@misc{10481/78408, year = {2022}, url = {https://hdl.handle.net/10481/78408}, abstract = {Starting from a partial derivative model that constitutes a conservation law, a mathematical reading of this fact is that the equations we work with preserve the L1 norm. This tells us that the solutions of the model, even before we know of its existence and/or uniqueness, will be bounded with this norm. This type of conservation tells us that our solutions live in a bounded space of the L1 space. However, this fact, a priori, does not give us a compactness or convergence with which we can work. In this project we will see that actually this boundedness in L1 can be used as a tool to establish a convergence of solutions, although not to a function of L1, but to a measure. In a second phase, it will be crucial to determine which equation verifies this limit measure. In order to have a global view of the steps we have followed to obtain this convergence, let us see a small summary of these results. While a bounded sequence of integrable functions does not have to converge, if we see this same sequence as a bounded sequence in the measure space, being the dual of a normed space (Riesz representation theorem), we can find a partial one that converges (Banach-Alouglu-Bourbaki theorem), taking into account that it will do so to a measure and with the weak-* topology. The general structure followed until we can arrive at the results that allow us to affirm the above-mentioned summary will be the following: in Capítulo 1 we will compile the results studied in the degree coming from diverse subjects, as well as introduce new concepts that will be necessary to us. As main source consulted, we highlight both the notes of the functional analysis course of the degree [PG10] and the books of Donald L. Cohn [Coh97] and Gerald B. Folland [Fol99]. In a second Chapter, we will illustrate all these results with an example extracted from [Nie03], thus addressing all the objectives foreseen in the end-of-degree proposal. In the first chapter, the most relevant results will be both the Banach-Alouglu- Bourbaki theorem and the Riesz representation theorem, redbeing able to emphasize also the isometric inclusion of the L1 space in the regular signed finite Borel measures, Mr, which we will present in this chapter since it is a new concept. The first of these theorems tells us that the closed balls in the dual of a normed space are compact, which will allow us to obtain some convergence on sequences seen within this dual. The second of these theorems, which gives the title to this memory, will allow us to identify the dual of the space of functions with the space of measures. In order to arrive at both the inclusion of L1 in the measures and the Riesz theorem, it will be crucial to define the integral of a function with respect to a measure. In addition, through various examples in the project developed in different parts (as appropriate), we will define and study a measure constructed from a function in L1, which will be nothing more than the integral of the function with respect to the Lebesgue measure as seen in Mathematical Analysis I. All these examples will aim at identifying the space of integrable functions L1 with a subspace within the measures. Another important new concept that we will introduce in this first chapter will be that of a new topology, the weak-* topology, which has the advantage of having more compact sets. This will be the topology that we will use in the Banach-Alouglu- Bourbaki theorem to assert compactness of closed subsets of the dual.Therefore, roughly speaking, every bounded sequence in the dual of a normed space will have to have a partial that converges to the weak-* topology. In Capítulo 2 we will start from a conservation law, namely mass, which will give us an a priori estimate in L1 and we will see how the solutions behave when varying a parameter of the equation. Since L1 is embedded in the measurements, as we have already mentioned, the solutions will be bounded as measurements. Viewing the measures as the dual of the space C00, being bounded they will have a convergent subsuccession in the weak-* topology and to a measure. This weak-* topology will come naturally when using it in the weak formulation of the equations, since a measure coming from a function in L1 seen as an operator on C00 will be nothing more than the integral of the product, as we will show in Capítulo 1. Therefore, the difficulty of taking limits in the weak formulation will reside in the nonlinear terms of the equation, which we will rewrite and prove the bounding of the first moment, so that we can finally pass to the limit.}, abstract = {Cuando nos enfrentamos partiendo de un modelo en derivadas parciales que constituye una ley de conservación, una lectura matemática de este hecho es que las ecuaciones con las que trabajamos preservan la norma L1. Esto nos indica que las soluciones del modelo, antes incluso de saber de su existencia y/o unicidad, van a estar acotadas con esta norma. Este tipo de conservación nos indica que nuestras soluciones viven en un espacio acotado de L1. Sin embargo, este hecho, a priori, no nos da una compacidad o convergencia con la que podamos trabajar. En esta memoria veremos que realmente esta acotación en L1 sí puede usarse como herramienta para establecer una convergencia de soluciones, aunque no a una función de L1, sino a una medida. En una segunda fase será crucial determinar qué ecuación verifica esta medida límite. Para tener una visión global de los pasos que hemos seguido para obtener esta convergencia, veamos un pequeño resumen de estos resultados. Si consideramos una sucesión de funciones integrables acotada, esta no tiene por qué converger. Aunque, viéndola como una sucesión acotada en el espacio de medidas, al ser este el dual de un espacio normado (Teorema de representación de Riesz), podemos encontrar una parcial convergente (Teorema de Banach-Alouglu- Bourbaki), teniendo en cuenta que lo hará a una medida y con la topología débil-*. La estructura general seguida hasta poder llegar a los resultados que nos permitan afirmar el resumen antes comentado será la siguiente: en el Capítulo 1 recopilaremos los resultados estudiados en el grado provenientes de diversas asignaturas, así como introduciremos nuevos conceptos que nos serán necesarios más adelante. Como principal fuente consultada destacamos tanto los apuntes de la asignatura de análisis funcional del grado [PG10] como los libros de Donald L. Cohn [Coh97] y Gerald B. Folland [Fol99]. En un segundo Capítulo, ilustraremos todos estos resultados con un ejemplo extraído de [Nie03], quedando así abordados todos los objetivos previstos en la propuesta de este proyecto. En el primer Capítulo, los resultados más relevantes serán tanto el teorema de Banach-Alouglu-Bourbaki como el teorema de representación de Riesz, pudiendo destacar también la inclusión isométrica del espacio L1 en las medidas finitas signadas regulares de Borel, Mr, las cuales presentaremos dentro de este al tratarse de un nuevo concepto. El primero de estos teoremas nos dice que las bolas cerradas en el dual de un espacio normado son compactas en cierta topología que definiremos posteriormente, lo que nos permitirá obtener cierta convergencia sobre sucesiones vistas dentro de este dual. El segundo de ellos, el cual da título a esta memoria, nos permitirá identificar el dual del espacio C00 con el espacio de las medidas Mr. Para poder llegar tanto a la inclusión de L1 en las medidas como al teorema de Riesz, será crucial definir la integral de una función respecto a una medida. Además, a través de diversos ejemplos dentro de la memoria desarrollados en distintas partes (según correspondan), definiremos y estudiaremos una medida construida a partir de una función en L1, que no será más que la integral de la función respecto la medida de Lebesgue como se vio en Análisis Matemático I. Todos estos ejemplos tendrán como finalidad el poder identificar el espacio de las funciones integrables L1 con un subespacio dentro de las medidas. Otro nuevo concepto importante que presentaremos en este primer capítulo será el de una nueva topología, la topología débil-*, que posee la ventaja de tener más conjuntos compactos. Esta será la topología que usaremos en el teorema de Banach- Alouglu-Bourbaki para afirmar la compacidad de los subconjuntos cerrados del dual. Por tanto, a grandes rasgos, toda sucesión acotada en el dual de un espacio normado tendrá que tener una parcial que converja en la topología débil-*. En el Capítulo 2 partiremos de una ley de conservación, concretamente de masa, lo que nos dará una estimación, a priori, en L1. Con esto veremos cómo se comportan las soluciones al variar un parámetro de la ecuación. Como L1 está embebido en las medidas, hecho que ya habíamos comentado, las soluciones estarán acotadas como medidas. Viendo las medidas como el dual del espacio C00, al estar acotadas, tendrán una subsucesión convergente en la topología débil-* a una medida. Esta topología débil-* aparecerá de manera natural al usarla en la formulación débil de las ecuaciones, ya que una medida que provenga de una función en L1 vista como operador sobre C00, no será más que la integral del producto, esto será probado en el Capítulo 1. Por tanto, la dificultad de tomar límites en la formulación débil residirá en los términos no lineales de la ecuación. Para ello reescribiremos y demostraremos la acotación del primer momento, lo que nos lleva finalmente a poder pasar al límite.}, organization = {Universidad de Granada. Facultad de Ciencias. Grado en Matemáticas. Curso académico 2021-2022}, keywords = {Teorema de representación de Riesz}, title = {Teorema de representación de Riesz para C ₀ ₀ (R)* y aplicaciones a EDPs}, author = {Galindo Pérez, Anabel}, }