@misc{10481/88894, year = {2019}, url = {https://hdl.handle.net/10481/88894}, abstract = {Hydroxytyrosol (HT) has been demonstrated to improve mitochondrial function, both in sedentary and in exercised animals. Herein, we assessed the effects of two different doses of HT on exercise-induced mitochondrial respiratory complex (C) assembly into supercomplexes (SCs) and the relation of the potential results to OPA1 levels and oxidative stress. Wistar rats were allocated into six groups: sedentary (SED), sedentary consuming 20 mg/kg/d of HT (SED-20), sedentary consuming 300 mg/kg/d of HT (SED-300); exercised (EXE), exercised consuming 20 mg/kg/d of HT (EXE-20) and exercised consuming 300 mg/kg/d of HT (EXE-300). Animals were exercised and/or supplemented for 10 weeks, and assembly of SCs, mitochondrial oxidative status and expression of OPA1 were quantified in the gastrocnemius muscle. Both EXE and EXE-20 animals exhibited increased assembly of CI into SCs, but this effect was absent in EXE-300 animals. Levels of CIII2 assembled into SCs were only increased in EXE-20 animals. Notably EXE-300 animals showed a decreased relative expression of s- OPA1 isoforms. Therefore, HT exerted dose-dependent effects on SC assembly in exercised animals. Although the mechanisms leading to SCs assembly in response to exercise and HT are unclear, it seems that a high HT dose can prevent SCs assembly during exercise by decreasing the expression of the s-OPA1 isoforms.}, publisher = {Elsevier}, title = {Hydroxytyrosol influences exercise-induced mitochondrial respiratory complex assembly into supercomplexes in rats}, doi = {10.1016/j.freeradbiomed.2019.01.027}, author = {Casuso, Rafael A. and Al Fazazi, Saad and Hidalgo Gutiérrez, Agustín and López García, Luis Carlos and Plaza Díaz, Julio and Rueda Robles, Ascensión and Rodríguez Huertas, Jesús Francisco}, }