@misc{10481/62696, year = {2013}, month = {3}, url = {http://hdl.handle.net/10481/62696}, abstract = {The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 38 pb−1. Jets are reconstructed with the anti-k t algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta p T≥20 GeV and pseudorapidities |η|<4.5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2.5 % in the central calorimeter region (|η|<0.8) for jets with 60≤p T<800 GeV, and is maximally 14 % for p T<30 GeV in the most forward region 3.2≤|η|<4.5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon p T, the sum of the transverse momenta of tracks associated to the jet, or a system of low-p T jets recoiling against a high-p T jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-p T jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined.}, organization = {ANPCyT  }, organization = {YerPhI, Armenia}, organization = {Australian Research Council}, organization = {BMWF, Austria}, organization = {Azerbaijan National Academy of Sciences (ANAS)}, organization = {SSTC, Belarus}, organization = {National Council for Scientific and Technological Development (CNPq)}, organization = {Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)}, organization = {Natural Sciences and Engineering Research Council of Canada}, organization = {NRC, Canada}, organization = {Canada Foundation for Innovation}, organization = {CERN}, organization = {Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)}, organization = {Chinese Academy of Sciences}, organization = {Ministry of Science and Technology, China}, organization = {National Natural Science Foundation of China}, organization = {Departamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias}, organization = {Ministry of Education, Youth & Sports - Czech Republic Czech Republic Government}, organization = {DNRF, Denmark}, organization = {Danish Natural Science Research Council}, organization = {Lundbeckfonden}, organization = {European Union (EU)}, organization = {Centre National de la Recherche Scientifique (CNRS)}, organization = {CEA-DSM/IRFU, France}, organization = {GNAS, Georgia}, organization = {Federal Ministry of Education & Research (BMBF)}, organization = {German Research Foundation (DFG)}, organization = {HGF, Germany}, organization = {Max Planck Society}, organization = {Alexander von Humboldt Foundation}, organization = {Greek Ministry of Development-GSRT}, organization = {Israel Science Foundation}, organization = {MINERVA, Israel}, organization = {German-Israeli Foundation for Scientific Research and Development}, organization = {DIP, Israel}, organization = {Benoziyo Center, Israel}, organization = {Istituto Nazionale di Fisica Nucleare (INFN)}, organization = {Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science}, organization = {CNRST, Morocco}, organization = {FOM (The Netherlands) Netherlands Government}, organization = {Netherlands Organization for Scientific Research (NWO) Netherlands Government}, organization = {RCN, Norway}, organization = {Ministry of Science and Higher Education, Poland}, organization = {GRICES, Portugal}, organization = {Portuguese Foundation for Science and Technology}, organization = {MERYS (MECTS), Romania}, organization = {MES of Russia}, organization = {Russian Federation}, organization = {JINR}, organization = {MSTD, Serbia}, organization = {MSSR, Slovakia}, organization = {Slovenian Research Agency - Slovenia}, organization = {MVZT, Slovenia}, organization = {DST/NRF, South Africa}, organization = {Spanish Government}, organization = {SRC, Sweden}, organization = {Wallenberg Foundation, Sweden}, organization = {SER, Switzerland}, organization = {Swiss National Science Foundation (SNSF)}, organization = {Cantons of Bern and Geneva, Switzerland}, organization = {National Science Council of Taiwan}, organization = {Ministry of Energy & Natural Resources - Turkey}, organization = {Royal Society of London}, organization = {Leverhulme Trust}, organization = {United States Department of Energy (DOE)}, organization = {National Science Foundation (NSF)}, organization = {ICREA}, organization = {Science & Technology Facilities Council (STFC) ST/I003525/1 PP/E003699/1 ST/H00095X/2 ST/K001337/1 PP/E003699/2 ST/K001361/1 LHCb ST/K003496/1 ST/F007337/1 ST/J005568/1 ST/K001361/1 LHCb Upgrades ST/K001361/1 ST/K001310/1 ST/K000713/1 ST/H00100X/2 ST/L00352X/1 ST/M001431/1 PP/E000347/1 ST/J002798/1 ST/L001195/1 PP/E000487/1 ST/J501074/1 ST/K001248/1 ATLAS ST/K001337/1 ATLAS ST/K001329/1 ATLAS ST/L003112/1 ST/K00140X/1 LHCb ST/H001093/2 ST/L001144/1 ST/K001310/1 LHCb Upgrades ST/F007418/1 ST/K00140X/1 PP/E000355/1 ST/K001310/1 ATLAS ST/K001426/1 ATLAS ST/K003496/1 GRIDPP ST/K001361/1 MINOS/MINOS+ ST/K001361/1 ATLAS Upgrades ST/K001310/1 ATLAS Upgrades ST/J004936/1 ST/F00754X/1 ST/J004804/1 ST/K001248/1 ST/K00137X/1 GRIDPP ST/H001093/1 ST/K001310/1 LHCb ST/L001004/1 ATLAS ST/J005541/1 ST/K001388/1 ST/H001069/2 ST/I505756/1 ST/H00100X/1 ST/M000761/1 ST/M000664/1 ST/K00140X/1 ATLAS ST/K001361/1 ATLAS ST/K001264/1 ATLAS ST/K00073X/1 ST/K000705/1 ST/H00095X/1 ST/K50208X/1}, publisher = {Springer Nature}, title = {Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV}, doi = {10.1140/epjc/s10052-013-2304-2}, author = {Aad, G. and Aguilar Saavedra, Juan Antonio and Atlas Collaboration}, }