@misc{10481/84647, year = {2023}, month = {8}, url = {https://hdl.handle.net/10481/84647}, abstract = {In many industrial or healthcare contexts, keeping track of the number of people is essential. Radar systems, with their low overall cost and power consumption, enable privacy-friendly monitoring in many use cases. Yet, radar data are hard to interpret and incompatible with most computer vision strategies. Many current deep learning-based systems achieve high monitoring performance but are strongly context-dependent. In this work, we show how context generalization approaches can let the monitoring system fit unseen radar scenarios without adaptation steps. We collect data via a 60 GHz frequency-modulated continuous wave in three office rooms with up to three people and preprocess them in the frequency domain. Then, using meta learning, specifically the Weighting-Injection Net, we generate relationship scores between the few training datasets and query data. We further present an optimization-based approach coupled with weighting networks that can increase the training stability when only very few training examples are available. Finally, we use pool-based sampling active learning to fine-tune the model in new scenarios, labeling only the most uncertain data. Without adaptation needs, we achieve over 80% and 70% accuracy by testing the meta learning algorithms in new radar positions and a new office, respectively.}, organization = {ECSEL Joint Under-taking (JU) 876925}, organization = {Horizon 2020}, organization = {Universidad de Granada/CBUA}, publisher = {Springer Nature}, keywords = {Active learning}, keywords = {Meta learning}, keywords = {Radar}, keywords = {Few shot learning}, keywords = {People counting}, keywords = {Weighting network}, title = {Context-adaptable radar-based people counting via few-shot learning}, doi = {10.1007/s10489-023-04778-z}, author = {Mauro, Gianfranco and Pegalajar Cuéllar, Manuel and Morales Santos, Diego Pedro}, }