@misc{10481/68647, year = {2021}, month = {3}, url = {http://hdl.handle.net/10481/68647}, abstract = {TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site.}, organization = {United States Department of Health & Human Services National Institutes of Health (NIH) - USA R01GM112077}, organization = {Gordon and Betty Moore Foundations}, organization = {National Science Foundation (NSF) 1715591 1901709}, organization = {Spanish Ministry of Economy and Competitiveness/FEDER Funds BIO2015-66426-R RTI2018-097142-B-100}, organization = {Human Frontier Science Program RGP0041/2017}, organization = {FEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento E.FQM.113.UGR18}, publisher = {Nature}, title = {Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity}, doi = {10.1038/s41467-021-22089-0}, author = {Modi, Tushar and Risso, Valeria Alejandra and Martínez Rodríguez, Sergio and Gavira Gallardo, José Antonio and Sánchez Ruiz, José Manuel}, }