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Abstract: Various models of ionization and fission chambers for ionizing radiation detection,
designed to operate under harsh conditions such as those found in fusion reactors or particle
accelerators, have been experimentally characterized and numerically simulated. These models
were calibrated using a photon beam in the X-ray spectrum. Irradiations were performed at
the Biomedical Research Center of the University of Granada (CIBM) with a bipolar metal-
ceramic X-ray tube operating at a voltage of 150 kV and a dose rate ranging from 0.05 to
2.28 Gy/min. All detectors under study featured identical external structures but varied in
detection volume, anode configuration, and filling gas composition. To assess inter- and
intra-model response variations, the tested models included 12 micro-ionization chambers
(CRGR10/C5B/UG2), 3 micro-fission chambers (CFUR43/C5B-U5/UG2), 8 micro-fission
chambers (CFUR43/C5B-U8/UG2), and 3 micro-fission chambers (CFUR44 /C5B-U8/UG2),
all manufactured by Photonis (Merignac, France). The experimental setup was considered
suitable for the tests, as the leakage current was below 20 pA. The optimal operating voltage
range was determined to be 130-150 V, and the photon sensitivities for the chambers were
measured as 29.8 £ 0.3 pA/(Gy/h), 43.0 + 0.8 pA/(Gy/h), 39.2 £ 0.3 pA/(Gy/h), and
96.0 £ 0.9 pA/(Gy/h), respectively. Monte Carlo numerical simulations revealed that the
U layer in the fission chambers was primarily responsible for their higher sensitivities due
to photoelectric photon absorption. Additionally, the simulations explained the observed
differences in sensitivity based on the filling gas pressure. The detectors demonstrated linear
responses to dose rates and high reproducibility, making them reliable tools for accurate
determination of ionizing photon beams across a range of applications.

Keywords: micro-ionization chamber; micro-fission chamber; reproducibility; fusion reactors

1. Introduction

Beam diagnostics has always been fundamental in radiation environments [1-3] such
as nuclear reactors, particle accelerators, and similar facilities, especially under extreme
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conditions as well as biomedical applications. It helps to ensure the success of experimental
outcomes, the safety of personnel, and the integrity of the equipment [4]. For this type
of monitoring, a wide variety of detectors are commonly employed, such as gamma
thermometers [5], self-powered neutron detectors (SPNDs) [6], ionization chambers, and
fission chambers [7], among others [8].

Ionization chambers (ICs) are particularly sensitive to gamma radiation and are widely
used for measuring high radiation levels in various nuclear applications [9]. They operate
by collecting ion pairs created by radiation [10]. Fission chambers (FCs) are sensitive to both
gamma and neutron radiation, detecting the fission fragments produced when neutrons
interact with a fissile material within the chamber. Depending on this material, they can
be more sensitive to thermal neutrons (e.g., U-235) [11] or fast neutrons (e.g., U-238) [12].
Both detectors can be designed to operate with either continuous or pulsed radiation
beams [13,14] by adjusting fabrication parameters such as the internal gas pressure, thereby
varying the sensitivity and response characteristics [15]. Additionally, they are influenced
by the polarization voltage applied across their electrodes [16-18]. This biasing determines
the charges from ionization collected at the electrodes. Detectors are typically operated in
the plateau region of their response curve, where changes in applied voltage minimally
affect the response to dose rate.

Pairing ionization and fission chambers can effectively discriminate the neutron con-
tribution in a mixed field with a gamma component [19]. When both detectors share the
same geometry and composition, except for the fissile material in the anode of the fission
chamber, placing them together allows for accurate discrimination between neutron and
gamma radiation [20]. The ionization chamber provides a baseline measurement of the
gamma component. The fission chamber measures the total radiation from the gamma and
neutron components, as it shares the same method for detecting gammas, and additionally
detects neutrons through the fission process induced in the fissile material. The neutron
contribution can be extracted from these combined readings. This is highly relevant for
installations such as particle accelerators for neutron diagnostics [21].

This study presents a comparative analysis with an experimental characterization and
numerical simulation of various models of ionization and fission micro-chambers under
photon beams of lower energy and lower dose rate than their usual applications. Each
model shares the external configuration but differs in the detection volume, the filling gas
composition, pressure, and fissile material in the case of the fission chambers. The aim is to
assess their performance and reproducibility, focusing on the sensitivity to photons emitted
by an X-ray source [22]. This represents a highly controlled irradiation setup, preventing
the study complexity when mixed fields are applied. In addition, Monte Carlo simulations
of the devices have been carried out for explaining the differences in response to radiation
between both types of microchambers. This evaluation provides valuable insights into the
suitability of the detectors for diverse operating conditions, thus laying the groundwork for
their practical deployment. In the present work, the focus is on the differences in response,
both intra- and inter-models, under the same conditions, performing a more comprehensive
statistical analysis based on a significantly larger sample size.

2. Materials and Methods
2.1. Samples and Experimental Setup

Four different types of detectors were studied, comprising 12 micro-ionization cham-
bers of one model and 14 micro-fission chambers of three different models (Photonis,
Mérignac, France) (see Table 1). As mentioned, these detectors share the same external
structure, with variations in the composition and pressure of the filling gas, and the fissile
material in the anode of the fission chambers. Active volume has a thickness of 0.25 mm.
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The central anode has a radius of 1 mm, and it is made of steel. In the case of the fission
chambers, it is coated with an 8 um layer of U (300 pg). The radius of the overall envelope
is 1.5 mm and is made of steel. Moreover, an ionization chamber has a detection volume,
V4, with a length, Ly, of 14 mm, whereas for the fission chambers, this dimension is shorter,
10 mm. Therefore, the detection volume is different in both types of chambers. All models
use argon at a pressure of 5 bar as their filling gas, except for the model CFUR44/C5B-
U8/UG2, which contains a mixture of argon with 4% nitrogen at a higher pressure of 15 bar,
thus increasing its sensitivity.

Table 1. Detectors and main characteristics.

Lq V4 @ . A . Gas Pressure
Model Type (mm) (cm®) N Numbering Fissile Material Gas (Bar)
CRGR10/C5B/UG2 IC 14 0.025 12 204 to 215 - Argon 5
CFUR44/C5B- 3 123 t0 125 U-238 Argon +4% 15
U8/UG2 FC 10 0.018 Nitrogen
CFUR43/C5B- ) 8 210 to 213 and U-238 Argon 5
U8/UG2 215 t0 218 &
CFUR43/C5B-
U5/UG2 3 207 to 209 U-235 Argon 5

@ Number of samples.

Irradiations were conducted at the Biomedical Research Center of the University of
Granada (CIBM, Granada, Spain), with a bipolar metal-ceramic X-ray source from Comet
Yxlon (Hamburg, Germany), capable of emitting photons within the X-ray energy spectrum,
with adjustable voltage and current up to 320 kV and 22.5 mA, respectively. The voltage
was set at 150 kV for all tests, and the current was varied to modulate the dose rate. A PTW
23342 ionization chamber (PTW, Freiburg, Germany) was the reference detector for dose
rate determination. This IC has shown excellent performance under X-rays at a voltage
source higher than 100 kV [23,24].

A Keithley B2985B electrometer (Tektronix, Cleveland, OH, USA) was configured
for current acquisition from the detectors. This electrometer offers a minimum current
resolution of 0.01 fA and can bias devices up to 1000 V. To minimize electromagnetic
interferences, the detectors and the electrometer were connected through balanced triaxial
transmission lines (Figure 1a). The external structure of the detectors is nearly identical
(Figure 1b), differing only in the sensitive part of the chamber.

Two connection interfaces were developed. One serves as an adapter from the coaxial
SMA of the chambers to the triaxial line, and the other acts as an interface for the elec-
trometer connection with the chamber. Both interfaces were designed to be housed within
metal enclosures to maintain signal shielding. Additionally, a commercial BNC-to-banana
adapter was used in the connection. The electrometer was located in the control room,
close to the irradiation room where the detectors were positioned and establishing the
connection through a cable conduit. The total length of the cable used for the connection
was approximately 4.5 m. The electrometer was controlled remotely via Ethernet. Devices
under tests (DUTs) were positioned on a specially designed 3D-printed support, affixed
to an adjustable bench through screws. The sensitive part of the detectors was placed at
224.8 £ 0.1 mm from the photon output and secured with ties to prevent excessive mechan-
ical stress and facilitate device replacement (Figure 2). No build-up materials were used
in front or behind the detectors, directly facing the X-ray beam. This setup is usual in this
type of detectors in typical applications under harsh radiation environment [20,21].
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(*)! The sensitive length is 10 mm in fission chambers and 14 mm in ionization chambers.
(*)? Control with the PC was made with the Keysight software.

Figure 1. Setup for measurements with the chambers (Photonis, Mérignac, France): (a) complete
setup and (b) dimensions of the detectors given in mm.
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7

Sensitive part § | Detector position at . 1
@ of the detector ‘ | the photon output §
— = . S

\

Figure 2. Laboratory of the CIBM for X-ray irradiation: (a) sensitive part of the detector in the
foreground. X-ray tube with the support structure anchored to the bench in the background.
(b) Detector placed in the irradiation position at the output of the source.

The campaign was divided into three different tests:

1.  Measurement of the leakage current of some detectors to verify the setup proposed.
Study of the IV curve under stable radiation conditions to determine the plateau region.
3. Characterization of the detectors to a photon beam in the X-rays spectrum.

The humidity and temperature conditions were monitored during the two-day cam-
paign, with maximum variations recorded of +1% and £0.7 °C, respectively. These condi-
tions have been considered as constant during the experiment; therefore, no corrections
have been applied to the detectors.
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The experimental uncertainties were analyzed according to the JCGM 100 report [25],
using a coverage factor of k = 1. Type A uncertainties arise from the statistical variability of
the data for each IC or FC unit. Given that this study focuses on the reproducibility of the
four chambers, each sensitivity value was determined from the slope of the least-squares
fit of the measured induced current as a function of the dose rate, with its corresponding
uncertainty. The sensitivity and uncertainty for each chamber model were obtained by
averaging the individual sample values, as recommended in [25]. Type B uncertainty in
this experiment stems from the electrometer, with a value of 0.2% in the current range used,
as specified by the manufacturer. The various uncertainties of the readouts were combined
in quadrature.

2.2. Monte Carlo Simulations

To a better understanding of the experimental results, a series of Monte Carlo simula-
tions have been performed using the code PENELOPE [26]. The geometries of the chambers
are outlined in Figure 3. They have been built up according to the technical information
available (Photonis, Mérignac, France). Both have a very similar shape, the only differences
occurring in the active volume (in violet in the figure), which is filled with Ar (or Ar and 4%
Ny). In the case of the ionization chamber, it has a length of 14 mm, while in the case of the
fission chamber, it has 10 mm. In both cases, the active volume has a thickness of 0.25 mm.
The central anode (in dark red in Figure 3) has a radius of 1 mm, and it is made of steel. In
the case of the fission chamber, it is coated with 8 um layer of U. The radius of the overall
envelope is 1.5 mm and is made of steel (in green in Figure 3). Actual gas compositions and
pressures have been included in the filling gas for the simulations. Additional simulations
have been completed by simplifying the geometry of the chambers, leaving just the region
of the active volume. In this way, the possible effects due to the elements external to the
area of the active volume of the chambers have been eliminated.

Ionization chamber

14 mm

Fission chamber 10 mm

Figure 3. Scheme of the chambers used in the Monte Carlo simulations carried out. Central anode is
represented in dark red and steel envelope in green.

In the simulations, chambers have been irradiated under conditions similar to those
of the experimental measurements by situating the chamber within an air phantom at a
depth of 22.5 cm. A plane-parallel beam with a size of 6 cm X 6 cm and an X-ray spectrum
corresponding to 150 kVp was considered. This X-ray spectrum was generated using the
Python package SpekPy v2.0, trying to reproduce the experimental source used during the
irradiation [27,28]. Also, a ®*Co beam of the same geometrical characteristics has been also
included in the simulations for comparison purposes. In this case, photons with 1.25 MeV
(the average photon energy of this radioisotope) were emitted from the source. This is
a common simplification when considering ®*Co sources in Monte Carlo simulations, in
general, and specifically for studying the response of ionization chambers [29].

In PENELOPE, photons are simulated in a detailed way, that is, interaction by inter-
action in chronological order. Electrons and positrons are simulated by using a mixed
class-II procedure in which interactions are classified as “hard” or “soft”, depending on the
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energy loss and/or change of direction suffered by the interacting particle. The simulation
parameters employed for all the materials in the simulation geometry were C; = C; = 1073,
Wecce =10 keV, and WcR = 1 keV. The meaning of these parameters can be found in the
PENELOPE manual [22]: C; sets the average angular deflection occurred between two
consecutive hard collisions; C, determines the maximum fractional energy loss that is
permitted between two hard collisions, and W, and W, indicate the threshold energies for
hard inelastic interactions and hard bremsstrahlung emission, respectively. Additionally,
particle transport is controlled by the absorption energies: Ee—, Ee+, and Egamma, represent-
ing the energies at which the simulation of electrons, positrons, and photons, respectively,
is discontinued, with the particles being absorbed in the material through which they
were moving. In our simulations, these absorption energies were chosen to be 10 keV for
electrons and positrons and 1 keV for photons, in all materials. Finally, and recommended
in the code manual, Dgyax was fixed to one-tenth of the shorter dimension of each element
in the geometry. This parameter defines the maximum size of the particle track steps and
plays a crucial role in geometries that include thin structures, as is the case. The values
adopted in our simulations are within the ranges recommended in the PENELOPE manual.

3. Results

3.1. Experimental Results
3.1.1. Leakage Current

The leakage current was measured to evaluate the background response of the sys-
tem. These tests were performed without radiation, with the DUTs biased at 150 V. The
electrometer was configured in the 200 pA range to increase the resolution and avoid errors
due to scale changes. The signal was sampled at a frequency of 0.5 Hz, and the integration
time was set as stable, automatically adjusted to a longer aperture time to reduce the
noise. The tests were performed with the ionization chambers 204 to 211. The leakage
current was determined as the average of the measurements taken after a 30 s stabilization

period (Figure 4a).
@ Sabilizaton time
— (b) 22
35 20
<
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Figure 4. Leakage current analysis: (a) leakage current transient of the micro-ionization cham-
ber CRGR10/C5B/UG2-211 and (b) average leakage current of the micro-ionization chambers
CRGR10/C5B/UG2 from 204 to 211. Average is represented by a solid line and the £1 SD range
indicated by dashed lines.

The leakage current obtained with each sample is shown in Figure 4b, with the average
represented by a solid line and the £1 SD range indicated by dashed lines. The average
was 14.2 £ 0.9 pA, with a maximum value of 18.7 £ 1.3 pA, so the setup can be considered
suitable for measuring the induced current with high accuracy and low noise level arising
from the connections. This is consistent with the data provided by the manufacturer, which
guarantees a leakage current of less than 150 pA for their detectors.
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3.1.2. IV Curve

The IV curve of the devices was analyzed to identify and define the plateau region,
thereby determining the optimal voltage range for their operation. Two voltage sweeps
were performed, as shown in Table 2. The conditions of the X-ray tube were set at 150 kV
and 9 mA.

Table 2. Voltage sweeps applied.

Type of Sweep * Range (V) Step (V) Measurements Taken Expected Region
Low-voltage sweep 0-10 2 6 Recombination region
High-voltage sweep 0-200 20 21 Plateau region

O

Current (nA)

Current (nA)

2.0

1.5

1.0

0.5

0.0

3.0
25
2.0
1.5
1.0
0.5
0.0

a8

0 50

> >

(*) In both sweeps, the voltage pulses lasted 5 s. The signal was integrated for 1 s after allowing 3 s for the
stabilization of the signal. A final rest period of 1 s was included before the next pulse.

The average response and standard deviation for each detector model at various bias
voltage are presented in Figure 5. The plateau region was obtained seeking the minimum
slope in the response of the high-voltage sweep. It was calculated as the linear estimation
of every four current values normalized to their average, linking the result with the central
voltage of each interval. The statistical study of this data is displayed in a box-and-whisker
plot (Figure 6). The box represents the interquartile range, and the whiskers extend to
the most extreme data points within 1.5 times this range. Data beyond this threshold are
considered outliers and shown as isolated round points in Figure 6. The outliers in Figure 6a
obtained from IC number 206. Although it passed the acceptance test, this behavior may be
attributed to manufacturing tolerances. The median is represented as a line inside the box,
and the average is depicted as an “x”, connected by a solid line to see the trend of the slope
across the voltage range. It can be inferred that the plateau region in these chambers can
be found from 130-150 V onwards. Although this region appears to be optimal, nearly all
voltages in the range between 70 V and 170 V exhibit an almost flat slope, which may be
acceptable depending on the required level of precision. This confirms the indication of
the manufacturer to polarize the devices at 150 V and lays the groundwork for conducting
subsequent tests.

(b)
_o———<—2—2

<
.
B
u; 2 |
CRGR10/C5B/UG2 ‘ CFUR44/C5B-U8/UG2
12 Samples 1 ‘ 3 Samples
0
100 150 200 0 50 100 150 200
Voltage (V) Voltage (V)
d 25

o———o/&——v——o,of—o——o —

P e S S ——2 20 & o

& $15 ¢

i o |

‘ £ 1.0 |

‘ CFUR43/C5B-U5/UG2 e 0.5 ‘ CFUR43/C5B-U8/UG2

‘ 3 Samples ' ‘ 8 Samples

! 0.0 |
0 50 100 150 200 0 50 100 150 200

Voltage (V) Voltage (V)

Figure 5. IV curves obtained with all the DUTs: (a) micro-ionization chamber CRGR10/C5B/UG2,
(b) micro-fission chamber CFUR44 /C5B-U8/UG2, (¢) micro-fission chamber CFUR43/C5B-U5/UG2,
and (d) micro-fission chamber CFUR43/C5B-U8/UG2.
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Figure 6. Slope of each detector model with different bias voltages: (a) micro-ionization chambers
CRGR10/C5B/UG?2, (b) micro-fission chambers CFUR44 /C5B-U8/UG?2, (c) micro-fission chambers
CFUR43/C5B-U5/UG2, and (d) micro-fission chambers CFUR43/C5B-U8/UG2.

3.1.3. Sensitivity of the Response to an X-Ray Tube

The sensitivity of the detectors was calculated as the slope of the linear regression of the
response to the photons from an X-ray beam. The X-ray tube was kept at a voltage of 150 kV,
varying the intensity between 0.5 mA and 22.5 mA corresponding to a dose rate from 0.05 to
2.28 Gy/min. DUTs were biased at 150 V, as it was consistent with the previous study.

Figure 7 shows the response of every sample of each detector model as a function of the
applied dose rate. The response was linear to the dose rate, as the R? coefficients were close to
unity for all models. In Table 3, the sensitivity of the detectors was calculated as the average of
the slope of the linear fit for each detector, and the uncertainty with a coverage factor k = 1.

+204 (b) 16

——205 14
——206 § 12
o207 .E 10
T8 E g 123
——209 s
—-210 g © o124
CRGR10/C5B/UG2 o211 E 4 CFUR44/C5B-U8/UG2 =129
——212 g 2
12 Samples 4 3 Samples
——213 5 0
]
1.0 15 2.0 25 —-214 0.0 05 1.0 15 2.0 25
Dose rate (Gy/min) 215 Dose rate (Gy/min)
(@e
<° —-210
¥ 4 o211
e
g ——212
—~207 £ 3
G ——213
o208 —‘% 2 --215
—-—209 B
CFUR43/C5B-U5/UG2 2 4 CFUR43/C5B-U8/UG2 ——216
3 Samples % 8 Samples ——217
o 0 218
1.0 15 2.0 25 0.0 0.5 1.0 1.5 2.0 25

Dose rate (Gy/min)

Figure 7. Response of every sample of each detector model to different dose rates of the X-ray tube:
(a) CRGR10/C5B/UG2, (b) CFUR44/C5B-U8/UG?2, (c) CFUR43/C5B-U5/UG2, and (d) CFUR43/C5B-
Us/uG2.
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Table 3. Sensitivity of the chambers at 150 V.

Model Sensitivity (pA/(Gy/h))
CRGR10/C5B/UG2 29.8£0.3
CFUR44/C5B-U8/UG2 96.0 £ 0.8
CFUR43/C5B-U8/UG2 392403
CFUR43/C5B-U5/UG2 43.0£0.9

Table 4 shows the uncertainties affecting the result of the experiment.

Table 4. Uncertainties of the experimental measurements for each detector model with a coverage
factor of k = 1.

Type A1

CRGR10_C5B_UG2 0.6%
CFUR44_C5B_U8_UG2 0.11%
CFUR43_C5B_U5_UG2 0.5%
CFUR43_C5B_U8_UG2 0.5%
Type B 2 0.2%

! Uncertainty of the sensitivity estimation, one for each detector model. 2 Uncertainty of the electrometer B2985B
for operation at 20 nA range, common to all devices.

3.2. Monte Carlo Simulations

The numerical results obtained with the available chamber geometries are summarized
in Table 5, where the energies absorbed in the active volume of the chambers are given for
the different situations analyzed.

Table 5. Results obtained for the complete chamber geometries. The energy, per initial photon,
absorbed in the active volume of the chambers is given. The numbers between parentheses are the
uncertainties with a coverage factor k = 3.

Absorbed Energy per Emitted Photon (eV)

Chamber 150 kVp 0Co
Ionization (Ar 5 bar) 0.1214 (11) 0.1896 (14)
Fission (Ar 5 bar) 0.1990 (15) 0.1374 (10)
Fission (Ar + 4% N 15 bar) 0.523 (3) 0.410 (2)

The results obtained in the simulations carried out with the simplified chamber ge-
ometries and the 150 kVp X-ray beam are shown in Table 6, which are very similar to those
shown in Table 5 for the complete geometries.

Table 6. Results obtained for the simplified chamber geometries and the 150 kVp X-ray beam. The
energy, per initial photon, absorbed in the active volume of the chambers is given. The numbers
between parentheses are the uncertainties with coverage factor k = 3.

Absorbed Energy per Emitted Photon (eV)

Chamber (Ar 5 Bar)
Ionization 0.1190 (11)
Fission with U 0.1934 (15)
Fission without U 0.0835 (9)

4. Discussion

Based on the obtained data, we can draw several conclusions. First, the proposed
setup and connection for signal acquisition to the chamber are suitable. The leakage
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current measured is less than 20 pA in the worst case, which is in accordance with the
manufacturer’s guaranteed performance of 150 pA. The recommended operating voltage
of 150 V, as specified by the manufacturer, was also validated. The plateau region was
observed to start around 130-150 V. This result aligns with previous studies conducted
with similar devices, in which they were biased at this voltage. Another point of interest
is determining the breakdown voltage, at which the device ceases to operate within the
plateau region. This information could provide additional insights.

The linearity of the response of each model was studied using an X-ray tube. The
coefficients of determination of the linear fit of the response, R?, were close to unity for all
models, thus confirming the linear behavior of the detectors for the X-ray tube intensity,
which is related to the radiation dose rate emitted. Consequently, a sensitivity value
for the photons generated by this tube was determined, obtaining 29.8 + 0.3 pA/(Gy/h)
with the model CRGR10/C5B/UG2 chamber; 96.0 £ 0.8 pA/(Gy/h) with CFUR44 /C5B-
U8/UG2; 43.0 + 0.9 pA/(Gy/h) with CFUR43/C5B-U5/UG2; and 39.2 + 0.3 pA/(Gy/h)
with CFUR43/C5B-U8/UG2, with the devices polarized at 150 V. It can also be observed
that the sensitivity increases in the model where the filling gas pressure is higher, as
expected, resulting in a sensitivity increase by a factor of approximately 2.5-2.3. The test
reproducibility was robust, as evidenced by the deviations presented in Table 7, computed
relative to the mean slope of the linear fits for each detector, with a maximum deviation
below 4.5%. Notably, the fission chambers with U-238 exhibited reduced data dispersion.
This intra-model variability was also present in the acceptance test documentation of each
chamber provided by the manufacturer.

Table 7. Deviation of the measurements with respect to the average of the slopes of the linear fit of
the datasets for each chamber.

Detector Model Average Relative Maximum Relative Average Absolute Maximum Absolute
Deviation (%) Deviation (%) Deviation (pA/(Gy/h))  Deviation (pA/(Gy/h))
CRGR10_C5B_UG2 24 4.4 0.7 1.3
CFUR44_C5B_U8_UG2 1.0 15 1.0 15
CFUR43_C5B_U5_UG2 2.8 4.2 12 1.8
CFUR43_C5B_U8_UG2 1.7 2.8 0.7 1.1

On the other hand, although no study of long-term behavior was carried out in this
work, according to a previous work [20] with similar fission microchambers, no significant
sensitivity degradation may be expected.

Table 8 shows a comparative analysis of the response of several IC and FC detectors.
Last four models correspond with those under study in this work, and the rest of the
specifications are provided by the manufacturers. We can observe an excellent performance
in terms of sensitivity with similar or even lower detection volume.

Monte Carlo simulations provided more insights into these experimental studies. In
the case of the X-ray beam, the energy absorbed increases in the fission chamber with respect
to the ionization one. This is in agreement with the measurements’ results, assuming that
the energy absorbed is highly correlated to the produced photocurrent (device sensitivity).
In the simulations, there is a factor ~1.5 between fission and ionization chambers, in line
with that obtained in the experiment, 1.33. Additionally, increasing the gas pressure to 15
bar (chamber model CFUR44/C5B-U8/UG2) results in a 2.6 factor increase in the absorbed
energy, closer to the sensitivity increment of 2.4 shown in Table 3. If we assume that the
gas in the chambers behaves as an ideal gas, the ideal gas law establishes a proportional
relationship between pressure and gas density: For constant volume and temperature,
a higher pressure results in a higher gas density. Additionally, it is well known that
an increase in gas density leads to a higher number of photon interactions within the
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gas, thereby enhancing the signal of the ionization chamber. In summary, an increase in
gas pressure results in a higher signal from the studied device. This, at least partially,
explains the differences observed between the signals of the CFUR44/C5B-U8/UG2 and
CFUR43/C5B-U8/UG2 fission chambers. In case of the ®*Co beam, the increase disappears
and a slight reduction in the absorbed energy is even observed for the fission chamber with
respect to the ionization one. This was already observed in the experimental results shown

in [30].
Table 8. Main characteristics of commercial detectors. Last four correspond to models under study in
this work.
Detector Model Type of Detector Manufacturer Sensﬁ::;;;olume Bias (V\;))ltage Response
Farmer Ionization .
Chamber 30013 IC PTW, Freiburg, 0.6 +£400 V 20 nC/Gy
Germany
waterproof
PinPoint 3D IC PTW, Freiburg,
(31022) IC Germany 0.016 £300V 400 pC/Gy
IBA Dosimetry,
FC65 1C Schwarzenbruck, 0.65 +300V 21 nC/Gy
Germany
IBA Dosimetry,
CCo4 IC Schwarzenbruck, 0.04 +300V 1nC/Gy
Germany
Centronic, Croydon, .
FC165 FC United Kingdom - +400 V 0.12 cps/nv
CRGR10/C5B/UG2 IC Phomr;j;xzngmc' 0.025 +150 V 107 nC/Gy
CFUR44/C5B-U8/UG2 FC Phom;:;xi“gmc’ 0.018 +150 V 346 nC/Gy
CFUR43/C5B-U8/UG2 FC Phowr;;xzng““' 0.018 +150 V 141 nC/Gy
CFURA43/C5B-U5/UG2 FC Ph"tor;j;xzngmc' 0.018 +150 V 156 nC/Gy

* Counts per second per neutron flux.

Regarding the comparison between the simulations of the available geometry (Table 5)
and the simplified one (Table 6), since the detailed geometry (materials and dimensions)
of the various chambers was not available, simulations using the full precise geometry
can only be considered an approximation. While the use of simplified geometries may
seem unnecessary, in this context, it helps to determine whether the differences observed
in the Monte Carlo simulations with the precise geometries are due to variations in the
active volume elements (such as size and U-layer) or other factors. This simplified analysis
has allowed us to confirm that these components are responsible for the discrepancies in
signal between the ionization and fission chambers. Therefore, it can be concluded that, in
the absence of the U layer, the increase in the absorbed energy disappears. Therefore, it
is precisely the U layer of the fission chamber that is responsible for the enhancement in
the absorbed energy and the physical mechanism provoking it is the photoelectric photon
absorption, a process whose cross-section grows extremely quickly with the atomic number
of the material, Z, being proportional to Z* [8].

5. Conclusions

Experimental characterization and numerical simulation have been performed on
different types of ionization and fission chambers with the same geometry but different
anode and filling gas. The average leakage current obtained with the DUTs studied was
14 + 3 pA, with a bias voltage of 150 V and X-ray tube conditions of 150 kV and 9 mA, which
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is much lower than the 150 pA accepted by the manufacturer, and allows for validating the
setup and connections for subsequent tests.

The plateau region has been determined by studying the response of the devices to
different bias voltages under consistent X-ray tube conditions. Acceptable values were
observed across the voltage range from 70 to 170 V, with a notable improvement in response
observed from 130 to 150 V onwards. It establishes the operating conditions under which
the detectors must function to ensure reliable measurements, being consistent with the
specifications provided by the manufacturer. The voltage at which the behavior of the
devices transitions into the proportional region should be studied in the following tests.

The response of the DUTs biased at 150 V was linear to the current applied to
the X-ray tube, obtaining an average sensitivity of 29.8 = 0.3 pA/(Gy/h) with the
model CRGR10/C5B/UG2 chamber; 96.0 £ 0.9 pA/(Gy/h) with CFUR44/C5B-U8/UG2;
43.0 + 0.8 pAhamber/ MApe with CFUR43/C5B-U5/UG2; and 39.2 £ 0.3 pA/(Gy/h) with
CFUR43/C5B-U8/UG2. These differences in the chamber’s sensitivities have been ex-
plained with Monte Carlo simulations by the enhanced photoelectric photon absorption
of the fission chambers under the experimental X-ray and with the increase in the filling
gas pressure. This effect disappears with higher energy photons from ®°Co, where photon
energy loss by photoelectric effect is less important. Moreover, intra-model sensitivity
variation has been calculated, showing a robust test of reproducibility, mainly in the fission
chambers with U-238.

Future work will focus on studying the difference in response of ionization and fission
chambers to neutron radiation, as fission chambers are specifically designed to detect them.
Additionally, further research will explore their response to higher-energy photons and assess
their degradation and stability under long and more demanding environmental conditions.
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