@misc{10481/95086, year = {2024}, month = {4}, url = {https://hdl.handle.net/10481/95086}, abstract = {In this study, we deal with non-degenerate translators of the mean curvature flow in the wellknown hyperbolic Einstein’s static universe. We classify translators foliated by horospheres and rotationally invariant ones, both space-like and time-like. For space-like translators, we show a uniqueness theorem as well as a result to extend an isometry of the boundary of the domain to the whole translator, under simple conditions. As an application, we obtain a characterization of the the bowl when the boundary is a ball, and of certain translators foliated by horospheres whose boundary is a rectangle.}, organization = {Spanish MICINN and ERDF, project PID2020-116126GBI00}, organization = {“Maria de Maeztu” Excellence Unit IMAG, ref. CEX2020-001105-M, funded by MCIN/AEI/10.13039/501100011033}, organization = {Research Group FQM-324 by the Junta de Andalucía}, organization = {The Scientific and Techological Research Council of Türkiye (TÜB˙ITAK) Grant 2210-A}, publisher = {Dergi Park Akademik}, keywords = {Translator}, keywords = {mean curvature flow}, keywords = {hyperbolic Einstein’s static universe}, title = {Translators of the Mean Curvature Flow in Hyperbolic Einstein’s Static Universe}, doi = {10.36890/iejg.1437356}, author = {Ortega Titos, Miguel and Yalçın, Buse}, }