@misc{10481/75881, year = {2022}, month = {6}, url = {http://hdl.handle.net/10481/75881}, abstract = {We present an ALMA-Herschel joint analysis of sources detected by the ALMA Lensing Cluster Survey (ALCS) at 1.15 mm. Herschel/PACS and SPIRE data at 100-500 mu m are deblended for 180 ALMA sources in 33 lensing cluster fields that are detected either securely (141 sources; in our main sample) or tentatively at S/N >= 4 with cross-matched HST/Spitzer counterparts, down to a delensed 1.15 mm flux density of similar to 0.02 mJy. We performed far-infrared spectral energy distribution modeling and derived the physical properties of dusty star formation for 125 sources (109 independently) that are detected at >2 sigma in at least one Herschel band. A total of 27 secure ALCS sources are not detected in any Herschel bands, including 17 optical/near-IR-dark sources that likely reside at z = 4.2 +/- 1.2. The 16th, 50th, and 84th percentiles of the redshift distribution are 1.15, 2.08, and 3.59, respectively, for ALCS sources in the main sample, suggesting an increasing fraction of z similar or equal to 1 - 2 galaxies among fainter millimeter sources (f(1)(1)(50) similar to 0.1 mJy). With a median lensing magnification factor of mu = 2.6(-0.8)(+2.6), ALCS sources in the main sample exhibit a median intrinsic star formation rate of 94(-54)(+84) M-circle dot yr(-1), lower than that of conventional submillimeter galaxies at similar redshifts by a factor of similar to 3. Our study suggests weak or no redshift evolution of dust temperature with L-IR < 10(12) L-circle dot galaxies within our sample at z similar or equal to 0 - 2. At L-IR > 10(12) L-circle dot, the dust temperatures show no evolution across z similar or equal to 1-4 while being lower than those in the local universe. For the highest-redshift source in our sample (z = 6.07), we can rule out an extreme dust temperature (>80 K) that was reported for MACS0416 Y1 at z = 8.31.}, organization = {NRAO Student Observing Support (SOS) award SOSPA7-022}, organization = {JWST/NIRCam contract NAS5-02105}, organization = {Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science}, organization = {Grants-in-Aid for Scientific Research (KAKENHI) JP17H06130 JP18K03693 JP20H00181 JP20H05856 JP22H01260}, organization = {NAOJ ALMA Scientific Research grant 2017-06B}, organization = {UK Research & Innovation (UKRI)}, organization = {Science & Technology Facilities Council (STFC) ST/T000244/1}, organization = {Spanish Government PGC2018-093499-B-I00}, organization = {Ministry of Science, Technology and Space (MOST), Israel}, organization = {National Aeronautics & Space Administration (NASA) NAS 526555}, publisher = {American Astronomical Society}, title = {ALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z similar or equal to 0.5-6}, doi = {10.3847/1538-4357/ac6e3f}, author = {Sun, Fengwu and Espada Fernández, Daniel}, }