@misc{10481/70209, year = {2021}, month = {7}, url = {http://hdl.handle.net/10481/70209}, abstract = {Obtaining dynamics of an interacting quantum many-body system connected to multiple baths initially at different, finite, temperatures and chemical potentials is a challenging problem. This is due to a combination of the prevalence of strong correlations in the system, the infinite nature of the baths and the long time to reach steady state. In this paper, we develop a general formalism that allows access to the full non-Markovian dynamics of such open quantum many-body systems up to the nonequilibrium steady state, provided its uniqueness. Specifically, we show how finite-time evolution in the presence of finite-sized baths, whose opportune size is determined by their original spectral density, can be recursively used to faithfully reconstruct the exact dynamics without requiring any small parameter. Such a reconstruction is possible even in parameter regimes which would otherwise be inaccessible by current state-of-the-art techniques. We specifically demonstrate this by obtaining the full numerically exact non-Markovian dynamics of interacting fermionic chains in two terminal setups with finite temperature and voltage biases, a problem which previously remained outstanding despite its relevance in a wide range of contexts, for example, quantum heat engines and refrigerators.}, organization = {European Research Council Starting Grant ODYSSEY G. A. 758403}, organization = {SFI-Royal Society University Research Fellowship scheme}, organization = {Science Foundation Ireland European Commission 18/SIRG/5508}, organization = {European Unions Horizon 2020 research and innovation program under the H2020 Marie Sklodowska-Curie Actions Grant 890884}, organization = {FQXi DFG FOR2724}, organization = {Ministerio de Ciencia, Innovacion y Universidades (SPAIN)}, organization = {Fundacion Seneca 19882/GERM/15}, organization = {European Commission PGC2018-097328-B100}, publisher = {American Physical Society}, title = {Periodically refreshed baths to simulate open quantum many-body dynamics}, doi = {10.1103/PhysRevB.104.045417}, author = {Purkayastha, Archak and Prior, Javier}, }