@misc{10481/62181, year = {2018}, month = {10}, url = {http://hdl.handle.net/10481/62181}, abstract = {Ocean export production is a key constituent in the global carbon cycle impacting climate. Past ocean export production is commonly estimated by means of barite and Barium proxies. However, the precise mechanisms underlying barite precipitation in the undersaturated marine water column are not fully understood. Here we present a detailed mineralogical and crystallographic analysis of barite from size-fractionated particulate material collected using multiple unit large volume in-situ filtration systems in the North Atlantic and the Southern Ocean. Our data suggest that marine barite forms from an initial amorphous phosphorus-rich phase that binds Ba, which evolves into barite crystals whereby phosphate groups are substituted by sulfate. Scanning electron microscopy observations also show the association of barite particles with organic matter aggregates and with extracellular polymeric substances (EPS). These results are consistent with experimental work showing that in bacterial biofilms Ba binds to phosphate groups in both cells and EPS, which promotes locally high concentrations of Ba leading to saturated microenvironments favoring barite precipitation. These results strongly suggest a similar precipitation mechanism in the ocean, which is consistent with the close link between bacterial production and abundance of Ba-rich particulates in the water column. We argue that EPS play a major role in mediating barite formation in the undersaturated oceanic water column; specifically, increased productivity and organic matter degradation in the mesopelagic zone would entail more extensive EPS production, thereby promoting Ba bioaccumulation and appropriate microenvironments for barite precipitation. This observation contributes toward better understanding of Ba proxies and their utility for reconstructing past ocean export productivity. This article is part of a special issue entitled: “Cycles of trace elements and isotopes in the ocean – GEOTRACES and beyond” - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.}, organization = {This study was supported by the European Regional Development Fund (ERDF) co-financed grants CGL2015-66830-R and CGL2017- 92600-EXP (MINECO Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain), Research Group RNM-179 and BIO 103 (Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía) and the University of Granada (Unidad Científica de Excelencia UCE-PP2016-05). We thank the Center for Scientific Instrumentation (CIC, University of Granada), the Warm Core Rings project, and NSF OCE- 0961660 for supporting sample collection during MV1101.}, publisher = {Elsevier}, keywords = {Marine barite}, keywords = {Ocean productivity}, keywords = {Bacteria}, keywords = {Biofilms}, keywords = {Sustancias poliméricas extracelulares (EPS)}, keywords = {Extracellular polymeric substances (EPS)}, keywords = {Barite precipitation}, keywords = {Marine barite}, title = {Barite formation in the ocean: Origin of amorphous and crystalline precipitates}, doi = {10.1016/j.chemgeo.2018.09.011}, author = {Martínez Ruiz, Francisca and González Muñoz, María Teresa and Jroundi, Fadwa and Abad Ortega, María del Mar}, }