@misc{10481/107795, year = {2025}, month = {10}, url = {https://hdl.handle.net/10481/107795}, abstract = {The escalating prevalence of drug-resistant microbes coupled with their persistence in mono- and polymicrobial biofilms impose a critical healthcare challenge. Metal nanoparticles, particularly silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), offer potent antimicrobial activity but face limitations due to their complex synthetic protocols, reliance on external reducing agents and surfactants, resulting compromised biocompatibility and poor in vivo outcomes. Herein, we present a facile, biocompatible approach for synthesizing antimicrobial supramolecular nanocomposite hydrogels (ASNH) via a one-pot, aqueous process that enables in situ growth of AgNPs and AuNPs through supramolecular interactions with short peptides. Utilizing sunlight photoirradiation, these hydrogels eliminate external reducing agents while serving as stabilizers for nanoparticle formation. The metallohydrogels exhibit rapid and broadspectrum antimicrobial activity, against multidrug resistant bacteria and fungi. In addition to disrupting single species biofilms, the optimal hydrogels significantly eradicate polymicrobial biofilms formed by MRSA and Candida albicans. The hydrogels achieve ≥1.5-log reduction in microbial viability, outperforming last resort antibiotics and commercial silver-based ointments. In vivo studies demonstrate accelerated wound healing by reducing bacterial burden and mitigating inflammatory responses, while enhancing neovascularization, granulation, fibroblast proliferation, collagen deposition and epithelialization. The mild, economical synthesis and robust antimicrobial efficacy of these peptide-based metallohydrogels underscore their clinical potential as next-generation biomaterials for polymicrobial biofilm-associated infections.}, organization = {MICIU/AEI/10.13039/501100011033 (PID2020-118498GB-I00, PID2023-150318NB-I00)}, organization = {FEDER–Junta de Andalucía–Consejería de Transformación Económica, Industria, Conocimiento y Universidades (P18-FR-3533, A-FQM-340-UGR20)}, publisher = {Royal Society of Chemistry}, title = {Short-peptide based supramolecular nanocomposite hydrogels for the disruption of polymicrobial biofilms and accelerated infected wound healing}, doi = {10.1039/d5bm00761e}, author = {Mukherjee, Sudip and Núñez-Martínez, Manuel and Illescas Lopez, Sara and Jeyakumar, Archanna and López López, Modesto Torcuato and Cuerva Carvajal, Juan Manuel and Bhatia, Vaibhav and Gavira Gallardo, José Antonio and Álvarez de Cienfuegos, Luis and Haldar, Jayanta}, }