@misc{10481/79099, year = {2022}, month = {12}, url = {https://hdl.handle.net/10481/79099}, abstract = {Acid sulfate soils release metal laden, acidic waters that affect the environment, buildings, and human health. In this study, 16S rRNA gene amplicons, metagenomes, and metatranscriptomes all demonstrated distinct microbial communities and activities in the unoxidized potential acid sulfate soil, the overlying transition zone, and uppermost oxidized actual acid sulfate soil. Assembled genomes and mRNA transcripts also suggested abundant oxidized acid sulfate soil populations that aligned within the Gammaproteobacteria and Terracidiphilus. In contrast, potentially acid tolerant or moderately acidophilic iron oxidizing Gallionella and sulfur metabolizing Sulfuricella dominated the transition zone during catalysis of metal sulfide oxidation to form acid sulfate soil. Finally, anaerobic oxidation of methane coupled to nitrate, sulfate, and ferric reduction were suggested to occur in the reduced parent sediments. In conclusion, despite comparable metal sulfide dissolution processes e.g., biomining, Gallionella and Sulfuricella dominated the community and activities during conversion of potential to actual acid sulfate soils.}, organization = {UK Research & Innovation (UKRI)}, organization = {Biotechnology and Biological Sciences Research Council (BBSRC) DE-AC02-05CH11231 DE-AC05-76RL01830}, organization = {Nessling Foundation 201700273 201800502}, organization = {Svensk-OEsterbottniska Samfundet r.f. 18/0604}, organization = {European Regional Development Fund via the Interreg Botnia-Atlantica program}, organization = {Swedish Research Council Swedish Research Council Formas 2018-00760}, organization = {Geological Survey of Sweden 36-1878/2017}, organization = {Swedish Research Council}, organization = {European Commission 2018-05973}, organization = {Swedish Research Council infrastructure project Biodiversity Atlas Sweden (VR) 2017-00688 Swedish Research Council Formas}, publisher = {Nature}, title = {Gallionella and Sulfuricella populations are dominant during the transition of boreal potential to actual acid sulfate soils}, doi = {10.1038/s43247-022-00642-z}, author = {Högfors Rönnholm, Eva and López Fernández, Margarita}, }