@misc{10481/85274, year = {2023}, month = {9}, url = {https://hdl.handle.net/10481/85274}, abstract = {In this paper we present a novel mathematical optimization-based methodology to construct tree-shaped classification rules for multiclass instances. Our approach consists of building Classification Trees in which, except for the leaf nodes, the labels are temporarily left out and grouped into two classes by means of a SVM separating hyperplane. We provide a Mixed Integer Non Linear Programming formulation for the problem and report the results of an extended battery of computational experiments to assess the performance of our proposal with respect to other benchmarking classification methods.}, organization = {Universidad de Sevilla/CBUA}, organization = {Spanish Ministerio de Ciencia y Tecnología, Agencia Estatal de Investigación, and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21}, organization = {Junta de Andalucía projects FEDER-US-1256951, P18-FR-1422, CEI-3-FQM331, B-FQM-322-UGR20}, organization = {AT 21_00032; Fundación BBVA through project NetmeetData: Big Data 2019}, organization = {UE-NextGenerationEU (ayudas de movilidad para la recualificación del profesorado universitario)}, organization = {IMAG-Maria de Maeztu grant CEX2020- 001105-M /AEI /10.13039/501100011033}, publisher = {Springer Nature}, keywords = {Supervised classification}, keywords = {Optimal classification trees}, keywords = {Multiclass}, title = {Multiclass optimal classification trees with SVM‑splits}, doi = {10.1007/s10994-023-06366-1}, author = {Blanco Izquierdo, Víctor and Japón, Alberto and Puerto, Justo}, }