@misc{10481/62964, year = {2016}, month = {9}, url = {http://hdl.handle.net/10481/62964}, abstract = {We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4:4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc < 5:6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B1 Mpc < 2:0 nG and B1 Mpc < 0:9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2:8 nG. A search for preferred directions in the magneticallyinduced passive bispectrum yields B1 Mpc < 4:5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfvén waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data}, organization = {European Space Agency}, organization = {Centre National D'etudes Spatiales}, organization = {CNRS/INSU-IN2P3-INP (France)}, organization = {Italian Space Agency (ASI)}, organization = {Italian National Research Council}, organization = {Istituto Nazionale Astrofisica (INAF)}, organization = {National Aeronautics & Space Administration (NASA)}, organization = {UKSA (UK)}, organization = {Consejo Superior de Investigaciones Cientificas (CSIC)}, organization = {MINECO (Spain)}, organization = {JA (Spain)}, organization = {RES (Spain)}, organization = {Finnish Funding Agency for Technology & Innovation (TEKES)}, organization = {AoF (Finland)}, organization = {CSC (Finland)}, organization = {Helmholtz Association}, organization = {German Aerospace Centre (DLR)}, organization = {Max Planck Society}, organization = {CSA (Canada)}, organization = {DTU Space (Denmark)}, organization = {SER/SSO (Switzerland)}, organization = {RCN (Norway)}, organization = {Science Foundation Ireland}, organization = {Portuguese Foundation for Science and Technology}, organization = {ERC (EU)}, organization = {European Union (EU)}, organization = {United States Department of Energy (DOE) DE-AC02-05CH11231}, organization = {Science & Technology Facilities Council (STFC) ST/L000393/1 ST/L000768/1}, organization = {Villum Fonden 10056}, publisher = {EDP Sciences}, keywords = {Magnetic fields}, keywords = {Cosmic background radiation}, keywords = {Early Universe}, title = {Planck 2015 results XIX. Constraints on primordial magnetic fields}, doi = {10.1051/0004-6361/201525821}, author = {Ade, P. A. R. and Battaner López, Eduardo and Planck Collaboration}, }