@misc{10481/93524, year = {2024}, month = {6}, url = {https://hdl.handle.net/10481/93524}, organization = {Spanish Project PID2022-143083NB-I00, “LEARNING”, funded by MICIU/AEI /10.13039/501100011033}, organization = {FEDER, UE}, organization = {projects PROOF-FOREVER (EUR2022.134044), ALARM (C.EXP. 022.UGR23) and IMPROVE}, organization = {Project: PLEC2022-009271 “DigiVolCa”}, organization = {MCIN/AEI/10.13039/501100011033 and by EU «NextGenerationEU/PRTR», 10.13039/501100011033}, publisher = {Frontiers}, title = {Universal machine learning approach to volcanic eruption forecasting using seismic features}, doi = {10.3389/feart.2024.1342468}, author = {Rey Devesa, Pablo and Carthy, Joe and Prudencio, Janire and Titos Luzón, Manuel Marcelino and Prudencio Soñora, Janire and Ibáñez, Jesús M. and Benítez, Carmen}, }