@misc{10481/103136, year = {2025}, month = {2}, url = {https://hdl.handle.net/10481/103136}, abstract = {We present a general relationship between the magnetisation blocking temperature (TB) measured using the zero-field cooling/field cooling technique (ZFC/FC) and the temperature-dependent spin relaxation time obtained from AC susceptibility and magnetisation decay measurements. The presented mathematical approach supplies ZFC/FC blocking temperatures at any heating rate (RH), providing comparable values to those obtained experimentally, as demonstrated by testing 107 examples for reported single-molecule magnets (SMMs) where the ZFC/FC curve has been measured. This procedure is examined in further detail for a new single-molecule magnet, [Dy(OPAd2Bz)2(H2O)4Br]Br2·4THF (1) (OPAd2Bz: di(1-adamantyl)benzylphosphine oxide). For this compound, ZFC/FC measurements were made over a broad range of heating rates (0.01–5 K min−1), which agreed with the general behaviour predicted from AC susceptibility data. We discuss how the demagnetisation mechanism determines the sensitivity of TB with respect to the heating rate: TB is mostly insensitive to RH for Orbach relaxation, while there is a larger sensitivity for Raman-limited systems. Our conclusions provide a clear physical interpretation of ZFC/FC blocking temperatures, aiding in the proper contextualization of this figure of merit.}, organization = {Fondo Nacional de Desarrollo Científico y Tecnológico 1210325}, organization = {Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT ECM-02}, organization = {Supercomputing infrastructure of the NLHPC PID2022-138090NB-C21 RYC2021-034288-I}, organization = {Ministerio de Ciencia e Innovación FQM-195 FQM-337}, organization = {Junta de Andalucía I + D + i P20_00692 C-EXP-140-UGR23 B.B TA_000722 2021-2027}, organization = {FEDER/Junta de Andalucía}, organization = {Consejería de Economía, Conocimiento, Empresas y Universidad I + D + i PPJIA2020.10}, organization = {University of Granada}, organization = {European Union (EU) 2021-SGR-00286}, organization = {Generalitat de Catalunya}, publisher = {Royal Society of Chemistry}, title = {Determining the zero-field cooling/field cooling blocking temperature from AC susceptibility data for single-molecule magnets}, doi = {10.1039/d4qi03259d}, author = {Gil, Yolimar and Quesada Moreno, María del Mar and Palacios López, María de los Ángeles and Gómez-Coca, Silvia and Colacio Rodríguez, Enrique and Ruiz, Eliseo and Aravena, Daniel}, }