quimica cuédntica para modelar
con mayor fidelidad las interacciones atémicas.

El modelo ANI [61] utiliza redes neuronales entrenadas con miles de calculos realizados
mediante Density Functional Theory (DFT)7. Esta técnica proporciona energias y fuerzas de
referencia con alta precision, lo que permite a la red aprender una aproximacién muy cercana
a la verdadera superficie de energfa potencial. Gracias a su arquitectura y a la forma en la
que se representan las moléculas (usando descriptores rotacional y traslacionalmente inva-
riantes), ANI puede generalizar a moléculas que no estaban en el conjunto de entrenamiento,
manteniendo una buena precisién energética. Esto lo hace especialmente ttil en simulaciones
biomoleculares, farmacolégicas o de materiales organicos.

Por otro lado, el modelo DeepMD [62] se centra en extender esta idea a materiales mds
diversos, incluidos sélidos, liquidos y sistemas complejos como aleaciones metdlicas o super-
ficies. A diferencia de ANI, DeepMD representa las configuraciones atémicas directamente
como entradas a una red neuronal profunda que respeta las simetrias fisicas del sistema (tras-
lacién, rotacién y permutacion). Esta red es capaz de reproducir con precisién las energias,
fuerzas y tensores de estrés obtenidos de cdlculos ab initio, permitiendo realizar simulaciones
de dindmica molecular con calidad cuédntica pero a un coste computacional similar al de los
modelos clésicos.

Este tipo de enfoques hibridos, que combinan datos obtenidos mediante célculos cudnti-
cos con técnicas de aprendizaje automatico, permiten aumentar notablemente la precisién
y transferibilidad de los campos de fuerza, superando muchas de las limitaciones de los
modelos clédsicos cuando se enfrentan a entornos quimicos no estdndar [63].

7La teoria del funcional de la densidad (DFT) es un enfoque computacional de la mecdnica cudntica que permite
calcular la energia de un sistema de muchos electrones a partir tinicamente de su densidad electrénica, en lugar
de usar la funcién de onda completa, lo cual reduce considerablemente el coste computacional [77].
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8. Conclusiones

Este trabajo se ha centrado en el estudio de la dindmica molecular, abarcando desde sus
fundamentos teéricos hasta sus principales aplicaciones, profundizando en los distintos
algoritmos empleados en las simulaciones.

En primer lugar, destacar la utilidad e importancia que tiene la dindmica molecular en
el estudio de sistemas atémicos y moleculares con muchos grados de libertad. Su capaci-
dad para describir la evolucién temporal de sistemas complejos bajo distintas condiciones
termodindmicas la convierte en una técnica clave para calcular propiedades estructurales,
dindmicas y energéticas que son dificiles de obtener de forma experimental.

Del estudio tedrico realizado se concluye que uno de los aspectos clave para obtener
una simulacién fiable es la correcta eleccion del integrador numérico, junto con un paso de
integracién adecuado, ya que ambos influyen directamente en la estabilidad del algoritmo.
Los métodos simplécticos, como el algoritmo de Verlet y sus variantes, garantizan una buena
conservacion de la energia a largo plazo siempre que el paso de integracién sea apropiado,
lo que resulta fundamental para evitar inestabilidades numéricas. Del mismo modo, tanto
el campo de fuerzas como la representacion empleada para describir el sistema son factores
criticos, ya que influyen significativamente en el equilibrio entre la precisién y el coste
computacional de la simulacién.

Ademas, en el trabajo se evidencia la importancia de hacer uso de mecanismos de control
como termostatos y barostatos, ya que sin ellos no seria posible simular muchos de los
escenarios que se dan en condiciones reales. No obstante, su aplicacién debe realizarse con
precaucién, pues pueden alterar las propiedades estadisticas del sistema y comprometer
la fiabilidad de la simulacién. Asimismo, se ha destacado la importancia de llevar a cabo
una adecuada etapa de minimizacién de energia antes de iniciar la simulacién, la cual
permite eliminar configuraciones artificiales no fisicas y partir de un estado estable. En
sistemas complejos, donde la superficie de energia presenta multiples minimos locales, se
ha destacado el uso de metaheuristicas como complemento a los métodos deterministas
tradicionales, especialmente cuando se busca aproximarse al minimo global.

Luego, se ha expuesto la utilidad de emplear unidades reducidas en simulaciones de
dindmica molecular, ya que permiten simplificar considerablemente las expresiones fisicas
y evitar errores derivados de conversiones entre sistemas de unidades. Ademds, mejoran
la estabilidad numérica y la generalizacién del cédigo, debido a que los resultados pueden
reescalarse posteriormente a unidades fisicas reales si se desea. El uso de unidades reducidas
facilita también la comparacion entre diferentes simulaciones y modelos. Por todo esto,
representa una practica habitual en simulaciones de dindmica molecular.

Por otro lado, se ha mostrado que la dindmica molecular tiene aplicaciones de gran re-

levancia en numerosas disciplinas cientificas y tecnolégicas. Entre ellas, destaca el disefio
racional de farmacos, donde permite estudiar con detalle la interaccién entre moléculas y
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sus posibles dianas terapéuticas. Esta capacidad resulta clave en la basqueda de tratamientos
para enfermedades complejas como el cancer, el VIH o los trastornos neurodegenerativos,
cuya cura representaria, sin duda, un hito histérico en la medicina. Ademas, la dindmica
molecular también se aplica en campos como la ciencia de materiales, la nanotecnologia o la
biologia estructural.

Finalmente, se ponen de manifiesto las limitaciones actuales de la dindmica molecular,
entre las que destacan la limitada escalabilidad computacional, la falta de precisiéon de los
modelos de campos de fuerza cldsicos para describir fenémenos de naturaleza cudntica y los
elevados tiempos de simulacién requeridos por ciertos experimentos. Frente a estas barreras,
se presentan lineas de investigacion abiertas y prometedoras, como el uso de inteligencia
artificial, la integracién de métodos multiescala o el aprovechamiento de arquitecturas de
alto rendimiento, que reflejan el gran potencial de la dindmica molecular para seguir evolu-
cionando.
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A. Codigo

Para apoyar la explicaciéon de la simplecticidad y de la influencia del valor del paso de

integracién At en la estabilidad del integrador, se han implementado dos scripts:

import numpy as np
import matplotlib.pyplot as plt

1

2

3

4 # Parametros del sistema

5 dt = 0.02 paso de tiempo

6 tiempo de finalizacion de la simulacidn
7 numeros de iteraciones en la simulacidn
8 posicion y velocidades iniciales

9

constante de boltzmann y masa del cuerpo

tend = 20

n = int(tend / dt)
X0, vo = 0.0, 1.0
k, m=1.0, 1.0

HOoH H O H

| # Vector de tiempos
12 tvec = np.linspace(@, tend, n)

13

14 # Algoritmo de Verlet

15 x_verlet = np.zeros(n) # vector de posicion

16 v_verlet = np.zeros(n) # vector de velocidad

17 x_verlet[0] = x0 # posicidn inicial

18 v_verlet[0] = v@ # velocidad inicial

19 x_prev = x0 - v@ x dt + 0.5 x (-k * x@ / m) * dt*xx2 # x(-dt)
20

21 # Integracidén con Verlet (posicidn)

22 for i in range(@, n - 1):

23 force = -k * x_verlet[i]

24 x_next = 2 x x_verlet[i] - x_prev + (dtxx2 / m) * force

25 Xx_prev = x_verlet[i]

26 x_verlet[i + 1] = x_next

27

28 # Calculo de velocidades con Verlet

29 for i in range(l, n - 1):

30 v_verlet[i] = (x_verlet[i + 1] - x_verlet[i - 11) / (2 =* dt)

32 # Recorte para espacio de fases, ya que v[n] no se calcula

33 x_verlet_cut = x_verlet[:-1]

34 v_verlet_cut = v_verlet[:-1]

35

36 # Algoritmo de Euler

37 x_euler = np.zeros(n) # vector de posiciédn
38 v_euler = np.zeros(n) # vector de velocidad
39 x_euler[0] = x@ # posicidn inicial
40 v_euler[0] = vo # velocidad inicial
41

42 # Calculo de posiciones y velocidades

43 for i in range(n - 1):
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Cédigo
x_euler[i + 1] = x_euler[i] + v_euler[i] * dt
v_euler[i + 1] = v_euler[i] - k * x_euler[i] * dt

# Solucidn exacta
x_exact = v@ * np.sin(tvec) + x@ * np.cos(tvec)

# Grafica conjunta del algoritmo de Verlet
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

# Posicidn

axl.plot(tvec, x_verlet, label='Verlet', linewidth=2)
ax1l.plot(tvec, x_exact, '--', label='Exacta',6 linewidth=2)
axl.set_title(f"Algoritmo de Verlet (dt = {dt})")
axl.set_xlabel("Tiempo")

ax1.set_ylabel ("Posicion”)

ax1.legend()

ax1.grid(True)

# Espacio de fases

ax2.plot(x_verlet_cut, v_verlet_cut, color="tab:blue')
ax2.set_xlabel ("Posicion”)

ax2.set_ylabel ("Momento")

ax2.set_title("Verlet - Espacio de fases")
ax2.axis("equal™)

ax2.grid(True)

plt.tight_layout(rect=[0, ©0.03, 1, 0.95])
plt.show()

# Grafica conjunta del algoritmo de Euler
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

# Posicidn

ax1l.plot(tvec, x_euler, label='Euler', linewidth=2)
ax1l.plot(tvec, x_exact, '--', label='Exacta', linewidth=2)
ax1.set_title(f"Algoritmo de Euler (dt = {dt})")
ax1.set_xlabel ("Tiempo")

ax1.set_ylabel ("Posicion”)

ax1.legend()

ax1.grid(True)

# Espacio de fases

ax2.plot(x_euler, v_euler, color="tab:red')
ax2.set_xlabel ("Posicidn”)

ax2.set_ylabel ("Momento")
ax2.set_title("Euler - Espacio de fases")
ax2.axis("equal")

ax2.grid(True)

plt.tight_layout(rect=[0, ©0.03, 1, 0.95])
plt.show()



Codigo A.1: Script para reflejar la diferencia entre los algoritmos simplécticos y no
simplécticos. Para ello, se ha simulado un oscilador arménico con el método de
Euler (no simpléctico) y con el de Verlet (simpléctico). En ambas simulaciones
se muestra la evolucién temporal de la posicién y la trayectoria en el espacio de

1
2

fases obtenidas.

import numpy as np

import matplotlib.pyplot as plt

def verlet_simulation(ax,

n = int(t_end / dt)
np.zeros(n)
np.zeros(n)
tvec =

x[0] = x0
X_prev =

for i in range (9, n
-k x x[i]
2 x x[i] -

force =
X_next =
x_prev = x[i]
x[i + 1] =

Xx_exact = x0 *

ax.
ax.
ax
ax.
ax.
ax.
ax.

plot(tvec, x,
plot(tvec,

legend ()
grid(True)

fig, (ax1, ax2) =

verlet_simulation(ax1,
verlet_simulation(ax2,

plt.tight_layout(rect=[0,

plt.show()

np.linspace (0,

X_exact, -=,
.set_xlabel("Tiempo")
set_ylabel ("Posicidn")
set_title(f"dt =

plt.subplots(2, 1,

dt, t_end=20, k=1.0, m=1.0, x0=0.0,

t_end, n)

X0 - v * dt + 0.5 * (-k * x0 / m) * dt*xx2

- 1):

x_prev + (dtx*2 / m) * force

Xx_next

np.cos(tvec) + v@ *x np.sin(tvec)

label="Verlet")

label="Exacta")

{dt}")

figsize=(10, 8))

dt=0.02)
dt=2)

0.03, 1, 0.951)

vo=1.0):
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A. Cadigo

Codigo A.2: Script para comprobar la estabilidad del algoritmo de Verlet para distintos
valores del paso de integracién At. Para ello, se ha simulado un oscilador
armonico y se ha mostrado la evolucién temporal obtenida de la posicién para
At = 0.02 y para At = 2.

El c6digo mostrado se puede encontrar en el siguiente repositorio:

https:/ / github.com/Joarpeo2/TFG_DinamicaMolecular.git
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Glosario

Adhesion Capacidad de dos materiales diferentes para mantenerse unidos en una interfaz
comun, debido a interacciones fisicas (como fuerzas de Van der Waals) o quimicas
(como enlaces covalentes o i6nicos).

Aminoacido Molécula orgédnica que contiene un grupo amino (-NHj), un grupo carboxilo
(~COOH) y una cadena lateral especifica (grupo R). Los aminoécidos son las unidades
basicas que forman las proteinas mediante enlaces peptidicos.

Atomo Es la unidad basica de la materia. Estd compuesto por un nticleo, que contiene proto-
nes (con carga positiva) y neutrones (sin carga), y por electrones (con carga negativa)
que giran alrededor del ntcleo.

Bafio térmico Entorno idealizado que intercambia energia térmica con el sistema simulado,
manteniendo su temperatura constante.

Bafio barométrico Entorno idealizado que permite el intercambio de volumen con el sistema,
manteniendo la presién constante.

Barostato Mecanismo que regula la presién del sistema en una simulacién de dindmica
molecular, ajustando el volumen de la celda simulada para mantener la presiéon deseada.

Campo de fuerza (force field) Modelo matematico que describe las fuerzas internas y externas
actuando sobre un sistema molecular. Incluye términos para enlaces, angulos, torsiones,
y fuerzas de Van der Waals y electrostaticas.

Catalisis Estudio de materiales que aceleran las reacciones quimicas sin consumirse en el
proceso.

Catalizador Sustancia que aumenta la velocidad de una reaccién quimica sin consumirse en
el proceso.

Centro de masas Punto que representa el movimiento del sistema como un todo. Por ejemplo,
si no hay fuerza neta, entonces el centro de masas tiene un movimiento rectilineo y
uniforme.

Coarse-graining Técnica de simplificacién utilizada en simulaciones en la que se agrupan
varios 4tomos en una tinica particula efectiva.

Colectivo En mecanica estadistica, un colectivo (o ensamble) representa el conjunto de todas
las configuraciones microscépicas posibles de un sistema que cumplen ciertas condi-
ciones macroscépicas impuestas externamente, como nimero de particulas, volumen,
energia o temperatura.

Colectivo canénico (NVT) Colectivo en el que se mantienen constantes el nimero de particulas
(N), el volumen (V) y la temperatura (T) del sistema. Este tipo de simulacién requiere
el uso de un termostato.
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Colectivo isdbaro-isotermo (NPT) Colectivo en el que se mantienen constantes el ntiimero de
particulas (N), la presién (P) y la temperatura (T) del sistema. Este tipo de simulacién
requiere el uso tanto de un termostato como de un barostato.

Colectivo microcanénico (NVE) Colectivo en el que se mantienen constantes el nimero de par-
ticulas (N), el volumen (V) y la energia total (E) del sistema.

Complejos biomoleculares Conjuntos de macromoléculas biolégicas, como proteinas, dcidos
nucleicos o lipidos, que interactiian de manera especifica y estable para llevar a cabo
funciones biolégicas concretas.

Compuesto lider Molécula con actividad bioldgica prometedora que acttia sobre una diana te-
rapéutica concreta y que sirve como punto de partida para el desarrollo y optimizacién
de nuevos farmacos.

Configuracion estable Estado del sistema en el que las particulas se encuentran en un minimo
local de la superficie de energia potencial.

Corrosién Proceso quimico o electroquimico mediante el cual un material, normalmente me-
télico, se degrada debido a su interaccién con el entorno.

CPU (Central Processing Unit) Unidad central de procesamiento de un ordenador. Es el compo-
nente encargado de ejecutar instrucciones secuenciales y coordinar el funcionamiento
del resto del sistema.

Deformacion anisotrépica Cambio en la forma y/o volumen del sistema en el que las distintas
direcciones espaciales pueden escalarse de manera diferente.

Deformacién isotrépica Cambio en el volumen de un sistema en el que todas las dimensiones
espaciales se escalan por igual, preservando la forma del sistema.

Deposicion Técnica utilizada en ciencia de materiales y nanotecnologia para depositar capas
delgadas de material sobre una superficie.

Diana biologica Molécula del organismo (generalmente una protefna, como un receptor o
una enzima) cuya modulacién por parte de un compuesto quimico produce un efecto
terapéutico deseado.

Docking Técnica computacional utilizada para predecir la orientacién y afinidad de unién
entre una molécula pequenia (ligando) y una macromolécula (receptor o enzima).

Enlace peptidico Enlace covalente que une el grupo carboxilo (-COOH) de un aminoécido
con el grupo amino (-NHj) de otro, liberando una molécula de agua.

Entorno solvatado Sistema en el que una o mas moléculas (solutos) estdn rodeadas por molé-
culas de disolvente, comtinmente agua.

Enzima Proteina especializada que acttia como catalizador biolégico, acelerando reacciones
quimicas especificas sin consumirse en el proceso.

Ergodicidad Propiedad estadistica segtin la cual el promedio temporal de una magnitud a lo
largo de una trayectoria del sistema coincide con su promedio en el colectivo estadistico.
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Espacio de fases Espacio matematico multidimensional en el que cada punto representa un
estado completo del sistema, especificado por las coordenadas y los momentos de todas
las particulas.

Fase de equilibrado Etapa de la simulacién en la que se lleva al sistema a una situacién de
equilibrio a partir de su configuracién inicial.

Fase de produccion Etapa de la simulacién en la que se generan las trayectorias del sistema, a
partir de las cuales se calculan propiedades fisicas y termodindmicas.

Fluido Sustancia que puede fluir y adaptarse a la forma del recipiente que la contiene. In-
cluye liquidos, gases y plasmas. Los fluidos carecen de forma fija y pueden sufrir
deformaciones continuas bajo la accién de una fuerza, por pequefia que sea.

GPU (Graphics Processing Unit) Unidad de procesamiento grafico especializada en operaciones
de calculo en paralelo.

HPC (High-Performance Computing) Conjunto de técnicas y recursos computacionales que per-
miten resolver problemas de elevada complejidad mediante el uso de arquitecturas
paralelas, cltusteres de ordenadores o supercomputadores.

Ligando Molécula que se une de manera especifica y reversible a una macromolécula, como
una proteina o un receptor.

Lipido Molécula orgénica que desempefia funciones estructurales y de almacenamiento ener-
gético.

Litografia Técnica de microfabricacién utilizada para transferir patrones definidos sobre una
superficie mediante el uso de radiacién (habitualmente luz ultravioleta).

Membranas celulares Estructuras lipidicas que delimitan las células, regulando el transporte
de sustancias y la comunicaciéon entre compartimentos.

Molécula Agrupacion de dos o mas dtomos unidos mediante enlaces quimicos.

Metaheuristica Estrategia de optimizaciéon general que guia y controla algoritmos de bs-
queda para resolver problemas complejos donde los métodos deterministas resultan
ineficaces. Las metaheurfsticas no garantizan encontrar el éptimo global, pero son ttiles
para explorar y explotar adecuadamente el espacio de btisqueda.

Paisaje energético Representacién conceptual de la energia potencial de un sistema en funcién
de sus configuraciones microscépicas. Cada punto del paisaje corresponde a un estado
del sistema, y la topologfa del mismo refleja la estabilidad relativa de las configuracio-
nes, asi como las trayectorias posibles de transiciéon entre ellas.

Paso de integracion Unidad de tiempo que separa dos estados consecutivos en una simulacién
numérica.

Periodo Tiempo que tarda una particula en completar un ciclo completo de oscilacién. En
simulaciones de dindmica molecular, se usa como referencia para seleccionar un paso de
integracién adecuado, asegurando una representacion precisa del movimiento atémico.
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PBC (Periodic Boundary Conditions) Condiciones de contorno periddicas utilizadas en simu-
laciones para evitar efectos de borde artificiales. Consisten en replicar la celda de
simulacién en todas las direcciones del espacio, de modo que cuando una particula
sale por un lado, entra por el lado opuesto. Esto permite simular sistemas infinitos a
partir de un ntimero finito de particulas.

Potencial de interaccién Funcién matemdtica que describe la energia potencial entre pares de
particulas en funcién de su distancia o configuracién relativa. Ejemplos comunes son
el potencial de Lennard-Jones y el potencial de Coulomb.

Proteina Molécula biolégica formada por cadenas de aminoédcidos unidas mediante enlaces
peptidicos. Su estructura tridimensional determina su funcién.

Radio de corte Distancia maxima a la que se consideran las interacciones entre particulas
en una simulaciéon. M4s alla de este radio, las fuerzas (como las de Lennard-Jones o
electrostéticas) se despreciardn para reducir el coste computacional, asumiendo que su
contribucién es insignificante.

Radio de vecindad Distancia superior al radio de corte que se utiliza para construir listas de
vecinos en simulaciones. Permite anticipar qué particulas podrian entrar en la zona de
interaccién en los siguientes pasos de la simulacién, evitando recalcular interacciones
en cada paso y mejorando la eficiencia computacional.

Receptor Proteina que reconoce y se une de manera especifica a un ligando, desencadenando
una respuesta bioquimica o celular.

Reversibilidad temporal Propiedad de las ecuaciones de movimiento de la mecénica clasica
por la cual, si se invierte el sentido del tiempo y los momentos de las particulas, el
sistema sigue una trayectoria compatible con las leyes fisicas originales. Esta simetria
implica que el sistema puede evolucionar hacia atrés en el tiempo siguiendo las mismas
ecuaciones que rigen su evolucién hacia adelante.

Simplecticidad Propiedad matematica de ciertos integradores que preservan la estructura
geométrica del sistema hamiltoniano, evitando la acumulacién sistemaética de errores.
En particular, conservan el volumen en el espacio de fases.

Termostato Mecanismo que regula la temperatura del sistema en una simulacién de dindmica
molecular, asegurando que permanezca préxima a un valor objetivo.

Tiempo de relajacion Tiempo que tarda un sistema en volver a un estado de equilibrio o
cuasi-equilibrio tras una perturbacion.

Trade-off Compromiso inherente en el disefio de modelos o algoritmos, donde la mejora de
una caracteristica (como la precisién) suele implicar una pérdida en otra (como el coste
computacional).
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