@misc{10481/31360, year = {2013}, url = {http://hdl.handle.net/10481/31360}, abstract = {We study holomorphic maps between C * -algebras A and B, when f: BA (0, ρ) → B is a holomorphic mapping whose Taylor series at zero is uniformly converging in some open unit ball U = BA (0, δ). If we assume that f is orthogonality preserving and orthogonally additive on A s a ∩ U and f (U) contains an invertible element in B, then there exist a sequence (hn) in B * * and Jordan * -homomorphisms Θ, Θ: M (A) → B * * such that f (x) = ∑ n = 1 ∞ h n Θ (an) = ∑n = 1 ∞ Θ (an) hn uniformly in a ∈ U. When B is abelian, the hypothesis of B being unital and f (U) ∩ i n v (B) ≠ ∅ can be relaxed to get the same statement.}, organization = {The authors are partially supported by the Spanish Ministry of Economy and Competitiveness, D.G.I. Project no. MTM2011-23843, and Junta de Andalucía Grant FQM3737.}, publisher = {Hindawi Publishing Corporation}, keywords = {Polynomials}, keywords = {Spaces}, keywords = {C(K)}, title = {Orthogonally Additive and Orthogonality Preserving Holomorphic Mappings between C*-Algebras}, doi = {10.1155/2013/415354}, author = {Garcés Pérez, Jorge José and Peralta, Antonio Miguel and Puglisi, Daniele and Ramírez, María Isabel}, }