@misc{10481/77317, year = {2022}, month = {9}, url = {https://hdl.handle.net/10481/77317}, abstract = {We describe a versatile, portable, and simple platform that includes a microfluidic electrochemical immunosensor for prostate-specific antigen (PSA) detection. It is based on the covalent immobilization of the anti-PSA monoclonal antibody on magnetic microbeads retained in the central channel of a microfluidic device. Image flow cytometry and scanning electron microscopy were used to characterize the magnetic microbeads. A direct sandwich immunoassay (with horseradish peroxidase-conjugated PSA antibody) served to quantify the cancer biomarker in serum samples. The enzymatic product was detected at -100 mV by amperometry on sputtered thin-film electrodes. Electrochemical reaction produced a current proportional to the PSA level, with a linear range from 10 pg mL(-1) to 1500 pg mL(-1). The sensitivity was demonstrated by a detection limit of 2 pg mL(-1) and the reproducibility by a coefficient of variation of 6.16%. The clinical performance of this platform was tested in serum samples from patients with prostate cancer (PCa), observing high specificity and full correlation with gold standard determinations. In conclusion, this analytical platform is a promising tool for measuring PSA levels in patients with PCa, offering a high sensitivity and reduced variability. The small platform size and low cost of this quantitative methodology support its suitability for the fast and sensitive analysis of PSA and other circulating biomarkers in patients. Further research is warranted to verify these findings and explore its potential application at all healthcare levels.}, organization = {Universidad Nacional de San Luis PROICO 22/Q241}, organization = {ANPCyT PICT 2018-04443 PICT-2015-2246 PICT-2015-1575 PICT-2014-1184 PICT-2014-0375 PICT-2018-04443}, organization = {Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) PIP 11220150100004CO}, organization = {GENYO}, organization = {Centre for Genomics and Oncological Research: Pfizer-University of Granada}, organization = {Andalusian Regional Government (Granada, Spain)}, organization = {ISCIII Health Research Institute P17/00989}, organization = {La Caixa Foundation}, organization = {Health and Family Secretariat of the Andalusian Regional Government}, organization = {Spanish Government}, organization = {H2020-MSCA-IF-2019-895664}, publisher = {MDPI}, keywords = {PSA}, keywords = {Cancer biomarker}, keywords = {Liquid biopsy}, keywords = {Cancer diagnosis}, keywords = {Magnetic microbeads}, keywords = {Microfluidic immunosensor}, title = {A Novel, Quick, and Reliable Smartphone-Based Method for Serum PSA Quantification: Original Design of a Portable Microfluidic Immunosensor-Based System}, doi = {10.3390/cancers14184483}, author = {Ortega, Francisco Gabriel and González Martínez, Coral and Valero Griñán, María Teresa and Expósito Hernández, José and Puche, Ignacio and Rodríguez Martínez, Alba and Serrano Fernández, María José and Lorente Acosta, José Antonio}, }